1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

This study of Eocene carbonate succession in the Dinaric Foreland Basin of northern Dalmatia, Croatia, integrates palaeontological and sedimentological data to document a range of carbonate ramps formed intermittently during the basin tectonic development. The end‐Cretaceous basal erosional unconformity records the coupling of Adria and Eurasia crustal plates, with an antiformal uplift along their suture zone. The overlying late Ypresian carbonate ramp, spanning biozones SBZ 11–12, developed on the forebulge flank of a shallow‐marine early synclinal basin. Basal grainstone/packstone facies, dominated by encrusting foraminifers with alveolinids and miliolids, pass upwards into packstones dominated by miliolids and rotaliids with bryozoan and echinoid fragments, indicating an increased bathymetry of the retreating forebulge flank. Deposition of grainstone facies preceded an end‐Ypresian (SBZ 12/13 transition) subaerial exposure due to post‐subductional isostatic uplift. The younger, middle to late Eocene carbonate ramps (SBZ 13–19) formed episodically as perched isolated features on blind‐thrust anticlines in a bathymetrically diversified wedge‐top basin, where phases of clastic and skeletal biogenic sedimentation alternated due to disharmonic thrusting and relative sea‐level changes. Clastic sedimentation reflects anticline crest erosion and a forced‐regressive progradation of gravelly foreshore and sandy shoreface facies over heterolithic offshore‐transition and muddy offshore facies on the anticline flank. Biogenic sedimentation represents inner‐ to middle‐ramp environments, with the latter terminating bluntly in muddy offshore environment. An outer‐ramp environment, known from classic ramp models, was lacking due to bathymetric threshold. Analysis of larger benthic foraminifers (LBF), as biostratigraphic age indicators and palaeobathymetric proxies, helped distinguish systems tracts and determine their time span. A comparison of local and global sea‐level changes allowed the interplay of tectonic and eustatic forcing to be deciphered for the study area.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12274
2018-02-23
2019-12-10
Loading full text...

Full text loading...

References

  1. Accordi, G., Carbone, F., Di Carlo, M. & Pignatti, J. (2014) Microfacies analysis of deep‐water breccia clasts: a tool for interpreting shallow‐ vs. deep‐ramp Paleogene sedimentationin Cephalonia and Zakynthos (Ionian Islands, Greece). Facies, 60, 445–466.
    [Google Scholar]
  2. Afzal, J., Williams, M., Leng, M.J., Aldridge, R.J. & Stephenson, M.H. (2011) Evolution of paleocene to early eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia, 44, 299–320.
    [Google Scholar]
  3. Allen, J.R.L. (1982) Sedimentary Structures: Their Character and Physical Basis, Vol. 2. Developments in Sedimentology, 30B, 643 pp. Elsevier, Amsterdam.
    [Google Scholar]
  4. Babić, L. & Zupanič, J. (2008) Evolution of a river‐fed foreland basin fill: the North Dalmatian flysch revisited (Eocene, Outer Dinarides). Nat. Croat., 17, 357–374.
    [Google Scholar]
  5. Babić, L. & Zupanič, J. (2012) Laterally variable development of a basin‐wide transgressive unit of the North Dalmatian foreland basin (Eocene, Dinarides, Croatia). Geol. Croat., 65, 1–27.
    [Google Scholar]
  6. Babić, L. & Zupanič, J. (2016) The youngest stage in the evolution of the Dinaric Carbonate Platform: the Upper Nummulitic Limestones in the North Dalmatian Foreland, Middle Eocene, Croatia. Nat. Croat., 25, 55–71.
    [Google Scholar]
  7. Bassi, D. & Nebelsick, J.H. (2010) Components, facies and ramps: Redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol., 295, 258–280.
    [Google Scholar]
  8. Bassi, D., Hottinger, L. & Nebelsick, J.H. (2007) Larger foraminifera from the Late Oligocene of the Venetian area, north‐eastern Italy. Palaeontology, 50, 845–868.
    [Google Scholar]
  9. Bassi, D., Nebelsick, J.H., Puga‐Bernabéu, A. & Luciani, V. (2013) Middle eocene Nummulites and their offshore re‐deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy. Sediment. Geol., 297, 1–15.
    [Google Scholar]
  10. Beavington‐Penney, S.J. & Racey, A. (2004) Ecology of extant nummulitids and other LBF: application in palaeoenvironmental analysis. Earth‐Sci. Rev., 67, 219–265.
    [Google Scholar]
  11. Blašković, I. (1998) The two stages of structural formation of the coastal belt of the External Dinarides. Geol. Croat., 51, 75–89.
    [Google Scholar]
  12. Blašković, I. (1999) Tectonics of part of the Vinodol Valley within the model of the continental crust subduction. Geol. Croat., 52, 153–189.
    [Google Scholar]
  13. Bluck, B.J. (1999) Clast assemblages, bed‐forms and structure in gravel beaches. Trans. R. Soc. Edinburgh, Earth Sci., 89, 291–332.
    [Google Scholar]
  14. Bosence, D.W.J. (2005) A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sediment. Geol., 175, 49–72.
    [Google Scholar]
  15. Brandano, M., Frezza, V., Tomassetti, L. & Cuffaro, M. (2009) Heterozoan carbonates in oligotrophic tropical waters: the Attard member of the lower coralline limestone formation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 274, 54–63.
    [Google Scholar]
  16. Brandano, M., Lustrino, M., Cornacchia, I. & Sprovieri, M. (2015) Global and regional factors responsible for the drowning of the Central Apennine Chattian carbonate platforms. Geol. Jour., 50, 575–591.
    [Google Scholar]
  17. Burchette, T.P. & Wright, V.P. (1992) Carbonate ramp depositional systems. Sediment. Geol., 79, 3–57.
    [Google Scholar]
  18. Buxton, M.W.N. & Pedley, H.M. (1989) A standardized model for Tethyan Tertiary carbonate ramps. J. Geol. Soc. London, 146, 746–748.
    [Google Scholar]
  19. Catuneanu, O. & Sweet, A.R. (1999) Maastrichtian‐Paleocene foreland basin stratigraphies, western Canada: a reciprocal sequence architecture. Can. J. Earth Sci., 36, 685–703.
    [Google Scholar]
  20. Catuneanu, O., Beaumont, C. & Waschbusch, P. (1997) Interplay of static loads and subduction dynamics in foreland basins: reciprocal stratigraphies and the ‘missing’ peripheral bulge. Geology, 25, 1087–1090.
    [Google Scholar]
  21. Catuneanu, O., Hancox, P.J. & Rubidge, B.S. (1998) Reciprocal flexural behavior and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Res., 10, 417–439.
    [Google Scholar]
  22. Clifton, H.E. (1981) Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California. J. Sediment. Petrol., 51, 165–184.
    [Google Scholar]
  23. Clifton, H.E. & Dingler, J.R. (1984) Wave‐formed structures and paleoenvironmental reconstruction. Marine Geol., 60, 165–198.
    [Google Scholar]
  24. Clifton, H.E., Hunter, R.E. & Phillips, R.L. (1971) Depositional structures and processes in the non‐barred high energy nearshore. J. Sediment. Petrol., 41, 651–670.
    [Google Scholar]
  25. Collinson, J.D. & Thompson, D.B. (1982) Sedimentary Structures, 207 pp. Allen and Unwin, London.
    [Google Scholar]
  26. Ćosović, V., Drobne, K. & Moro, A. (2004) Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies, 50, 61–75.
    [Google Scholar]
  27. Ćosović, V., Zavodnik, D., Borčić, A., Vidović, J., Deak, S. & Moro, A. (2011) A checklist of Foraminifera of the Eastern Shelf of the Adriatic Sea. Zootaxa, 3035, 1–56.
    [Google Scholar]
  28. DeCelles, G.P. & Giles, A.K. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  29. Drobne, K. & Pavlovec, R. (1991) Paleocene and Eocene beds in Slovenia and Istria. In: Introduction to the Paleogene of SW Slovenia and Istria. Field Trip Guidebook, 2nd Meeting IGCP Project 286 (Ed. by K.Drobne , R.Pavlovec ), pp. 7–17. SAZU Publicatio, Ljubljana.
    [Google Scholar]
  30. Drobne, K., Ćosović, V., Moro, A. & Bucković, D. (2011) The role of the Palaeogene Adriatic Carbonate Platform in the spatial distribution of Alveolinids. Turkish J. Earth Sci., 20, 721–751.
    [Google Scholar]
  31. Dumas, S. & Arnott, R.W.C. (2006) Origin of hummocky and swaley cross‐stratification – the controlling influence of unidirectional current strength and aggradation rate. Geology, 34, 1073–1076.
    [Google Scholar]
  32. Dunham, R.J. (1962) Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. by HamW.E. ) AAPG Mem, 1, 108–121.
    [Google Scholar]
  33. Embry, A.F.III & Klovan, J.S. (1971) A Late Devonian reef tract on northeastern Banks Island, N.W.T. Bull. Can. Petrol. Geol., 4, 730–781.
    [Google Scholar]
  34. Field, J.G., Jarman, N.G., Dieckmann, G.S., Griffiths, C.L., Velimirov, B. & Zoutendyk, P. (1977) Sun, waves, seaweed and lobsters: the dynamics of a West Coast kelp‐bed. S. Afr. J. Sci., 73, 7–10.
    [Google Scholar]
  35. Flügel, E. (2010) Microfacies of Carbonate Rocks, 2nd edn, 976 pp. Springer‐Verlag, Berlin.
    [Google Scholar]
  36. Garcia‐Castellanos, D. (2002) Interplay between lithospheric flexure and river transport in foreland basins. Basin Res., 14, 89–104.
    [Google Scholar]
  37. Geel, T. (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol., 155, 211–238.
    [Google Scholar]
  38. Hallock, P. (2000) Symbiont‐bearing foraminifera: Harbingers of global change?Micropaleontology, 46, 195–104.
    [Google Scholar]
  39. Hallock, P. & Glenn, C. (1986) Larger Foraminifera: A tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1, 55–64.
    [Google Scholar]
  40. Hampson, G.J. (2000) Discontinuity surfaces, clinoforms, and facies architecture in a wave‐dominated, shoreface‐shelf parasequence. J. Sediment. Res., 70, 325–340.
    [Google Scholar]
  41. Handford, C.R. & Loucks, R.G. (1993) Carbonate depositional sequences and systems tracts ‐ responses of carbonate platforms to relative sea‐level changes. In: Carbonate Sequence Stratigraphy (Ed. by LoucksR.G. & SargG.F. ) AAPG Memoir, 57, 3–41.
    [Google Scholar]
  42. Handy, M.R., Ustaszewski, K. & Kissling, E. (2015) Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int. J. Earth Sci. (Geol. Rundsch.), 104, 1–26.
    [Google Scholar]
  43. Harms, J.C., Southard, J.B., Spearing, D.R. & Walker, R.G. (1975) Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratifcation Sequences. Lecture Notes, SEPM Short Course No. 2, Society of Economic Paleontologists and Mineralogists, Dallas, 161 pp.
  44. Helland‐Hansen, W. (2009) Towards the standardization of sequence stratigraphy: Discussion. Earth‐Sci. Rev., 94, 95–97.
    [Google Scholar]
  45. HGI (Hrvatski Geološki Institut)
    HGI (Hrvatski Geološki Institut) (2009) Geological Map of the Republic of Croatia 1:300 000. Croatian Geological Survey, Zagreb. [In Croatian.]
    [Google Scholar]
  46. Hohenegger, J. (2000) Coenoclines of larger foraminifera. Micropaleontology, 46, 127–151.
    [Google Scholar]
  47. Hohenegger, J., Yordanova, E. & Hatta, A. (2000) Remarks on West Pacific Nummulitidae (Foraminifera). J. Foram. Res., 30, 3–28.
    [Google Scholar]
  48. Holbourn, A., Henderson, A.S. & MacLeod, N. (2013) Atlas of Benthic Foraminifera, 654 pp. Wiley‐Blackwell, Hoboken, NJ.
    [Google Scholar]
  49. Höntzsch, S., Scheibner, C., Kuss, J., Marzouk, A.M. & Rasser, M.W. (2010) Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains. Egypt. Facies, 57, 51–72.
    [Google Scholar]
  50. Hottinger, L. (1978) Comparative anatomy of selected foraminiferal shell structures. In: Foraminifera III (Ed. by R.H.Headley , G.Adams ), pp. 203–266. Academic Press, London.
    [Google Scholar]
  51. Hottinger, L. (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull. Soc. géol. Fr., 168, 591–505.
    [Google Scholar]
  52. Ilgar, A. (2015) Miocene sea‐level changes in northermost Anatolia: Sedimentary record of eustasy and tectonism at the peri‐Pontide fringe of Eastern Paratethys. Sediment. Geol., 316, 62–79.
    [Google Scholar]
  53. Ilgar, A., Nemec, W., Hakyemez, A. & Karakuş, E. (2013) Messinian forced regressions in the Adana Basin: a near‐coincidence of tectonic and eustatic forcing. Turkish J. Earth Sci., 22, 864–889.
    [Google Scholar]
  54. Ivanović, A., Sakač, K., Sokač, B., Vrsalović‐Carević, I. & Zupanič, J. (1976) Osnovna Geološka Karta SFRJ 1:100 000: Tumač za List Obrova, 61 pp. Savezni Geološki Zavod, Beograd. [In Croatian, with English summary.]
    [Google Scholar]
  55. Ivanović, A., Sikirica, V. & Sakač, K. (1978) Osnova Geološka Karta SFRJ 1:100 000: Tumač za List Drniš, 59 pp. Savezni Geološki Zavod, Beograd. [In Croatian, with English summary.]
    [Google Scholar]
  56. Jin, X., Gruber, N., Dunne, J.P., Sarmiento, J.L. & Armstrong, R.A. (2006) Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob. Biogeochem. Cycles, 20, GB2015.
    [Google Scholar]
  57. Jorry, S.J., Hasler, C.‐A. & Davaud, E. (2006) Hydrodynamic behaviour of Nummulites: implications for depositional models. Facies, 52, 221–235.
    [Google Scholar]
  58. Kastelic, V. & Carafa, M.M.C. (2012) Fault slip rates for the active External Dinarids thrust‐and‐fold belt. Tectonics, 31, TC3019.
    [Google Scholar]
  59. Komar, P.D. & Miller, M.C. (1975) The initiation of oscillatory ripple marks and the development of plane‐bed at high shear stresses under waves. J. Sediment. Petrol., 45, 697–703.
    [Google Scholar]
  60. Kuk, V., Prelogović, E. & Dragičević, I. (2000) Seismotectonically active zones in the Dinarides. Geol. Croat., 53, 295–303.
    [Google Scholar]
  61. Langer, M.R. (1993) Epiphytic foraminifera. Marine Micropaleontol., 20, 235–265.
    [Google Scholar]
  62. Less, G. & Özcan, E. (2012) Bartonian‐Priabonian Larger benthic foraminiferal events in the Western Tethys. Austrian J. Earth Sci., 105, 129–140.
    [Google Scholar]
  63. Leszczyński, S. & Nemec, W. (2015) Dynamic stratigraphy of composite peripheral unconformity in a foredeep basin. Sedimentology, 62, 645–680.
    [Google Scholar]
  64. Majcen, Ž., Korolija, B., Sokač, B. & Nikler, L. (1970) Basic Geological Map of SFRY 1:100 000, Sheet Zadar K33–39. Geological Institute, Zagreb & Federal Geological Survey, Belgrade. [In Croatian.]
    [Google Scholar]
  65. Mamužić, P. (1975) Osnovna Geološka Karta SFRJ 1:100 000: Tumač za List Šibenik, 37 pp. Savezni Geološki Zavod, Beograd. [In Croatian, with English summary.]
    [Google Scholar]
  66. Maples, C.G. & West, R.R. (1991) Dependent and independent data in paleontology: Tools for the sedimentary modeler. Kansas Geol. Surv. Bull., 233, 177–184.
    [Google Scholar]
  67. Marjanac, T., Babac, D., Benić, J., Ćosović, V., Drobne, K., Marjanac, L., Pavlovec, R. & Velimirović, Z. (1998) Eocene carbonate sediments and sea‐level changes on the NE part of Adriatic carbonate platform (Island of Hvar and Pelješac penninsula, Croatia). In: Paleogene Shallow Benthos of the Tethys, 2 (Ed. by L.Hottinger & K.Drobne ), pp. 243–254. Slovenian Academy of Sciences and Art, Ljubjana.
    [Google Scholar]
  68. Massari, F. & Parea, G.C. (1988) Progradational gravel beach sequences in a moderate‐ to high‐energy microtidal marine environment. Sedimentology, 35, 881–913.
    [Google Scholar]
  69. Matenco, L., Bertotti, G., Leever, K., Cloetingh, S., Schmid, S.M., Tărăpoancă, M. & Dinu, C. (2007) Large‐scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics, 26, TC4011.
    [Google Scholar]
  70. Matenco, L., Krézsek, C., Merten, S., Schmid, S.M., Cloetingh, S. & Andriessen, P. (2010) Characteristics of collisional orogens with low topographic build‐up: an example from the Carpathians. Terra Nova, 22, 155–195.
    [Google Scholar]
  71. Mateu‐Vicens, G., Hallock, P. & Brandano, M. (2009) Test‐shape variability of Amphistegina d'Orbigny 1826 as a paleobathymetric proxy: application to two Miocene examples. In: Geologic Problems Solving With Microfossils: A Volume in Honor of Garry D. Jones (Ed. by DemchukT. & GaryA. ) SEPM Spec. Publ., 93, 67–82.
    [Google Scholar]
  72. Matteucci, R. (1996) Autoecologic remarks on recent and fossil Haddonia (Textulariina, Foraminifera). In: Autoecology of Selected Fossil Organisms: Achievements and Problems (Ed. by CherchiA. ) Boll. Soc. Paleontol. Ital., Vol. Spec., 3, 113–122.
    [Google Scholar]
  73. Mrinjek, E. (1993) Sedimentology and depositional setting of alluvial Promina Beds in northern Dalmatia, Croatia. Geol. Croat., 46, 243–261.
    [Google Scholar]
  74. Mrinjek, E. (1994) Internal architecture of alluvial Promina Beds in northern Dalmatia, Croatia. Acta Geol., 24, 1–36.
    [Google Scholar]
  75. Mrinjek, E., Nemec, W., Pecinger, V., Mikša, G., Vlahović, I., Ćosović, V., Velić, I., Bergant, S. & Matičec, D. (2012) The Eocene‐Oligocene Promina Beds of the Dinaric Foreland Basin in northern Dalmatia. J. Alpine Geol., 55, 409–451.
    [Google Scholar]
  76. Murray, J. (2006) Ecology and Application of Benthic Foraminifera, 426 pp. Cambridge University Press, Cambridge.
    [Google Scholar]
  77. Ori, G.G. & Friend, P.F. (1984) Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12, 457–478.
    [Google Scholar]
  78. Placer, L., Vrabec, M. & Celarc, B. (2010) The bases for understanding of the NW Dinarides and Istria Peninsula tectonics. Geologija, 53, 55–86.
    [Google Scholar]
  79. Pomar, L. (2001a) Types of carbonate platforms: a genetic approach. Basin Res., 13, 313–334.
    [Google Scholar]
  80. Pomar, L. (2001b) Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol., 175, 249–272.
    [Google Scholar]
  81. Pomar, L. & Hallock, P. (2008) Carbonate factories: A conundrum in sedimentary geology. Earth‐Sci. Rev., 87, 134–169.
    [Google Scholar]
  82. Pomar, L., Baceta, J.I., Hallock, P., Mateu‐Vicens, G. & Basso, D. (2017) Reef building and carbonate production modes in the west‐central Tethys during the Cenozoic. Mar. Pet. Geol., 83, 261–304.
    [Google Scholar]
  83. Răbăgia, T., Matenco, L. & Cloetingh, S. (2011) The interplay between eustacy, tectonics and surface processes during the growth of a fault‐related structure as derived from sequence stratigraphy: the Govora‐Ocnele Mari antiform, South Carpathians. Tectonophysics, 502, 196–220.
    [Google Scholar]
  84. Read, J.F. (1980) Carbonate ramp‐to‐basin transitions and foreland basin evolution, Middle Ordovician, Virginia Appalachians. AAPG Bull., 64, 1575–1612.
    [Google Scholar]
  85. Read, J.F. (1985) Carbonate platform facies models. AAPG Bull., 69, 1–21.
    [Google Scholar]
  86. Reading, H.G. & Collinson, J.D. (1996) Clastic coasts. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by H.G.Reading ), pp. 154–231. Blackwell Science, Oxford.
    [Google Scholar]
  87. Reineck, H.‐E. & Singh, I.B. (1972) Genesis of laminated sand and graded rhythmites in storm‐sand layers of shelf mud. Sedimentology, 18, 123–128.
    [Google Scholar]
  88. Reineck, H.‐E. & Singh, I.B. (1980) Depositional Sedimentary Environments, 549 pp. Springer‐Verlag, Berlin.
    [Google Scholar]
  89. Renema, W. (2005) Depth estimation using diameter‐thickness ratio in larger benthic foraminifera. Lethaia, 38, 137–141.
    [Google Scholar]
  90. Romero, J., Caus, E. & Rosell, J. (2002) A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol., 179, 43–56.
    [Google Scholar]
  91. Royden, I.H. (1993) Evolution of retreating subduction boundaries formed during continental collision. Tectonics, 12, 629–638.
    [Google Scholar]
  92. Sakač, K. (1960) Geološka građa i boksitne pojave područja Novigrad–Obrovac u sjevernoj Dalmaciji. Geol. Vijes., 14, 323–345. [In Croatian, with German summary.]
    [Google Scholar]
  93. Sakač, K. (1969) Analiza eocenskog paleoreljefa i tektonskih zbivanja u području Drniša u Dalmaciji s obzirom na postanak ležista boksita. Geol. Vijes., 23, 163–179. [In Croatian, with German summary.]
    [Google Scholar]
  94. Sarkar, S. (2015) Thanetian‐Ilerdian coralline algae‐benthic foraminifera from north‐east India: microfacies analysis and new insights into the Tethyan perspective. Lethaia, 48, 13–28.
    [Google Scholar]
  95. Sarkar, S. (2016) Early Eocene calcareous algae and benthic foraminifera from Meghalaya, NE India: A new record of microfacies and palaeoenvironment. J. Geol. Soc. India, 88, 281–294.
    [Google Scholar]
  96. Scheibner, C. & Speijer, R.P. (2008) Late Paleocene–early Eocene Tethyan carbonate platform evolution – a response to long‐ and short‐term paleoclimatic change. Earth‐Sci. Rev., 90, 71–102.
    [Google Scholar]
  97. Scheibner, C., Rasser, M.W. & Mutti, M. (2007) The Campo section (Pyrenees, Spain) revised: implications for changing assemblages across the Paleocene‐Eocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol., 248, 145–168.
    [Google Scholar]
  98. Schubert, R.J. (1908) Geologische Spezialkarte der Österreichisch‐Ungarischen Monarchie, 1:75000. Novigrad und Benkovac. Geologische Reichsanstalt, Wien.
    [Google Scholar]
  99. Schubert, J. (1909) Erläuterungen zur Geologischen Karte der Österreichisch‐Ungarischen Monarchie, Novigrad–Benkovac, 26 pp. Geologische Reichsanstalt, Wien.
    [Google Scholar]
  100. Serra‐Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferràndez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samsó, J.M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J. & Zakrevskaya, E. (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull. Soc. géol. Fr., 169, 281–299.
    [Google Scholar]
  101. Serra‐Kiel, J., Mató, E., Saula, E., Travé, A., Ferràndez‐Caňadell, C., Busquets, P., Samsó, J.M., Tosquella, J., Barnolas, A., Àlvarez‐Pérez, G., Franquèş, J. & Romero, J. (2003) An inventory of the marine and transitional Middle/Upper Eocene deposits of the Southestern Pyrenean Foreland Basin (NE Spain). Geol. Acta, 1, 201–229.
    [Google Scholar]
  102. Snedden, J.W. & Liu, C. (2010) A compilation of Phanerozoic sea‐level changes, coastal onlaps and recommended sequence designations. AAPG Search Dis., Article 40594, 3.
    [Google Scholar]
  103. Španiček, J., Ćosović, V., Mrinjek, E. & Vlahović, I. (2017) Early Eocene evolution of carbonate depositional environments recorded in the Čikola Canyon (North Dalmatian Foreland Basin, Croatia). Geol. Croat., 70, 11–25.
    [Google Scholar]
  104. Stache, G. (1889) Die Liburnische Stufe und deren Grenz‐Horizonte. Abh. k.‐k. Geol. Reichsanst., 13, 1–170.
    [Google Scholar]
  105. Stampfli, G.M. (2005) Plate tectonics of the Apulia‐Adria microcontinents. In: CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy (Ed. by J.R.Finetti ), pp. 747–766. Elsevier, Amsterdam.
    [Google Scholar]
  106. Tari, V. (2002) Evolution of the northern and western Dinarides: a tectonostratigraphic approach. In: Continental Collision and the Tectono‐Sedimentary Evolution of Forelands (Ed. by BertottiG. , SchulmannK. & CloetinghS.A.P.L. ) EGU Stephan Mueller Spec. Publ., 1, 223–236.
    [Google Scholar]
  107. Tari‐Kovačić, V. (1998) Geodynamics of the Middle Adriatic offshore area, Croatia, based on stratigraphic and seismic analysis of Paleogene beds. Acta Geol. Hung., 41, 313–326.
    [Google Scholar]
  108. Tari‐Kovačić, V., Kalac, K., Lučič, D. & Benić, J. (1998) Stratigraphic analysis of Paleogene beds in some off‐shore wells (Central Adriatic area, Croatia). In: Paleogene Shallow Benthos of the Tethys, 2 (Ed. by L.Hottinger & K.Drobne ), pp. 203–242. Slovenian Academy of Sciences and Art, Ljubjana.
    [Google Scholar]
  109. Tomassetti, L., Benedetti, A. & Brandano, M. (2016) Middle Eocene seagrass facies from Apennine carbonate platforms (Italy). Sed. Geol., 335, 136–149.
    [Google Scholar]
  110. Varrone, D. & D'Atri, A. (2007) Acervulinid macroid and rhodolith facies in the Eocene Nummulitic Limestones of the Dauphinois Domain (Maritime Alps, Liguria, Italy). Swiss J. Geosci., 100, 503–515.
    [Google Scholar]
  111. Vlahović, I., Tišljar, J., Velić, I. & Matičec, D. (2005) Evolution of the Adriatic Carbonate Platform: paleogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol., 220, 333–360.
    [Google Scholar]
  112. Walker, R.G. (1984) General introduction: facies, facies sequences and facies models. In: Facies Models, 2nd edn (Ed. by WalkerR.G. ) Geosci. Can. Repr. Ser., 1, 1–9.
    [Google Scholar]
  113. Walker, R.G. & Plint, A.G. (1992) Wave‐ and storm‐dominated shallow marine systems. In: Facies Models – Response to Sea Level Change (Ed. by R.G.Walker & N.P.James ), pp. 219–238. Geological Association of Canada, St. John's.
    [Google Scholar]
  114. Walker, S.E., Parsons‐Hubbard, K., Richardson‐White, S., Brett, C. & Powell, E. (2011) Alpha and beta diversity of encrusting foraminifera that recruit to long‐term experiments along a carbonate platform‐to‐slope gradient: paleoecological and paleoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 312, 325–349.
    [Google Scholar]
  115. Weber, T.S. & Deutsch, C. (2010) Ocean nutrient ratios governed by plankton biogeography. Nature, 467, 550–554.
    [Google Scholar]
  116. Wilson, B., Orchard, K. & Phillip, J. (2012) SHE analysis for biozone identification among foraminiferal sediment assemblages on reefs and in associated sediments around St. Kitts, eastern Caribbean Sea, and its environmental significance. Marine Micropaleontol., 82/83, 38–45.
    [Google Scholar]
  117. Wortel, M.J.R. & Spakman, W. (2000) Subduction and slab detachment in the Mediterranean‐Carpathian region. Science, 290, 1910–1917.
    [Google Scholar]
  118. Zamagni, J., Mutti, M. & Kosir, A. (2008) Evolution of shallow benthic communities during the Late Paleocene–earliest Eocene transition in the Northern Tethys (SW Slovenia). Facies, 54, 25–43.
    [Google Scholar]
  119. Zamagni, J., Mutti, M., Ballato, P. & Kosir, A. (2012) The Paleocene‐Eocene Thermal Maximum (PETM) in shallow‐marine successions of the Adriatic Carbonate Platform (SW Slovenia). Geol. Soc. Am. Bull., 124, 1071–1086.
    [Google Scholar]
  120. Živkovic, S. & Babić, L. (2003) Paleoceanographic implications of smaller benthic and planktonic foraminifera from the Eocene Pazin Basin (coastal Dinarids, Croatia). Facies, 49, 49–60.
    [Google Scholar]
  121. Živkovic, S. & Glumac, B. (2007) Paleoenvironmental reconstruction of the Middle Eocene Trieste‐Pazin Basin (Croatia) from benthic foraminiferal assemblages. Micropaleont., 53, 285–310.
    [Google Scholar]
  122. Zupanič, J. & Babić, L. (2011) Sedimentary evolution of an inner foreland margin: Palaeogene Promina Beds of the type area, Mt. Promina (Dinarides, Croatia). Geol. Croat., 64, 101–119.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12274
Loading
/content/journals/10.1111/bre.12274
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error