1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

This paper proposes a new methodology to improve the location of potential karstified areas by gravity inversion of a 3D geological model. A geological 3D model is built from surface observations, 2D seismic reflection profiles and well data. The reliability of this geological 3D model obtained from integration, interpretation and interpolation of such data is first tested against the structural consistency of the model. Its theoretical gravimetric response is compared to gravity field during the forward problem in order to evaluate the validity/robustness of the geological model. The coherency between the gravity field and the gravimetric response is tested. The litho‐inversion modelling quantifies the distribution of rock density in a probabilistic way, taking into account the geology and physical properties of rocks, while respecting the geological structures represented in the 3D model. The result of the inversion process provides a density distribution within carbonate formations that can be discussed in term of karstification distribution. Thus, lower densities correlate with areas that are strongly karstified. Conversely, higher than mean densities are found in carbonate formations mostly located under marly and impervious formations, preserving carbonate from karstification and paleokarstification.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12279
2018-02-23
2020-08-05
Loading full text...

Full text loading...

References

  1. Alabouvette, B., Azema, C., Bodeur, Y. & Debrand‐Passard, S. (1984) Le Crétacé supérieur des Causses. Géol. France, 1–2, 67–73.
    [Google Scholar]
  2. Alabouvette, B., Arthaud, F., Bodeur, Y., Paloc, H., Seguret, M., le Strat, P., Ellenberger, P., Macquar, J.C. & Coumoul, A. (1988) Carte Géologique de la France au 1/50 000. Feuille du Vigan. BRGM, Orléans.
    [Google Scholar]
  3. Alabouvette, B., Demange, M., Guerange‐Lozes, J. & Ambert, P. (2003) Carte Géologique de la France au 1/250 000. Feuille de Montpellier. BRGM, Orléans.
    [Google Scholar]
  4. Andrieux, J., Mattauer, M., Tomasi, P., Martinez, C., Reille, J.L., Matte, P., Bousquet, J.C., Raouf, K.A., Bel, F., Verrier, J., Bonnet, M. & Sauvel, M. (1971) Carte Géologique de la France au 1/50 000. Feuille de Montpellier. BRGM, Orléans.
    [Google Scholar]
  5. Arthaud, F. & Laurent, P. (1995) Contraintes, déformation et déplacement dans l'avant‐pays Nord‐pyrénéen du Languedoc méditerranéen. Geodinam. Acta, 8, 142–157.
    [Google Scholar]
  6. Arthaud, F. & Seguret, M. (1981) Les structures pyrénéennes du Languedoc et du Golfe du Lion (Sud de la France). Bull. Soc. Géol. Fr. XXIII, 1, 51–63.
    [Google Scholar]
  7. Audra, P., Mocochain, L., Camus, H., Gilli, E., Clauzon, G. & Bigot, J.‐Y. (2004) The effect of the Messinian deep‐stage on karst development around the Mediterranean Sea. Examples from southern France. Geodinam. Acta, 17(6), 389–400.
    [Google Scholar]
  8. Aug, C. (2004) Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel. Thèse de doctorat. BRGM – Ecole des Mines de Paris.
  9. Bailly‐Comte, V., Jourde, H., Roesch, A., Pistre, S. & Batiot‐Guilhe, C. (2008) Time series analyses for Karst/River interactions assessment: case of the Coulazou river (southern France) . J. Hydrol., 349(1), 98–114.
    [Google Scholar]
  10. Bailly‐Comte, V., Jourde, H. & Pistre, S. (2009) Conceptualization and classification of groundwater–surface water hydrodynamic interactions in karst watersheds: case of the karst watershed of the Coulazou River (Southern France). J. Hydrol., 376(3), 456–462.
    [Google Scholar]
  11. Barbarand, J., Lucazeau, F., Pagel, M. & Seranne, M. (2001) Burial and exhumation history of the South Eastern Massif Central (France) constrained by apatite fission tracks thermochronology. Tectonophysics, 335, 275–290.
    [Google Scholar]
  12. Baudrimont, A.F. & Dubois, P. (1977) Un bassin mésogéen du domaine péri‐Alpin: le sud‐est de la France. Bull. Centres Rech. Explor.‐Prod. Elf Aquitaine, 1(1), 261–308.
    [Google Scholar]
  13. Bayer, R. (1983) Interpretation of gravity and magnetic anomalies; methods and geological applications. Thèse d'Etat et BRGM, Université de Montpellier II, Vol. 1, 173 pp.
  14. Benedicto, A. (1996) Modèles tectono‐sédimentaires de bassins en extension et style structural de la marge passive du Golfe du Lion (SE France). Thèse Doctorat, Univ. Montpellier 2.
  15. Blaise, M. & Marchal, J.P. (2006) Description des aquifères du département de l'Hérault. Rapport BRGM/RP‐54849‐FR, 58 p.
  16. Bodeur, Y. (1976) Le complexe récifal Jurassique supérieur au sud des Cévennes; architecture sédimentologique. C.R. Acad. Sci., Série D, 282(9), 835–837.
    [Google Scholar]
  17. Bodeur, Y. (1980) Kimmeridgien supérieur et Portlandien du Languedoc. Geobios, 4, 77–83.
    [Google Scholar]
  18. Bodeur, Y. (1992) Sédimentologie du Jurassique supérieur. In: Excursion en Languedoc (Ed. by Y.Bodeur , A.Boullier , J.Delfaud , M.Gottis , A.Lefavrais , P.Le Strat , M.Lopez , Ph.Marza & M.Seguret ), pp. 71–82. Documents sur le Jurassique du Sud des Cévennes. Université de Nantes, Nantes.
    [Google Scholar]
  19. Bosch, M., Guillen, A. & Ledru, P. (2001) Lithologic tomography: an application to geophysical data from the cadomian belt of northern Brittany, France. Tectonophysics, 331, 197–228.
    [Google Scholar]
  20. BRGM
    BRGM (1967) Carte Géologique de la France au 1/50 000. Feuille de Sète. BRGM, Orléans.
    [Google Scholar]
  21. Burberry, C.M., Jackson, C.A.‐L. & Chandler, S.R. (2016) Seismic reflection imaging of karst in the Persian Gulf: implications for the characterization of carbonate reservoirs. AAPG Bull., 100(10), 1561–1584.
    [Google Scholar]
  22. Calcagno, P., Courrioux, G., Guillen, A. & Chilès, J.P. (2008) Geological modelling from field data and geological knowledge ‐ Part I. Modelling method coupling 3D potential‐field interpolation and geological rules. Phys. Earth Planet. Inter., 171(1–4), 147–157.
    [Google Scholar]
  23. Calcagno, P., Baujard, C., Guillou‐Frottier, L., Dagallier, A. & Genter, A. (2014) Estimation of the deep geothermal potential within the Tertiary Limagne basin (French Massif Central): an integrated 3D geological and thermal approach. Geothermics, 51, 496–508.
    [Google Scholar]
  24. Camus, H. (2001) Evolution des réseaux hydrographiques au contact Cévennes‐Grands Causses méridionaux: Conséquences sur l’évalution de la surrection tectonique. Bull. Soc. Géol. Fr., 172(5), 549–562.
    [Google Scholar]
  25. Chamot‐Rooke, N., Gaulier, J. M. & Jestin, F. (1999) Constraints on Moho depth and crustal thickness in the Liguro‐Provençal basin from a 3D gravity inversion: geodynamic implications. In: The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (Ed. by B.Durand , L.Jolivet , F.Horváth & M.Séranne ). The Geological Society, Special Publication 156, London.
    [Google Scholar]
  26. Chilès, J.P., Aug C., Guillen A. & Lees, T. (2006) Modelling the geometry of geological units and its uncertainty in 3D from structural data: the potential‐field method. In: Orebody Modelling and Strategic Mine Planning ‐ Uncertainty and Risk Management Models (Ed. by R.Dimitrakopoulos ), pp. 329–336. Spectrum Series, Vol. 14. The Australasian Institute of Mining and Metallurgy (AusIMM), Carlton, Victoria, Australia.
    [Google Scholar]
  27. Clauzon, G. (1982) Le canyon messinien du Rhône: une preuve décisive du “dessicated deep‐basin model (Hsü, Cita et Ryan, 1973). Bull. Soc. Géol. Fr., 24(3), 597–610.
    [Google Scholar]
  28. Combes, P.J. (1990) Typologie, cadre géodynamique et génèse des bauxites françaises. Geodinam. Acta, 4(2), 91–109.
    [Google Scholar]
  29. Combes, P.J., Peybernes, B., Fondecave‐Wallez, M.J., Seranne, M., Lesage, J.L. & Camus, H. (2007) Latest‐Cretaceous/Paleocene karsts with marine infillings from Languedoc (south of France); paleogeographic, hydrogeologic and geodynamic implications. Geodinam. Acta, 20(5), 301–326.
    [Google Scholar]
  30. Deville, S. (2013) Caractérisation de la zone non saturée des karsts par la gravimétrie et l'hydrogéologie, p. 239. Université Montpellier II, Thèse de doctorat.
    [Google Scholar]
  31. Dörflinger, N., Ladouche, B., Bakalowicz, M., Pinault, J.‐L. & Chemin, P. (2001) Etude du pourtour est de l’étang de Thau, phase II. Rapport BRGM/RP‐50789‐FR, 71 pp.
  32. Fleury, P., Ladouche, B., Conroux, Y., Jourde, H. & Dörfliger, N. (2008) Modelling of the functioning of a karst aquifer under active water management – Lez spring example. J. Hydrol., 365(3–4), 235–243.
    [Google Scholar]
  33. Gottsmann, J., Camacho, A.G., Martí, J., Wooller, L., Fernández, J., García, A. & Rymer, H. (2008) Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation. Phys. Earth Planet. Inter., 168, 212–230.
    [Google Scholar]
  34. Guillen, A., Calcagno, P., Courrioux, G., Joly, A. & Ledru, P. (2008) Geological modelling from field data and geological knowledge ‐ Part II. Modelling validation using gravity and magnetic data inversion. Phys. Earth Planet. Inter., 171, 158–169.
    [Google Scholar]
  35. Gutiérrez, F., Parise, M., Waele, J.D. & Jourde, H. (2014) A review on natural and human‐induced geohazards and impacts in karst. Earth‐Sci. Rev., 138, 61–88.
    [Google Scholar]
  36. Holstein, H. (2003) Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics, 68, 157–167.
    [Google Scholar]
  37. Houlding, S.W. (1994) 3D Geoscience Modeling: Computer Techniques for Geological Characterization. Springer‐Verlag, Berlin.
    [Google Scholar]
  38. Hsu, K.J., Cita, M.B. & Ryan, W.B.F. (1973) Origin of the Mediterranean evaporites. In: Initial Reports of the Deep‐Sea Drilling Project, vol. 13 (Ed. by W.B.F.Ryan & K.J.Hsu ), pp. 1203–1231. U.S. Government Printing Office, Washington.
    [Google Scholar]
  39. Husson, E. (2013) Interaction géodynamique/karstification et modélisation géologique 3D des massifs carbonates: Implication sur la distribution prévisionnelle de la karstification. Exemple des paléokarsts crétacés à néogènes du Languedoc montpelliérain, Thèse de doctorat, Univ Montpellier II.
  40. Husson, E., Séranne, M., Combes, P.J., Camus, H., Peybernès, B., Fondecave‐Wallez, M.J. & Melinte‐Dobrinescu, M.C. (2012) Marine karstic infillings; evidence of extreme base level changes and geodynamic consequences (Paleocene of Languedoc, south of France). Bull. Soc. Géol. Fr., 183(5), 425–441.
    [Google Scholar]
  41. Jacob, T., Chery, J., Bayer, R., Le Moigne, N., Boy, J.‐P., Vernant, P. & Boudin, F. (2009) Time‐lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophys. J. Int., 177, 347–360.
    [Google Scholar]
  42. Jourde, H., Dörflinger, N., Marechal, J.‐C., Batiot‐Guilhe, C., Bouvier, C., Courrioux, G., Desprats, J.‐F., Fullgraf, T., Ladouche, B., Leonardi, V., Malaterre, P.‐O., Prie, V. & Seidel, J.‐L. (2011) Projet gestion mulit‐usages de l'hydrosystème karstique du Lez ‐ Synthèse des connaissances récentes er passées. Rapport BRGM/RP‐60041‐FR, 355pp.
  43. Khalil, M.A., Santos, F.M. & Farzamian, M. (2014) 3D Gravity inversion and Euler deconvolution to delineate the hydro‐tectonic regime in El‐Arish area, northern Sinai Peninsula. J. Appl. Geophys., 103, 104–113.
    [Google Scholar]
  44. Lacombe, O. & Jolivet, L. (2005) Structural and kinematic relationships between Corsica and the Pyrenees‐Provence domain at the time of the Pyrenean Orogeny. Tectonics, 24, 20.
    [Google Scholar]
  45. Lajaunie, C., Courrioux, G. & Manuel, L. (1997) Foliation fields and 3D cartography in geology; principles of a method based on potential interpolation. Math. Geol., 29(4), 571–584.
    [Google Scholar]
  46. Lajoinie, J.P. & Laville, P. (1979) Les formations bauxitiques de la Provence et du Languedoc. Dimensions et distribution des gisements. Mem. BRGM, 100, 142.
    [Google Scholar]
  47. Leonardi, V., Jourde, H., Duasse, A., Dörfliger, N., Brunet, P. & Marechal, J.‐C. (2013) Apport de nouveaux forages à la connaissance hydrogéologique de l'aquifère karstique du Lez. Karstologia, 62, 7–17.
    [Google Scholar]
  48. Lopez, M. (1992) Dynamique du passage d'un appareil terrigène à une plate‐forme carbonatée en domaine semi‐aride: le Trias de Lodève, sud de la France. Thèse de Doctorat, Univ. Montpellier 2.
  49. Maerten, L. & Seranne, M. (1995) Extensional tectonics in the Oligo‐Miocene Hérault basin (SE France), Gulf of Lion Margin. Bull. Soc. Géol. Fr., 6, 739–749.
    [Google Scholar]
  50. Mallet, J.L. (2002) Geomodeling. Oxford University, New York.
    [Google Scholar]
  51. Marechal, J.C., Vestier, A., Jourde, H. & Dörfliger, N. (2013) L'hydrosystème du Lez: une gestion active pour un karst à enjeux. Karstologia, 62, 1–6.
    [Google Scholar]
  52. Mocochain, L., Clauzon, G. & Bigot, J.Y. (2006) Réponses de l'endokarst ardéchois aux variations eustatiques générées par la crise de salinité messinienne. Bull. Soc. Géol. Fr., 177, 27–36.
    [Google Scholar]
  53. Montesinos, F.G., Camacho, A.G., Nunes, J.C., Oliveira, C.S. & Vieira, R. (2003) A 3‐D gravity model for a volcanic crater in Terceira Island (Azores). Geophys. J. Int., 154, 393–406.
    [Google Scholar]
  54. Mosegaard, K. & Tarantola, A. (1995) Monte Carlo method. J. Am. Stat. Assoc., 44, 335–341.
    [Google Scholar]
  55. Okabe, M. (1979) Analytical expression for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730–741.
    [Google Scholar]
  56. Peyaud, J.B., Barbarand, J., Carte, A. & Pagel, M. (2005) Mid‐Cretaceous uplift and erosion on the northern margin of the Ligurian Tethys deduced from thermal history reconstruction. Int. J. Earth. Sci. (Geol Rundsch), 94, 462–474.
    [Google Scholar]
  57. Philip, H., Mattauer, M., Bodeur, Y., Seguret, M., Puech, J.P. & Mattei, J. (1978) Carte Géologique de la France au 1/50 000. Feuille St Martin de Londres. BRGM, Orléans.
    [Google Scholar]
  58. Plouff, D. (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41, 1558–1566.
    [Google Scholar]
  59. Represas, P., Monteiro Santos, F.A., Ribeiro, J., Ribeiro, A., Almeida, P., Gonçalves, R., Moreira, M. & Mendes‐Victor, L.A. (2013) Interpretation of gravity data to delineate structural features connected to low‐temperature geothermal resources at Northeastern Portugal. J. Appl. Geophys., 92, 30–38.
    [Google Scholar]
  60. Ryan, W.B.F. (1976) Quantitative evaluation of the depth of the Western Mediterranean before, during and after the Late Miocene salinity crisis. Sedimentology, 23, 791–813.
    [Google Scholar]
  61. Schiavone, D. & Loddo, M. (2007) 3‐D density model of Mt. Etna Volcano (Southern Italy). J. Volcanol. Geotherm. Res., 164, 161–175.
    [Google Scholar]
  62. Schoen, R., Bakalowcz, M., Ladouche, B. & Aquilïna, L. (1999) Caractérisation du fonctionnement des systèmes karstiques nord‐montpelliérains. Rapport BRGM/R‐40939, 91 pp.
  63. Séranne, M. (1999) The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In: The Mediterranean Basin: Tertiary Extension within the Alpine Orogen (Ed. by B.Durand , L.Jolivet , F.Horváth & M.Séranne ), pp. 15–36. The Geological Society, Special Publication, 156.
    [Google Scholar]
  64. Séranne, M., Camus, H., Lucazeau, F., Barbarand, J. & Quinif, Y. (2002) Surrection et érosion polyphasées de la bordure cévenole ‐ Un exemple de morphogenèse lente. Bull. Soc. Géol. Fr., 173(2), 97–112.
    [Google Scholar]
  65. Serrano, O. & Hanot, F. (2005) Le bassin Oligo‐Miocène de l'Hérault: un exemple de rétrocharriage des structures pyrénéennes ‐Implications hydrogéologiques. Rapport BRGM/RP53733‐FR, 43 pp.
  66. Soudet, H.J., Sorriaux, P. & Rolando, J.‐P. (1994) Liaison fracturation‐karstification; le paleokarst pétrolier de Rospo Mare (Italie). Bull. Cent. Recherche Explor.‐Product. Elf Aquitaine, 18(1), 257–298.
    [Google Scholar]
  67. le Strat, P. (1992) Synthèse régionale par cartes isopaques et iosfaciès et par commentaires de cartes. In: Excursion en Languedoc (Ed. by YBodeur , ABoullier , JDelfaud , MGottis , ALefavrais , PLe Strat , MLopez , PhMarza , MSeguret ), pp. 71–82. Université de Nantes, Nantes. Documents sur le Jurassique du Sud des Cévennes.
    [Google Scholar]
  68. Tarantola, A. (2005) Inverse Problem Theory and Model Parameter Estimation. SIAM, New Delhi.
    [Google Scholar]
  69. Wijns, C., Boschetti, F. & Moresi, L. (2003) Inverse modelling in geology by interactive evolutionary computation. J. Struct. Geol., 25, 1615–1621.
    [Google Scholar]
  70. Wu, Q., Xu, H. & Zou, X. (2005) An effective method for 3D modeling with multi‐source integration. Comput. Geosci., 31, 35–43.
    [Google Scholar]
  71. Zhao, W., Shen, A., Qiao, Z., Zheng, J. & Wang, X. (2014) Carbonate karst reservoirs of the Tarim Basin, northwest China: types, features, origins, and implications for hydrocarbon exploration. Interpretation, 2(3), 65–90.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12279
Loading
/content/journals/10.1111/bre.12279
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error