1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

When we model fluvial sedimentation and the resultant alluvial stratigraphy, we typically focus on the effects of local parameters (e.g., sediment flux, water discharge, grain size) and the effects of regional changes in boundary conditions applied in the source region (i.e., climate, tectonics) and at the shoreline (i.e., sea level). In recent years this viewpoint has been codified into the “source‐to‐sink” paradigm, wherein major shifts in sediment flux, grain‐size fining trends, channel‐stacking patterns, floodplain deposition and larger stratigraphic systems tracts are interpreted in terms of (1) tectonic and climatic signals originating in the hinterland that propagate downstream; and (2) eustatic fluctuation, which affects the position of the shoreline and dictates the generation of accommodation. Within this paradigm, eustasy represents the sole means by which downstream processes may affect terrestrial depositional systems. Here, we detail three experimental cases in which coastal rivers are strongly influenced by offshore and slope transport systems via the clinoform geometries typical of prograding sedimentary bodies. These examples illustrate an underdeveloped, but potentially important “sink‐to‐source” influence on the evolution of fluvial‐deltaic systems. The experiments illustrate the effects of (1) submarine hyperpycnal flows, (2) submarine delta front failure events, and (3) deformable substrates within prodelta and offshore settings. These submarine processes generate (1) erosional knickpoints in coastal rivers, (2) increased river channel occupancy times, (3) rapid rates of shoreline movement, and (4) localized zones of significant offshore sediment accumulation. Ramifications for coastal plain and deltaic stratigraphic patterns include changes in the hierarchy of scour surfaces, fluvial sand‐body geometries, reconstruction of sea‐level variability and large‐scale stratal geometries, all of which are linked to the identification and interpretation of sequences and systems tracts.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12280
2018-03-09
2020-01-20
Loading full text...

Full text loading...

References

  1. Abeyta, A., & Paola, C. (2014). Transport dynamics of mass failures on weakly cohesive clinoform foresets. Sedimentology, 62, 303–313.
    [Google Scholar]
  2. Ahmed, S., Bhattacharya, J. P., Garza, D. E., & Li, Y. (2014). Facies architecture and stratigraphic evolution of a river‐dominated delta front. Turonian Ferron Sandstone, Utah, USA. Journal of Sedimentary Research, 84, 97–121. https://doi.org/10.2110/jsr.2014.6
    [Google Scholar]
  3. Allen, J. R. L. (1978). Studies in fluviatile sedimentation: An exploratory quantitative model for the architecture of avulsion‐controlled alluvial sites. Sedimentary Geology, 21, 129–147. https://doi.org/10.1016/0037-0738(78)90002-7
    [Google Scholar]
  4. Allen, P. A. (2008). From landscapes to geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  5. Allen, P. A. (2017). Sediment routing systems: The fate of sediment from source to sink. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781316135754
    [Google Scholar]
  6. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231.
    [Google Scholar]
  7. Best, J. L., & Ashworth, P. J. (1997). Scour in large braided rivers and recognition of sequence stratigraphic boundaries. Nature, 387, 275–277. https://doi.org/10.1038/387275a0
    [Google Scholar]
  8. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea‐level change: A review and look forward. Sedimentology, 47, 2–48. https://doi.org/10.1046/j.1365-3091.2000.00008.x
    [Google Scholar]
  9. Bown, T. M., & Kraus, M. J. (1987). Integration of channel and floodplain suites, I. developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology, 57, 587–601.
    [Google Scholar]
  10. Bridge, J. S. (1997). Thickness of sets of cross strata and planar strata as a function of formative bed‐wave geometry and migration, and aggradation rate. Geology, 25, 971–974. https://doi.org/10.1130/0091-7613(1997)025<0971:TOSOCS>2.3.CO;2
    [Google Scholar]
  11. Bridge, J. S., & Leeder, M. R. (1979). A simulation model of alluvial stratigraphy. Sedimentology, 26, 617–644. https://doi.org/10.1111/j.1365-3091.1979.tb00935.x
    [Google Scholar]
  12. Brown, L. F.Jr, Loucks, R. G., Trevio, R. H., & Hammes, U. (2004). Understanding growth‐faulted, intraslope subbasins by applying sequence‐stratigraphic principles: Examples from the south Texas Oligocene Frio Formation. AAPG Bulletin, 88, 1501–1522. https://doi.org/10.1306/07010404023
    [Google Scholar]
  13. Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99–102. https://doi.org/10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2
    [Google Scholar]
  14. Catuneanu, O. (2006). Principles of sequence stratigraphy. Oxford, UK: Elsevier B.V., 386 pp.
    [Google Scholar]
  15. Chatanantavet, P., Lamb, M. P., & Nittrouer, J. A. (2012). Backwater controls of avulsion location on deltas. Geophysical Research Letters, 39, 1–6.
    [Google Scholar]
  16. Colombera, L., Shiers, M. N., & Mountney, N. P. (2016). Assessment of backwater controls on the architecture of distributary‐channel fills in a tide‐influenced coastal‐plain succession: Campanian Neslen Foramtion, USA. Journal of Sedimentary Research, 86, 476–497. https://doi.org/10.2110/jsr.2016.33
    [Google Scholar]
  17. Covault, J. A., Romans, B. W., Fildani, A., McGann, M., & Graham, S. A. (2010). Rapid climatic signal propagation from source to sink in a Southern California sediment‐routing system. The Journal of Geology, 118, 247–259. https://doi.org/10.1086/651539
    [Google Scholar]
  18. Duller, R. A., Whittaker, A. C., Fedele, J. J., Whitchurch, A. L., Springett, J., Smithells, R., … Allen, P. A. (2010). From grain size to tectonics. Journal of Geophysical Research: Earth Surface, 115, F03022.
    [Google Scholar]
  19. Enge, H. D., Howell, J. A., & Buckley, S. J. (2010). The geometry and internal architecture of stream mouth bars in the Panther Tongue and the Ferron Sandstone members, Utah, USA. Journal of Sedimentary Research, 80, 1018–1031. https://doi.org/10.2110/jsr.2010.088
    [Google Scholar]
  20. Fisk, N. H. (1944). Geological investigation of the alluvial valley of the lower Mississippi river. Vicksburg, MS: Mississippi River Commission.
    [Google Scholar]
  21. Foreman, B. Z. (2014). Climate‐driven generation of a fluvial sheet sand body at the Paleocene‐Eocene boundary in north‐west Wyoming (USA). Basin Research, 26, 225–241. https://doi.org/10.1111/bre.12027
    [Google Scholar]
  22. Foreman, B. Z., Heller, P. L., & Clementz, M. T. (2012). Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary. Nature, 491, 92–95. https://doi.org/10.1038/nature11513
    [Google Scholar]
  23. Friedrichs, C. T., & Scully, M. E. (2007). Modeling deposition by wave‐supported gravity flows on the Po River prodelta: From seasonal floods to prograding clinoforms. Continental Shelf Research, 27, 322–337. https://doi.org/10.1016/j.csr.2006.11.002
    [Google Scholar]
  24. Ganti, V., Chu, Z., Lamb, M. P., Nittrouer, J. A., & Parker, G. (2014). Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophysical Research Letters, 41(22), 7882–7890. https://doi.org/10.1002/2014GL061918
    [Google Scholar]
  25. Grimaud, J. L., Chardon, D., & Beauvais, A. (2014). Very long‐term incision dynamics of big rivers. Earth and Planetary Science Letters, 405, 74–84. https://doi.org/10.1016/j.epsl.2014.08.021
    [Google Scholar]
  26. Hajek, E. A., Heller, P. L., & Sheets, B. A. (2010). Significance of channel‐belt clustering in alluvial basins. Geology, 38, 535–538. https://doi.org/10.1130/G30783.1
    [Google Scholar]
  27. Hajek, E. A., Heller, P. L., & Shur, E. L. (2012). Field test of autogenic control on alluvial stratigraphy (Ferris Formation, Upper Cretaceous‐Paleogene, Wyoming). GSA Bulletin, 124, 1898–1912. https://doi.org/10.1130/B30526.1
    [Google Scholar]
  28. Hampson, G. J., Duller, R. A., Petter, A. L., Robinson, R. A. J., & Allen, P. A. (2014). Mass‐balance constraints on stratigraphic interpretation of linked alluvial‐coastal‐shelfal deposits from source to sink: Example from Cretaceous Western Interior Basin, Utah and Colorado, USA. Journal of Sedimentary Research, 84, 935–960. https://doi.org/10.2110/jsr.2014.78
    [Google Scholar]
  29. Heller, P. L., & Paola, C. (1992). The large‐scale dynamics of grain‐size variation in alluvial basins, 2: Application to syntectonic conglomerate. Basin Research, 4(2), 91–102.
    [Google Scholar]
  30. Heller, P. L., & Paola, C. (1996). Downstream changes in alluvial architecture: An exploration of controls on channel‐stacking patterns. Journal of Sedimentary Research, 66(2), 297–306.
    [Google Scholar]
  31. Hickson, T. A., Sheets, B. A., Paola, C., & Kelberer, M. (2005). Experimental test of tectonic controls on three‐dimensional alluvial facies architecture. Journal of Sedimentary Research, 75(4), 710–722.
    [Google Scholar]
  32. Holbrook, J., Scott, R. W., & Oboh‐Ikuenobe, F. E. (2006). Base‐level buffers and buttresses: A model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76, 162–174. https://doi.org/10.2110/jsr.2005.10
    [Google Scholar]
  33. Howell, J. A., Skorstad, A., MacDonald, A., Fordham, A., Flint, S., Fjellvoll, B., & Manzocchi, T. (2008). Sedimentological parameterization of shallow‐marine reservoirs. Petroleum Geoscience, 14, 17–34. https://doi.org/10.1144/1354-079307-787
    [Google Scholar]
  34. Hoyal, D., & Sheets, B. (2009). Morphodynamic evolution of experimental cohesive deltas. Journal of Geophysical Research: Earth Surface, 14(F2), F02009.
    [Google Scholar]
  35. Hudec, M. R., & Jackson, M. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82, 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  36. Jaeger, H. M., & Nagel, S. R. (1992). Physics of the granular state. Science, 255(5051), 1523–1531.
    [Google Scholar]
  37. Jerolmack, D. J., & Swenson, J. B. (2007). Scaling relationships and evolution of distributary networks on wave‐influenced deltas. Geophysical Research Letters, 34, L23402.
    [Google Scholar]
  38. Kim, W., Paola, C., Voller, V. R., & Swenson, J. B. (2006). Experimental measurement of the relative importance of controls on shoreline migration. Journal of Sedimentary Research, 76(2), 270–283. https://doi.org/10.2110/jsr.2006.019
    [Google Scholar]
  39. Kineke, G., Sternberg, R. W., Trowbridge, J. H., & Geyer, R. W. (1996). Fluid mud processes on the Amazon continental shelf. Continental Shelf Research, 16, 676–696.
    [Google Scholar]
  40. Kostic, S., Parker, G., & Marr, J. G. (2002). Role of turbidity currents in setting the foreset slope clinoforms prograding into standing fresh water. Journal of Sedimentary Research, 72, 353–362. https://doi.org/10.1306/081501720353
    [Google Scholar]
  41. Kraus, M. J. (1997). Lower Eocene alluvial paleosols: Pedogenic development, stratigraphic relationships, and paleosols/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 387–406. https://doi.org/10.1016/S0031-0182(96)00056-9
    [Google Scholar]
  42. Kubo, Y. S., Syvitski, J. P., Hutton, E. W., & Kettner, A. J. (2006). Inverse modeling of post Last Glacial Maximum transgressive sedimentation using 2D‐SedFlux: Application to the northern Adriatic Sea. Marine Geology, 234(1–4), 233–243.
    [Google Scholar]
  43. Lamb, M. P., Nittrouer, J. A., Mohrig, D., & Shaw, J. (2012). Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio‐deltaic morphodynamics. Journal of Geophysical Research: Earth Surface, 117(F1), 2003–2012.
    [Google Scholar]
  44. Leeder, M. R. (1978). A quantitative stratigraphic model for alluvium, with special reference to channel deposit density and interconnectedness. In A. D.Miall (Ed.), Mem. Canadian Soc. Petrol. Geol., 5, 587–596.
  45. Madof, A. S., Christie‐Blick, N., & Anders, M. H. (2009). Stratigraphic controls on a salt‐withdrawal intraslope minibasin, north‐central Green Canyon, Gulf of Mexico: Implications for misinterpreting sea level change. AAPG Bulletin, 93, 535–561. https://doi.org/10.1306/12220808082
    [Google Scholar]
  46. Mehta, A., & Barker, G. C. (1994). The dynamics of sand. Reports on Progress in Physics, 57(4), 383.
    [Google Scholar]
  47. Miall, A. D., Catuneanu, O., Vakarelov, B. K., & Post, R. (2008). The western interior basin. Sediment, Basins World, 5, 329–362. https://doi.org/10.1016/S1874-5997(08)00009-9
    [Google Scholar]
  48. Mutti, E., & Normarck, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Probmels and concepts. In Marine clastic sedimentology (pp. 1–38). Dordrecht, the Netherlands: Springer.
    [Google Scholar]
  49. Nittrouer, J. A., Shaw, J., Lamb, M. P., & Mohrig, D. (2012). Spatial and temporal trends for water‐flow velocity and bed‐material sediment transport in the lower Mississippi River. Geological Society of America Bulletin, 124, 400–414. https://doi.org/10.1130/B30497.1
    [Google Scholar]
  50. Olariu, C., Steel, R. J., & Petter, A. L. (2010). Delta‐front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah. AAPG Bulletin, 94, 819–845. https://doi.org/10.1306/11020909072
    [Google Scholar]
  51. Paola, C., & Borgman, L. (1991). Reconstructing random topography from preserved stratification. Sedimentology, 38, 553–565. https://doi.org/10.1111/j.1365-3091.1991.tb01008.x
    [Google Scholar]
  52. Paola, C., Heller, P. L., & Angevine, C. L. (1992). The large‐scale dynamics of grain‐size variation in alluvial basins, 1: Theory. Basin Research, 4(2), 73–90.
    [Google Scholar]
  53. Paola, C., Mullin, J., Ellis, C., Mohrig, D. C., Swenson, J. B., Parker, G., … Strong, N. (2001). Experimental stratigraphy. GSA Today, 11(7), 4–9. https://doi.org/10.1130/1052-5173(2001)011<0004:ES>2.0.CO;2
    [Google Scholar]
  54. Penck, A., & Bruckner, E. (1909). Die Alpen im Eiszeitalter. Leipzig, Germany: Tauchnitz.
    [Google Scholar]
  55. Piliouras, A., Kim, W., Kocurek, G. A., Mohrig, D., & Kopp, J. (2014). Sand on salt: Controls on dune subsidence and determining salt substrate thickness. Lithosphere, 6, 195–199. https://doi.org/10.1130/L323.1
    [Google Scholar]
  56. Porebski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326. https://doi.org/10.1016/S0012-8252(02)00161-7
    [Google Scholar]
  57. Posamentier, H. W., & Allen, G. P. (1993). Variability of the sequence stratigraphic model: Effects of local basin factors. Sedimentary Geology, 86, 91–109. https://doi.org/10.1016/0037-0738(93)90135-R
    [Google Scholar]
  58. Posamentier, H. W., & Morris, W. R. (2000). Aspects of the stratal architecture of forced regressive deposits. In D.Hunt & R. L.Gawthorpe (Eds.), Sediment. Resp. Forced Reg. Geol. Soc. London, 172, 19–46.
  59. Pratson, L. F., & Haxby, W. F. (1996). What is the slope of the US continental slope?Geology, 24(1), 3–6.
    [Google Scholar]
  60. Quartier, L., Andreotti, B., Douady, S., & Daerr, A. (2000). Dynamics of a grain on a sandpile model. Physical Review E, 62(6), 8299.
    [Google Scholar]
  61. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2015). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29.
    [Google Scholar]
  62. Ryer, T. A. (1981). Deltaic coals of Ferron Sandstone member of mancos shale; predictive model for cretaceous coal‐bearing strata of Western Interior. American Association of Petroleum Geologists Bulletin, 65, 2323–2340.
    [Google Scholar]
  63. Schumm, S. A. (1993). River response to base level change: Implications for sequence stratigraphy. Journal of Geology, 101, 279–294. https://doi.org/10.1086/648221
    [Google Scholar]
  64. Sheets, B. A., Hickson, T. A., & Paola, C. (2002). Assembling the stratigraphic record: Depositional patterns and time‐scales in an experimental alluvial basin. Basin Research, 14(3), 287–301. https://doi.org/10.1046/j.1365-2117.2002.00185.x
    [Google Scholar]
  65. Sloss, L. L. (1962). Stratigraphic models in exploration. Journal of Sedimentary Petrology, 32, 415–422.
    [Google Scholar]
  66. Steckler, M. S., Mountain, G. S., Miller, K. G., & Christie‐Blick, N. (1999). Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2‐D backstripping. Marine Geology, 154(1–4), 399–420.
    [Google Scholar]
  67. Strong, N., Sheets, B. A., Hickson, T. A., & Paola, C. (2005). A mass‐balance framework for quantifying downstream changes in fluvial architecture. In M.Blum , S.Marriott , & S.Leclair (Eds.), Fluvial Sedimentol. VII Int. Assoc. Sedimentol. Spec. Publ., 35, 243–253.
  68. Swenson, J. B., Paola, C., Pratson, L., Voller, V. R., & Murray, A. B. (2005). Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound‐clinoform development. Journal of Geophysical Research: Earth Surface, 110(F2). https://doi.org/10.1029/2004JF000265
    [Google Scholar]
  69. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops, Tulsa, Oklahoma. American Association of Petroleum Geologists Methods in Exploration Series, 7, 55.
    [Google Scholar]
  70. Voller, V. R., Ganti, V., Paola, C., & Foufoula‐Georgiou, E. (2012). Does the flow of information in a landscape have direction?Geophysical Research Letters, 39, L01403.
    [Google Scholar]
  71. Webster, K. L., Ogston, A. S., & Nittrouer, C. A. (2013). Delivery, reworking and export of fine‐grained sediment across the sandy Skagit River tidal flats. Continental Shelf Research, 60, S58–S70. https://doi.org/10.1016/j.csr.2012.11.002
    [Google Scholar]
  72. Whittaker, A. C., Attal, M., & Allen, P. A. (2010). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22, 809–828.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12280
Loading
/content/journals/10.1111/bre.12280
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): sea‐level , sediment flux , sedimentology and stratigraphy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error