1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Since the last century, several geological and geophysical studies have been developed in the Santiago Basin to understand its morphology and tectonic evolution. However, some uncertainties regarding sedimentary fill properties and possible density anomalies below the sediments/basement boundary remain. Considering that this is an area densely populated with more than 6 million inhabitants in a highly active seismotectonic environment, the physical properties of the Santiago Basin are important to study the geological and structural evolution of the Andean forearc and to characterize its seismic response and related seismic hazard. Two and three‐dimensional gravimetric models were developed, based on a database of 797 compiled and 883 newly acquired gravity stations. To produce a well‐constrained basement elevation model, a review of 499 wells and 30 transient electromagnetic soundings were used, which contribute with basement depth or minimum sedimentary thickness information. For the 2‐D modelling, a total of 49 gravimetric profiles were processed considering a homogeneous density contrast and independent regional trends. A strong positive gravity anomaly was observed in the centre of the basin, which complicated the modelling process but was carefully addressed with the available constrains. The resulting basement elevation models show complex basement geometry with, at least, eight recognizable depocenters with maximum sedimentary infill of ~ 500 m. The 3‐D density models show alignments in the basement that correlates well with important intrusive units of the Cenozoic and Mesozoic. Along with interpreted fault zones westwards and eastwards of the basin, the observations suggest a structural control of Santiago basin geometry, where recent deformation associated with the Andean contractional deformation front and old structures developed during the Cenozoic extension are superimposed to the variability of river erosion/deposition processes.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12281
2018-03-01
2024-04-18
Loading full text...

Full text loading...

References

  1. Angermann, D., Klotz, J., & Reigber, C. (1999). Space‐geodetic estimation of the Nazca – South America Euler vector. Earth and Planetary Science Letters, 171, 329–334. https://doi.org/10.1016/S0012-821X(99)00173-9
    [Google Scholar]
  2. Araneda, M., Avendaño, M., & Merlo, C. (2000). Modelo gravimétrico de la Cuenca de Santiago, etapa III final. In: Congreso Geológico Chileno, No. 9, Actas 2: 404–408.
  3. Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., & Kausel, E. (2010). The West Andean Thrust, the San Ramon Fault, and the seismic hazard for Santiago, Chile. Tectonics, 29(2).
    [Google Scholar]
  4. Astroza, M., Ruiz, S., Astroza, R., & Molina, J. (2012). Intensidades sísmicas. In Departamento Ingeniería Civil, Universidad de Chile (Eds.), Mw=8.8 Terremoto en Chile, 27 de Febrero 2010 (pp. 107–126). Santiago, Chile: Departamento Ingeniería Civil, Universidad de Chile.
    [Google Scholar]
  5. Bonnefoy‐Claudet, S., Baize, S., Bonilla, L. F., Berge‐Thierry, C., Pasten, C., Campos, J., … Verdugo, R. (2009). Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophysical Journal International, 176, 925–937. https://doi.org/10.1111/j.1365-246X.2008.04020.x
    [Google Scholar]
  6. Charrier, R., Baeza, O., Elgueta, S., Flynn, J. J., Gans, P., Kay, S. M., … Zurita, E. (2002). Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat‐slab segment, southern Central Andes, Chile (33°‐36°S.L.). Journal of South American Earth Sciences, 15(1), 117–139. https://doi.org/10.1016/S0895-9811(02)00009-3
    [Google Scholar]
  7. Díaz, D., Maksymowicz, A., Vargas, G., Vera, E., Contreras‐Reyes, E., & Rebolledo, S. (2014). Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~ 33.5°S), using active seismic and electric methods. Solid Earth, 5(2), 837. https://doi.org/10.5194/se-5-837-2014
    [Google Scholar]
  8. Dragicevic, M. (1982). Nota sobre medidas de gravedad en el sector oeste de la cuenca de Santiago. Rev. Tralka, 2, 207–221.
    [Google Scholar]
  9. Drake, R., Curtiss, G., & Vergara, M. (1976). Potassium argon dating of igneous activity in the central Chilean andes‐latitude 33°S. Journal of Volcanology and Geothermal Research, 1(3), 285–295. https://doi.org/10.1016/0377-0273(76)90012-3
    [Google Scholar]
  10. Echaurren, A., Folguera, A., Gianni, G., Orts, D., Tassara, A., Encinas, A., & Giménez, M. (2016). Tectonic evolution of the North Patagonian Andes (41–44°S) through recognition of syntectonic strata. Tectonophysics, 677–678, 99–114. https://doi.org/10.1016/j.tecto.2016.04.009
    [Google Scholar]
  11. Falcón, E., Castillo, O., & Valenzuela, M. (1970). Hidrogeología de la cuenca de Santiago. Contribución de Chile al Decenio Hidrológico Internacional. Instituto de Investigaciones Geológicas51 p.
    [Google Scholar]
  12. Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., Campbell, A., … Comte, D. (2008). Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33◦–35◦ S). Tectonics, 27, TC1005. https://doi.org/10.1029/2006tc002046
    [Google Scholar]
  13. Farías, M., Comte, D., Charrier, R., Martinod, J., David, C., Tassara, A., … Fock, A. (2010). Crustal‐scale structural architecture in central Chile based on seismicity and surface geology: Implications for Andean mountain building. Tectonics, 29(3).
    [Google Scholar]
  14. Fock, A. (2005). Cronología y tectónica de la exhumación en el Neógeno de los Andes de Chile central entre los 33° y los 34°S. PhD thesis, Universidad de Chile, Santiago, Chile.
  15. Fuentes, F. (2004). Petrología y metamorfismo de muy bajo grado de unidades volcánicas oligoceno‐miocenas en la ladera occidental de los Andes de Chile Central (33° S). PhD thesis, Universidad de Chile, Santiago, Chile.
  16. Gana, P., & Wall, R. (1997). Evidencias geocronológicas 40Ar/39Ar y K‐Ar de un hiatus cretácico superior‐eoceno en Chile central (33‐33°30'S). Andean Geology, 24(2), 145–163.
    [Google Scholar]
  17. Giambiagi, L., Tassara, A., Mescua, J., Tunik, M., Alvarez, P., Godoy, E., … Pagano, S. (2014) Evolution of shallow and deep structures along the Maipo‐Tunuyan transect (33̊40′ S): from the Pacific coast to the Andean foreland. In S.Sepúlveda , L.Giambiagi , J.Moreiras , L.Pinto , M.Tunik , G.Hoke & M.Farías (Eds.), Geodynamic processes in the Andes of Central Chile and Argentina (pp. 63–82). London: Geological Society.
    [Google Scholar]
  18. Karzulovic, J. (1957) Sedimentos cuaternarios y aguas subterráneas en la Cuenca de Santiago. Anales de la Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 14–55, 5–120.
  19. Kausel, E. (1959) Levantamiento gravimétrico de la Cuenca de Santiago. Professional degree dissertation, Universidad de Chile, Santiago, Chile.
  20. Leyton, F., Sepúlveda, S. A., Astroza, M., Rebolledo, S., Acevedo, P., Ruiz, S., … Foncea, C. (2011). Seismic zonation of the Santiago basin, Chile. 5th International Conference on Earthquake Geotechnical Engineering, Santiago, paper 5.6.
  21. Li, Y., & Oldenburg, D. W. (1998). 3‐D inversion of gravity data. Geophysics, 63(1), 109–119. https://doi.org/10.1190/1.1444302
    [Google Scholar]
  22. Longman, I. M. (1959) Formulas for computing the tidal acceleration due to the moon and the sun. Journal of Geophysical Research, 64, 2351–2355.
    [Google Scholar]
  23. Maksymowicz, A. (2007). Modelo 3D del Moho bajo la zona de Chile central y oeste de Argentina (31°‐34°S), utilizando funciones de recepción. Msc. Thesis, Universidad de Chile, Santiago, Chile.
  24. Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., & Pardo, M. (2014). Flat versus normal subduction zones: a comparison based on 3‐D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°–35°S). Geophysical Journal International, 199, 1633–1654. https://doi.org/10.1093/gji/ggu355
    [Google Scholar]
  25. Menéndez, P. (1991). Atenuación de las intensidades del sismo del 3 de marzo de 1985 en función de la distancia a la zona de ruptura y del tipo de suelo. Civil Engineering thesis, Universidad de Chile, Santiago, Chile.
  26. Molina, J. (2011). Intensidades sísmicas del terremoto del 27 de febrero de 2010 en las 34 comunas del Gran Santiago. Civil Engineering thesis, Universidad de Chile, Santiago, Chile.
  27. Nyström, J. O., Vergara, M., Morata, D., & Levi, B. (2003). Tertiary volcanism during extension in the Andean foothills of central Chile (33°15'‐33°45'S). Geological Society of America Bulletin, 115(12), 1523–1537. https://doi.org/10.1130/B25099.1
    [Google Scholar]
  28. Pardo‐Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plate since Late Cretaceous time. Tectonics, 6(3), 233–248. https://doi.org/10.1029/TC006i003p00233
    [Google Scholar]
  29. Pastén, C., Sáez, M., Ruiz, S., Leyton, F., Salomón, J., & Poli, P. (2016). Deep characterization of the Santiago basin using HVSR and cross‐correlation of ambient seismic noise. Engineering Geology, 201, 57–66. https://doi.org/10.1016/j.enggeo.2015.12.021
    [Google Scholar]
  30. Pilz, M., Parolai, S., Picozzi, M., Wang, R., Leyton, F., Campos, J., & Zschau, J. (2010). Shear wave velocity model of the Santiago de Chile basin derived from ambient noise measurements: a comparison of proxies for seismic site conditions and amplification. Geophysical Journal International, 182(1), 355–367.
    [Google Scholar]
  31. Porter, R., Gilbert, H., Zandt, G., Beck, S., Warren, L., Calkins, J., … Anderson, M. (2012). Shear wave velocities in the Pampean flat‐slab region from Rayleigh wave tomography: Implications for slab and upper mantle hydration. Journal of Geophysical Research, 117(B11301).
    [Google Scholar]
  32. Ramos, V. A., Zapata, T., Cristallini, E., & Introcaso, A. (2004). The Andean thrust system – Latitudinal variations in structural styles and orogenic shortening. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon systems: AAPG Memoir 82 (pp. 30–50). Tulsa, OK: AAPG.
    [Google Scholar]
  33. Sellés, D. (1999). La Formación Abanico en el Cuadrángulo Santiago (33°15'‐33°30'S; 70°30'‐70°45'O) Chile central: Estratigrafía y geoquímica. MSc. Thesis, Universidad de Chile, Santiago, Chile.
  34. Sellés, D., & Gana, P. (2001). Geología del área Talagante‐San Francisco de Mostazal, Regiones Metropolitana de Santiago y del Libertador General Bernardo O'Higgins, Servicio Nacional de Geología y Minería, Serie Geología Básica 74: 30 p., escala 1:100.000. Santiago.
  35. Seno, T. (2009). Determination of the pore fluid pressure ratio at seismogenic megathrusts in subduction zones: Implications for strength of asperities and Andean‐type mountain building. Journal of Geophysical Research, 114, B05405. https://doi.org/10.1029/2008JB005889
    [Google Scholar]
  36. Tassara, A. (2005). Interaction between the Nazca and South American plates and formation of the Altiplano‐Puna plateau: review of a flexural analysis along the Andean margin (15°–34°S). Tectonophysics, 399, 39–57. https://doi.org/10.1016/j.tecto.2004.12.014
    [Google Scholar]
  37. Thiele, R. (1980). Carta Geológica de Chile, n° 39, Hoja Santiago, Región Metropolitana, Santiago. Instituto de Investigaciones Geológicas, 51 p.
    [Google Scholar]
  38. Thiele, R., Bobenrieth, L., & Boric, R. (1980). Geología de los cerros Renca, Ruiz y Colorado (Santiago): Contribución a la estratigrafía de Chile central. Revista Comunicaciones, 30, 1–14.
    [Google Scholar]
  39. Vergara, M., López‐Escobar, L., Palma, I., Hickey‐Vargas, R., & Roeschmann, C. (2004). Late Tertiary episodes in the area of the city of Santiago de Chile: new geochronological and geochemical data. Journal of South American Earth Sciences, 17, 227–238. https://doi.org/10.1016/j.jsames.2004.06.003
    [Google Scholar]
  40. Vergara, M., Morata, D., Villarroel, R., Nyström, J., & Aguirre, L. (1999). 40Ar/39Ar Ages, very low‐grade metamorphism and geochemistry of the volcanic rock from ‘Cerro El Abanico’, Santiago Andean Cordillera (33°30'S, 70°30'‐70°25'W). In: International Symposium on Andean Geodynamics (ISAG), 4, 785–788.
  41. Yáñez, G., Muñoz, M., Flores‐Aqueveque, V., & Bosch, A. (2015). Gravity derived depth to basement in Santiago Basin, Chile: implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo‐hazards. Andean Geology, 42(2), 147–172.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12281
Loading
/content/journals/10.1111/bre.12281
Loading

Data & Media loading...

Supplements

 

WORD

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error