1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

The control of slide blocks on slope depositional systems is investigated in a high‐quality 3D seismic volume from the Espírito Santo Basin, SE Brazil. Seismic interpretation and statistical methods were used to understand the effect of differential compaction on strata proximal to the headwall of a blocky mass‐transport deposit (MTD), where blocks are large and undisturbed (remnant), and in the distal part of this same deposit. The distal part contains smaller rafted blocks that moved and deformed with the MTD. Upon their emplacement, the positive topographic relief of blocks created a rugged seafloor, confining sediment pathways and creating accommodation space for slope sediment. In parallel, competent blocks resisted compaction more than the surrounding debrite matrix during early burial. This resulted in differential compaction between competent blocks and soft flanking strata, in a process that was able to maintain a rugged seafloor for >5 Ma after burial. Around the largest blocks, a cluster of striations associated with a submarine channel bypassed these obstructions on the slope and, as a result, reflects important deflection by blocks and compaction‐related folds that were obstructing turbidite flows. Log‐log graphs were made to compare the width and height of different stratigraphic elements; blocks, depocentres and channels. There is a strong correlation between the sizes of each element, but with each subsequent stage (block–depocentre–channel) displaying marked reductions in height. Blocky MTDs found on passive margins across the globe are likely to experience similar effects during early burial to those documented in this work.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12282
2018-03-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/4/bre12282.html?itemId=/content/journals/10.1111/bre.12282&mimeType=html&fmt=ahah

References

  1. Alves, T. M. (2010). 3D Seismic examples of differential compaction in mass‐transport deposits and their effect on post‐failure strata. Marine Geology, 271(3), 212–224. https://doi.org/10.1016/j.margeo.2010.02.014
    [Google Scholar]
  2. Alves, T. M., & Cartwright, J. A. (2010). The effect of mass‐transport deposits on the younger slope morphology, offshore Brazil. Marine and Petroleum Geology, 27(9), 2027–2036. https://doi.org/10.1016/j.marpetgeo.2010.05.006
    [Google Scholar]
  3. Alves, T. M., Cartwright, J., & Davies, R. J. (2009). Faulting of salt‐withdrawal basins during early halokinesis: Effects on the Paleogene Rio Doce Canyon system (Espírito Santo Basin, Brazil). AAPG Bulletin, 93(5), 617–652. https://doi.org/10.1306/02030908105
    [Google Scholar]
  4. Alves, T. M., Kurtev, K., Moore, G. F., & Strasser, M. (2014). Assessing the internal character, reservoir potential, and seal competence of mass‐transport deposits using seismic texture: A geophysical and petrophysical approach. AAPG Bulletin, 98(4), 793–824. https://doi.org/10.1306/09121313117
    [Google Scholar]
  5. Armitage, D. A., Romans, B. W., Covault, J. A., & Graham, S. A. (2009). The influence of mass‐transport‐deposit surface topography on the evolution of turbidite architecture: The Sierra Contreras, Tres Pasos formation (Cretaceous), southern Chile. Journal of Sedimentary Research, 79(5), 287–301.
    [Google Scholar]
  6. Asmus, H. E., Gomes, J. B., & Pereira, A. C. B. (1971). Integração geológica regional da bacia do Espírito Santo. Relatório Interno, PETROBRAS.
  7. Babonneau, N., Savoye, B., Cremer, M., & Klein, B. (2002). Morphology and architecture of the present canyon and channel system of the Zaire deep‐sea fan. Marine and Petroleum Geology, 19(4), 445–467. https://doi.org/10.1016/S0264-8172(02)00009-0
    [Google Scholar]
  8. Barker, P. (1983). Tectonic evolution and subsidence history of the Rio‐Grande Rise. Initial Reports of the Deep Sea Drilling Project, 72(Dec), 953–976.
    [Google Scholar]
  9. Barker, P. F., Buffler, R. T., & Gambôa, L. A. (1983). A seismic‐reflection study of the Rio‐Grande Rise. Initial Reports of the Deep Sea Drilling Project, 72(Dec), 499–517.
    [Google Scholar]
  10. Baudon, C., & Cartwright, J. (2008). The kinematics of reactivation of normal faults using high resolution throw mapping. Journal of Structural Geology, 30, 1072–1084. https://doi.org/10.1016/j.jsg.2008.04.008
    [Google Scholar]
  11. Beaubouef, R., & Abreu, V. (2010). MTCs of the Brazos‐Trinity slope system; thoughts on the sequence stratigraphy of MTCs and their possible roles in shaping hydrocarbon traps. In D. C.Mosher , R. C.Shipp , L.Mos‐cardelli , J. D.Chaytor , C. D. P.Baxter , H. J.Lee , & R.Urgeles (Eds.), Submarine mass movements and their consequences (pp. 475–490). Dordrecht, The Netherlands: Springer.
    [Google Scholar]
  12. Bjørlykke, K., & Høeg, K. (1997). Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Marine and Petroleum Geology, 14(3), 267–276. https://doi.org/10.1016/S0264-8172(96)00051-7
    [Google Scholar]
  13. Chang, H. K., Kowsmann, R. O., Figueiredo, A. M. F., & Bender, A. (1992). Tectonics and stratigraphy of the East Brazil Rift system: An overview. Tectonophysics, 213(1), 97–138. https://doi.org/10.1016/0040-1951(92)90253-3
    [Google Scholar]
  14. Clark, J. D., & Pickering, K. T. (1996). Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG Bulletin, 80(2), 194–220.
    [Google Scholar]
  15. Corfield, S., & Sharp, I. (2000). Structural style and stratigraphic architecture of fault propagation folding in extensional settings: A seismic example from the Smørbukk area, Halten Terrace, Mid‐Norway. Basin Research, 12(3–4), 329–341. https://doi.org/10.1046/j.1365-2117.2000.00133.x
    [Google Scholar]
  16. Cosgrove, J., & Ameen, M. (1999). A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds. Geological Society, London, Special Publications, 169(1), 7–21. https://doi.org/10.1144/GSL.SP.2000.169.01.02
    [Google Scholar]
  17. Davison, I. (1999). Tectonics and hydrocarbon distribution along the Brazilian South Atlantic margin. Geological Society, London, Special Publications, 153(1), 133–151. https://doi.org/10.1144/GSL.SP.1999.153.01.09
    [Google Scholar]
  18. Davison, I. (2007). Geology and tectonics of the South Atlantic Brazilian salt basins. Geological Society, London, Special Publications, 272(1), 345–359. https://doi.org/10.1144/GSL.SP.2007.272.01.18
    [Google Scholar]
  19. Demercian, S.Szatmari, P., &Cobbold, P. R. (1993). Style and pattern of salt diapirs due to thin‐skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228(3), 393–433. https://doi.org/10.1016/0040-1951(93)90351-J
    [Google Scholar]
  20. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O'Byrne, C. (2007). Migration–aggradation history and 3‐D seismic geomorphology of submarine channels in the Pleistocene Benin‐major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24(6), 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005
    [Google Scholar]
  21. Di Celma, C. N., Brunt, R. L., Hodgson, D. M., Flint, S. S., & Kavanagh, J. P. (2011). Spatial and temporal evolution of a Permian submarine slope channel–levee system, Karoo Basin, South Africa. Journal of Sedimentary Research, 81(8), 579–599. https://doi.org/10.2110/jsr.2011.49
    [Google Scholar]
  22. Dowdeswell, J. A., Ottesen, D., Rise, L., & Craig, J. (2007). Identification and preservation of landforms diagnostic of past ice‐sheet activity on continental shelves from three‐dimensional seismic evidence. Geology, 35(4), 359–362. https://doi.org/10.1130/G23200A.1
    [Google Scholar]
  23. Dugan, B., & Flemings, P. B. (2000). Overpressure and fluid flow in the New Jersey continental slope: Implications for slope failure and cold seeps. Science, 289(5477), 288–291. https://doi.org/10.1126/science.289.5477.288
    [Google Scholar]
  24. Dykstra, M., Garyfalou, K., Kertznus, V., Kneller, B., Milana, J. P., Molinaro, M., … Thompson, P. (2011). Mass‐transport deposits: Combining outcrop studies and seismic forward modeling to understand lithofacies distributions, deformation, and their seismic expression. SEPM Special Publication, 96, 293–310.
    [Google Scholar]
  25. Fiduk, J. C., Brush, E. R., Anderson, L. E., Gibbs, P. B., & Rowan, M. G. (eds.) (2004). Salt deformation, magmatism, and hydrocarbon prospectivity in the Espirito Santo Basin, offshore Brazil. Salt‐sediment interactions and hydrocarbon prospectivity: Concepts, applications, and case studies for the 21st century: Proceedings of Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference. SEPM.
  26. Gamboa, D., & Alves, T. M. (2015a). Spatial and dimensional relationships of submarine slope architectural elements: A seismic‐scale analysis from the Espírito Santo Basin (SE Brazil). Marine and Petroleum Geology, 64, 43–57. https://doi.org/10.1016/j.marpetgeo.2015.02.035
    [Google Scholar]
  27. Gamboa, D., & Alves, T. M. (2015b). Three‐dimensional fault meshes and multi‐layer shear in mass‐transport blocks: Implications for fluid flow on continental margins. Tectonophysics, 647, 21–32. https://doi.org/10.1016/j.tecto.2015.02.007
    [Google Scholar]
  28. Gamboa, D., & Alves, T. M. (2016). Bi‐modal deformation styles in confined mass‐transport deposits: Examples from a salt minibasin in SE Brazil. Marine Geology, 379, 176–193. https://doi.org/10.1016/j.margeo.2016.06.003
    [Google Scholar]
  29. Gamboa, D., Alves, T., Cartwright, J., & Terrinha, P. (2010). MTD distribution on a ‘passive'continental margin: The Espírito Santo Basin (SE Brazil) during the Palaeogene. Marine and Petroleum Geology, 27(7), 1311–1324. https://doi.org/10.1016/j.marpetgeo.2010.05.008
    [Google Scholar]
  30. Gee, M., Gawthorpe, R. L., Bakke, K., & Friedmann, S. J. (2007). Seismic geomorphology and evolution of submarine channels from the Angolan continental margin. Journal of Sedimentary Research, 77(5), 433–446. https://doi.org/10.2110/jsr.2007.042
    [Google Scholar]
  31. Gee, M., Gawthorpe, R. L., & Friedmann, J. S. (2005). Giant striations at the base of a submarine landslide. Marine Geology, 214(1), 287–294. https://doi.org/10.1016/j.margeo.2004.09.003
    [Google Scholar]
  32. Gee, M., Gawthorpe, R. L., & Friedmann, S. J. (2006). Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 76(1), 9–19. https://doi.org/10.2110/jsr.2006.02
    [Google Scholar]
  33. Gong, C., Wang, Y., Steel, R. J., Peakall, J., Zhao, X., & Sun, Q. (2016). Flow processes and sedimentation in unidirectionally migrating deep‐water channels: From a three‐dimensional seismic perspective. Sedimentology, 63(3), 645–661. https://doi.org/10.1111/sed.12233
    [Google Scholar]
  34. Hampton, M. A., Lee, H. J., &Locat, J. (1996). Submarine landslides. Reviews of geophysics, 34(1), 33–59. https://doi.org/10.1029/95RG03287
    [Google Scholar]
  35. Hardy, S., & McClay, K. (1999). Kinematic modelling of extensional fault‐propagation folding. Journal of Structural Geology, 21(7), 695–702. https://doi.org/10.1016/S0191-8141(99)00072-3
    [Google Scholar]
  36. Hunt, D., & Swarbrick, R. E. (1996). Compaction as a primary control on the architecture and development of depositional sequences: Conceptual framework, applications and implications. Geological Society, London, Special Publications, 104(1), 321–345. https://doi.org/10.1144/GSL.SP.1996.104.01.18
    [Google Scholar]
  37. Kneller, B., Dykstra, M., Fairweather, L., & Milana, J. P. (2016). Mass‐transport and slope accommodation: Implications for turbidite sandstone reservoirs. AAPG Bulletin, 100(2), 213–235. https://doi.org/10.1306/09011514210
    [Google Scholar]
  38. Kumar, N., Gamboa, L. A. P., Schreiber, B. C., & Mascle, J. (1977). Geologic history and origin of Sao Paulo Plateau (Southeastern Brazilian Margin), comparison with the Angolan margin and the early evolution of the Northern South Atlantic. Initial Reports of the Deep Sea Drilling Program, 39, 927–945.
    [Google Scholar]
  39. Lee, S. E., Talling, P. J., Ernst, G. G., & Hogg, A. J. (2002). Occurrence and origin of submarine plunge pools at the base of the US continental slope. Marine Geology, 185(3), 363–377. https://doi.org/10.1016/S0025-3227(01)00298-5
    [Google Scholar]
  40. Maillard, A., Gaullier, V., Vendeville, B. C., & Odonne, F. (2003). Influence of differential compaction above basement steps on salt tectonics in the Ligurian‐Provençal Basin, northwest Mediterranean. Marine and Petroleum Geology, 20(1), 13–27. https://doi.org/10.1016/S0264-8172(03)00022-9
    [Google Scholar]
  41. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., & Løvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 364(1845), 2009–2039. https://doi.org/10.1098/rsta.2006.1810
    [Google Scholar]
  42. McAdoo, B. G., Capone, M. K., & Minder, J. (2004). Seafloor geomorphology of convergent margins: implications for Cascadia seismic hazard. Tectonics, 23(6), TC6008.
    [Google Scholar]
  43. McHargue, T., Pyrcz, M. J., Sullivan, M. D., Clark, J. D., Fildani, A., Romans, B. W., … Drinkwater, N. J. (2011). Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Marine and Petroleum Geology, 28(3), 728–743. https://doi.org/10.1016/j.marpetgeo.2010.07.008
    [Google Scholar]
  44. Meisling, K. E., Cobbold, P. R., & Mount, V. S. (2001). Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin, 85(11), 1903–1924.
    [Google Scholar]
  45. Minisini, D., Trincardi, F., Asioli, A., Canu, M., & Foglini, F. (2007). Morphologic variability of exposed mass‐transport deposits on the eastern slope of Gela Basin (Sicily channel). Basin Research, 19(2), 217–240. https://doi.org/10.1111/j.1365-2117.2007.00324.x
    [Google Scholar]
  46. Mohriak, W., Nemčok, M., & Enciso, G. (2008). South Atlantic divergent margin evolution: Rift‐border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications, 294(1), 365–398. https://doi.org/10.1144/SP294.19
    [Google Scholar]
  47. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin research, 20(1), 73–98. https://doi.org/10.1111/j.1365-2117.2007.00340.x
    [Google Scholar]
  48. Newton, C. S., Shipp, R. C., Mosher, D. C., & Wach, G. D. (2004). Importance of mass transport complexes in the Quaternary development of the Nile Fan, Egypt. Offshore Technology Conference. Offshore Technology Conference.
  49. Ojeda, H. (1982). Structural framework, stratigraphy, and evolution of Brazilian marginal basins. AAPG Bulletin, 66(6), 732–749.
    [Google Scholar]
  50. Omosanya, K. O., & Alves, T. M. (2013). A 3‐dimensional seismic method to assess the provenance of Mass‐Transport Deposits (MTDs) on salt‐rich continental slopes (Espírito Santo Basin, SE Brazil). Marine and Petroleum Geology, 44, 223–239. https://doi.org/10.1016/j.marpetgeo.2013.02.006
    [Google Scholar]
  51. Omosanya, K. D. O., & Alves, T. M. (2014). Mass‐transport deposits controlling fault propagation, reactivation and structural decoupling on continental margins (Espírito Santo Basin, SE Brazil). Tectonophysics, 628, 158–171. https://doi.org/10.1016/j.tecto.2014.04.045
    [Google Scholar]
  52. Pickering, K. T., & Corregidor, J. (2005). Mass transport complexes and tectonic control on confined basin‐floor submarine fans, Middle Eocene, south Spanish Pyrenees. Geological Society, London, Special Publications, 244(1), 51–74. https://doi.org/10.1144/GSL.SP.2005.244.01.04
    [Google Scholar]
  53. Pickering, K., & Hiscott, R. (2015). Deep marine systems: Processes, deposits, environments, tectonic and sedimentation. New Jersey: Wiley‐Blackwell.
    [Google Scholar]
  54. Posamentier, H. W. (2003). Depositional elements associated with a basin floor channel‐levee system: Case study from the Gulf of Mexico. Marine and Petroleum Geology, 20(6), 677–690. https://doi.org/10.1016/j.marpetgeo.2003.01.002
    [Google Scholar]
  55. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73(3), 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  56. Prather, B. E. (2003). Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings. Marine and Petroleum Geology, 20(6), 529–545. https://doi.org/10.1016/j.marpetgeo.2003.03.009
    [Google Scholar]
  57. Qin, Y., Alves, T. M., Constantine, J., & Gamboa, D. (2017). The role of mass wasting in the progressive development of submarine channels (Espirito Santo Basin, SE Brazil). Journal of Sedimentary Research, 87, 500–516. https://doi.org/10.2110/jsr.2017.18
    [Google Scholar]
  58. Rise, L., Olesen, O., Rokoengen, K., Ottesen, D., & Riis, F. (2004). Mid‐Pleistocene ice drainage pattern in the Norwegian Channel imaged by 3D seismic. Quaternary Science Reviews, 23(23), 2323–2335. https://doi.org/10.1016/j.quascirev.2004.04.005
    [Google Scholar]
  59. Rusciadelli, G., & Di Simone, S. (2007). Differential compaction as a control on depositional architectures across the Maiella carbonate platform margin (central Apennines, Italy). Sedimentary Geology, 196(1), 133–155. https://doi.org/10.1016/j.sedgeo.2006.06.006
    [Google Scholar]
  60. Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., & Gupta, S. (2000). Fault‐propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. GSA Bulletin, 112(12), 1877–1899. https://doi.org/10.1130/0016-7606(2000)112<1877:FPFIES>2.0.CO;2
    [Google Scholar]
  61. Shultz, M. R., Fildani, A., Cope, T. D., & Graham, S. A. (2005). Deposition and stratigraphic architecture of an outcropping ancient slope system: Tres Pasos Formation, Magallanes Basin, southern Chile. Geological Society, London, Special Publications, 244(1), 27–50. https://doi.org/10.1144/GSL.SP.2005.244.01.03
    [Google Scholar]
  62. Stigall, J., & Dugan, B. (2010). Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 115(B4).
    [Google Scholar]
  63. Trask, P. D. (1931). Compaction of sediments. AAPG Bulletin, 15(3), 271–276.
    [Google Scholar]
  64. Viana, A., Figueiredo, A., Faugres, J. C., Lima, A., Gonthier, E., Brehme, I., & Zaragosi, S. (2003). The Sao Tom deep‐sea turbidite system (southern Brazil Basin): Cenozoic seismic stratigraphy and sedimentary processes. AAPG Bulletin, 87(5), 873–894. https://doi.org/10.1306/12100201048
    [Google Scholar]
  65. Weller, J. M. (1959). Compaction of sediments. AAPG Bulletin, 43(2), 273–310.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12282
Loading
/content/journals/10.1111/bre.12282
Loading

Data & Media loading...

Supplements

 

WORD

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error