1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The collision of bathymetric features with modern convergent margins has been investigated with the full range of tools used in geosciences. Hence, a comprehensive picture exists of the characteristic effects of collision events on the evolution of convergent margins. In contrast, much less studies documented past collisions of bathymetric features with convergent margins, as colliding features were generally lost to subduction. The arc‐trench system of southern Central America provides modern and past textbook examples of active margin interaction with incoming bathymetric reliefs. Here, we propose a synthesis which combines basin and terrane analysis of the forearc of northern Costa Rica and takes up the challenge of documenting past episodes of plateau accretion to the active margin. As illustrated in modern examples, our study shows that kilometric uplift of the overriding plate and termination of the volcanic arc activity are the most profound effects of colliding/accreting oceanic plateaus. Kilometric uplift of the forearc is documented by short‐lived (ca. 3 m.y.) occurrences of shallow‐water deposits in an overall deep‐water forearc record. These shallow deposits contain material reworked from underlying sedimentary and basement lithologies. The development of spatial gaps in arc volcanism is deduced from the transition from arc‐derived turbidites to pelagic sediments. Eventually, end of the collision event is evidenced by the subsidence of the whole forearc to deep‐water environments. Basin subsidence is accompanied or followed by renewed volcanic arc activity and coeval arc‐derived sedimentation, which may occur 1–7 m.y. after plateau collision. These past episodes of plateau accretion are archetypal for the following reasons: (a) they may be studied in outcrop, whereas most of the modern collisions of plateaus largely occur underwater; (b) no tectonic or metamorphic imprint has significantly complicated the forearc geological record; (c) the colliding feature and the sedimentary response to its collision are both preserved in the forearc geology; (d) they may be used as analogues for any setting where a bathymetric feature is suspected to have caused rapid forearc uplift and cessation of the volcanic arc activity.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12284
2018-03-23
2020-06-07
Loading full text...

Full text loading...

References

  1. Allen, S. R., & Freundt, A. (2006). Resedimentation of cold pumiceous ignimbrite into water: Facies transformations simulated in flume experiments. Sedimentology, 53, 717–734. https://doi.org/10.1111/j.1365-3091.2006.00790.x
    [Google Scholar]
  2. Allen, S. R., Hayward, B. W., & Mathews, E. (2007). A facies model for a submarine volcaniclastic apron: The Miocene Manukau Subgroup, New Zealand. Geological Society of America Bulletin, 119, 725–742. https://doi.org/10.1130/B26066.1
    [Google Scholar]
  3. Alvarado, G. E., Denyer, P., & Sinton, C. W. (1997). The 89 Ma Tortugal komatiitic suite, Costa Rica: Implications for a common geological origin of the Caribbean and Eastern Pacific region from a mantle plume. Geology, 25, 439–442. https://doi.org/10.1130/0091-7613(1997)025<0439:TMTKSC>2.3.CO;2
    [Google Scholar]
  4. Alvarado, G., & Gans, P. (2012). Síntesis geocronológica del magmatismo, metamorfismo y metalogenia de Costa Rica, América central. Revista Geológica de América Central, 46, 7–122.
    [Google Scholar]
  5. Andjić, G., Baumgartner‐Mora, C., & Baumgartner, P. O. (2016) An upper Paleogene shallowing‐upward sequence in the southern Sandino Forearc Basin (NW Costa Rica): Response to tectonic uplift. Facies, 62, 1–35.
    [Google Scholar]
  6. Andjić, G., Baumgartner‐Mora, C., Baumgartner, P. O., & Petrizzo, M. R. (2018). Tectono‐stratigraphic response of the Sandino Forearc Basin (N‐Costa Rica and W‐Nicaragua) to episodes of rough crust and oblique subduction. Depositional Record, https://doi.org/10.1002/dep2.40
    [Google Scholar]
  7. Arias, O. (2003). Redefinición de la Formación Tulín (Maastrichtiano–Eoceno) del Pacifico Central de Costa Rica. Revista Geologica de America Central, 28, 47–68.
    [Google Scholar]
  8. Astorga, A. (1987). El Cretácico Superior y el Paleógeno de la vertiente pacífica de Nicaragua meridional y Costa Rica septentrional: Origen, evolución y dinámica de las cuencas profundas relacionadas al margen convergente de Centroamérica. Tesis de Licenciatura, Universidad de Costa Rica. 250 p.
    [Google Scholar]
  9. Astorga, A. (1992). Descubrimiento de corteza oceanica mesozoica en el norte de Costa Rica y el sur de Nicaragua. Revista Geologica de America Central, 14, 109–112.
    [Google Scholar]
  10. Astorga, A. (1997). El puente‐istmo de América Central y la evolución de la placa Caribe, con énfasis en el Mesozoico. Profil, 12, 1–201.
    [Google Scholar]
  11. Austin, J. A. Jr., Taylor, F. W., & Cagle, C. D. (1989). Seismic stratigraphy of the central Tonga Ridge. Marine and Petroleum Geology, 6, 71–92. https://doi.org/10.1016/0264-8172(89)90077-9
    [Google Scholar]
  12. Azéma, J., Sornay, J., & Tournon, J. (1979). Découverte d'Albien supérieur dans le matériel volcano‐sédimentaire du « complexe de Nicoya » (province de Guanacaste, Costa Rica). Compte rendu sommaire de la Société Géologique de France, 3, 129–131.
    [Google Scholar]
  13. Azéma, J., & Tournon, J. (1979). Remarques sur la géologie des “massifs anciens” de la marge Pacifique du Costa Rica. 7th R.A.S.T., Lyon, Ed. Soc. Géol. France, p. 22.
  14. Ballance, P. F., Scholl, D. W., Vallier, T. L., Stevenson, A. J., Ryan, H., & Herzer, R. H. (1989). Subduction of a Late Cretaceous seamount of the Louisville Ridge at the Tonga Trench: A model of normal and accelerated tectonic erosion. Tectonics, 8, 953–962. https://doi.org/10.1029/TC008i005p00953
    [Google Scholar]
  15. Bandini, A. N., Baumgartner, P. O., Flores, K., Dumitrica, P., Hochard, C., Stampfli, G. M., & Jackett, S.‐J. (2011a). Aalenian to Cenomanian Radiolaria of the Bermeja Complex (Puerto Rico) and Pacific origin of radiolarites on the Caribbean Plate. Swiss Journal of Geosciences, 104, 367–408. https://doi.org/10.1007/s00015-011-0072-2
    [Google Scholar]
  16. Bandini, A. N., Baumgartner, P. O., Flores, K., Dumitrica, P., & Jackett, S.‐J. (2011b). Early Jurassic to early Late Cretaceous radiolarians from the Santa Rosa accretionary complex (northwestern Costa Rica). Ofioliti, 36, 1–35.
    [Google Scholar]
  17. Bandini, A. N., Flores, K., Baumgartner, P. O., Jackett, S.‐J., & Denyer, P. (2008). Late cretaceous and Paleogene Radiolaria from the Nicoya Peninsula, Costa Rica: a tectonostratigraphic application. Stratigraphy, 5, 3–21.
    [Google Scholar]
  18. Barat, F., Mercier de Lépinay, B., Sosson, M., Müller, C., Baumgartner, P. O., & Baumgartner‐Mora, C. (2014). Transition from the Farallon Plate subduction to the collision between South and Central America: Geological evolution of the Panama Isthmus. Tectonophysics, 622, 145–167. https://doi.org/10.1016/j.tecto.2014.03.008
    [Google Scholar]
  19. Barckhausen, U., & Ranero, C. R. (2003). New maps of magnetic and gravimetric anomalies in Costa Rica and Nicaragua. AGU Fall Meet Eos Trans, suppl., 84(46), T52B‐0265.
    [Google Scholar]
  20. Bassett, D., & Watts, A. B. (2015). Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochemistry Geophysics Geosystems, 16, 1508–1540. https://doi.org/10.1002/2014GC005684
    [Google Scholar]
  21. Baumgartner, P. O., & Denyer, P. (2006). Evidence for middle Cretaceous accretion at Santa Elena Peninsula (Santa Rosa Accretionary Complex), Costa Rica. Geologica Acta, 4, 179–191.
    [Google Scholar]
  22. Baumgartner, P. O., Flores, K., Bandini, A. N., Girault, F., & Cruz, D. (2008). Upper Triassic to Cretaceous radiolaria from Nicaragua and northern Costa Rica – the Mesquito composite oceanic terrane. Ofioliti, 33, 1–19.
    [Google Scholar]
  23. Baumgartner, P. O., Mora, C. R., Butterlin, J., Sigal, J., Glacon, G., Azéma, J., & Bourgois, J. (1984). Sedimentación y paleogeografía del Cretácico y Cenozoico del litoral pacífico de Costa Rica. Revista Geologica de America Central, 1, 57–136.
    [Google Scholar]
  24. Baumgartner‐Mora, C., & Baumgartner, P. O. (2016). Paleocene‐earliest Eocene Larger Benthic Foraminifera and Ranikothalia‐bearing carbonate paleo‐environments of Costa Rica (South Central America). Micropaleontology, 62, 453–508.
    [Google Scholar]
  25. Baumgartner‐Mora, C., & Denyer, P. (2002). Upper Cretaceous (Campanian‐Maastrichtian) limestone with Larger Foraminifera from Peña Bruja Rock (Santa Elena Peninsula). Revista Geologica de America Central, 26, 85–89.
    [Google Scholar]
  26. Boschman, L. M., van Hinsbergen, D. J. J., Torsvik, T. H., Spakman, W., & Pindell, J. L. (2014). Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth Science Reviews, 138, 102–136. https://doi.org/10.1016/j.earscirev.2014.08.007
    [Google Scholar]
  27. Brasse, H., Kapinos, G., Mütschard, L., Alvarado, G. E., Worzewski, T., & Jegen, M. (2009). Deep electrical resistivity structure of northwestern Costa Rica. Geophysical Research Letters, 36, L02310. https://doi.org/10.1029/2008GL036397
    [Google Scholar]
  28. Buchs, D.M., Arculus, R.J., Baumgartner, P.O., Baumgartner‐Mora, C., & Ulianov, A. (2010). Late Cretaceous arc development on the SW margin of the Caribbean Plate: Insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochemistry, Geophysics, Geosystems, 11, Q07S24, https://doi.org/10.1029/2009gc002901
    [Google Scholar]
  29. Buchs, D. M., Arculus, R. J., Baumgartner, P. O., & Ulianov, A. (2011a). Oceanic intraplate volcanoes exposed: Example from seamounts accreted in Panama. Geology, 39, 335–338. https://doi.org/10.1130/G31703.1
    [Google Scholar]
  30. Buchs, D. M., Baumgartner, P. O., Baumgartner‐Mora, C., Bandini, A. N., Jackett, S.‐J., Diserens, M.‐O., & Stucki, J. (2009). Late Cretaceous to Miocene seamount accretion and mélange formation in the Osa and Burica peninsulas (southern Costa Rica): episodic growth of a convergent margin. In K. H.James , M. A.Lorente & J. L.Pindell (Eds.), The origin and evolution of the Caribbean Plate, Geological Society, London, Special Publications, 328, 411–456.
    [Google Scholar]
  31. Buchs, D. M., Baumgartner, P. O., Baumgartner‐Mora, C., Flores, K., & Bandini, A. N. (2011b). Late Cretaceous to Miocene tectonostratigraphy of the Azuero area (west Panama) and the discontinuous accretion and subduction erosion along the Middle American margin. Tectonophysics, 512, 31–46. https://doi.org/10.1016/j.tecto.2011.09.010
    [Google Scholar]
  32. Buchs, D. M., Hoernle, K., Hauff, F., & Baumgartner, P. O. (2016). Evidence from accreted seamounts for a depleted component in the Early Galapagos Plume. Geology, 44, 383–386. https://doi.org/10.1130/G37618.1
    [Google Scholar]
  33. Burke, K. (1988). Tectonic evolution of the Caribbean. Annual Review of Earth and Planetary Sciences, 16, 201–230. https://doi.org/10.1146/annurev.ea.16.050188.001221
    [Google Scholar]
  34. Burke, K., Fox, P., & Şengör, A. (1978). Buoyant ocean floor and the evolution of the Caribbean. Journal of Geophysical Research, 83, 3949–3954. https://doi.org/10.1029/JB083iB08p03949
    [Google Scholar]
  35. Calvo, C. (1998). Kretazische Subduktions‐prozesse in Südzentralamerika. Profil, 15, 161.
    [Google Scholar]
  36. Calvo, C., & Bolz, A. (1994). Der älteste kalkaline Inselbogen‐Vulkanismus in Costa Rica: Marine Pyroklastika der Formation Loma Chumico (Alb bis Campan). Profil, 7, 235–264.
    [Google Scholar]
  37. Carey, S. N. (2000). Volcaniclastic sedimentation around island arcs. In H.Sigurdsson (Ed.), Encyclopedia of volcanoes (pp. 627–642). New York: Academic Press.
    [Google Scholar]
  38. Case, J. E., MacDonald, W. D., & Fox, P. J. (1990). Caribbean crustal provinces; Seismic and gravity evidence. In: G.Dengo & J. E.Case (Eds.) The Caribbean Region, vol. H, The Decade of North American Geology, Geological Society of America, 15–36.
  39. Chiari, M., Dumitrica, P., Marroni, M., Pandolfi, L., & Principi, G. (2006). Radiolarian biostratigraphic evidence for a Late Jurassic age of El Tambor Group ophiolites (Guatemala). Ofioliti, 31, 141–150.
    [Google Scholar]
  40. Chuang, L., Bostock, M., Wech, A., & Plourde, A. (2017). Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap. Geology, 45, 647–650. https://doi.org/10.1130/G38867.1
    [Google Scholar]
  41. Clift, P. D., Bednarz, U., Boe, R., Rothwell, R. G., Hodkinson, R. A., Ledbetter, J. K., … Soakai, S. (1994). Sedimentation on the Tonga forearc related to arc rifting, subduction erosion, and ridge collision: a synthesis of results from sites 840 and 841. In: L.M.Parson , J.W.Hawkins , J.F.Allan , N.Abrahamsen , U.Bednarz , G.Blanc , … M.J.Styzen (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Leg 135, Ocean Drilling Program, College Station (Texas), 843–855.
    [Google Scholar]
  42. Cloos, M. (1993). Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin, 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2
    [Google Scholar]
  43. Corral, I., Gomez‐Gras, D., Griera, A., Corbella, M., & Cardellach, E. (2013). Sedimentation and volcanism in the Panamanian Cretaceous intra‐oceanic arc and fore‐arc: new insights from the Azuero peninsula (SW Panama). Bulletin de la Societe Geologique de France, 184, 35–45. https://doi.org/10.2113/gssgfbull.184.1-2.35
    [Google Scholar]
  44. Corrigan, J., Mann, P., & Ingle, J. C. (1990). Forearc response to subduction of the Cocos Ridge, Panama‐Costa Rica. Geological Society of America Bulletin, 102, 628–652. https://doi.org/10.1130/0016-7606(1990)102<0628:FRTSOT>2.3.CO;2
    [Google Scholar]
  45. Cunningham, J. K., & Anscombe, K. J. (1985). Geology of ‘Eua and other islands, Kingdom of Tonga. In: D. W.Scholl & T. L.Vallier (Eds.), Geology and offshore resources of Pacific island arcs—Tonga region, Circum‐Pacific Council for Energy and Mineral Resources, Earth Science Series, 2, 221–257.
  46. DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale and estimates of current plate motions. Geophysical Research Letters, 21, 2191–2194. https://doi.org/10.1029/94GL02118
    [Google Scholar]
  47. Dengo, G. (1962). Estudio Geológico de la Región de Guanacaste, Costa Rica. San José, Costa Rica: IGN, 112 p.
    [Google Scholar]
  48. Denyer, P., Aguilar, T., & Montero, W. (2014a). Cartografia geológica de la Peninsula de Nicoya, Costa Rica: Estratigrafia y tectónica. Editorial Universidad de Costa Rica. 207 p.
  49. Denyer, P., Aguilar, T., & Montero, W. (2014b). Cartografia geológica de la Peninsula de Nicoya, Costa Rica: Mapas geológicos, 1:50'000. Editorial Universidad de Costa Rica.
  50. Denyer, P., & Alvarado, G. E. (2007). Mapa Geológico de Costa Rica 1:400'000. Librería Francesa S.A.
  51. Denyer, P., & Baumgartner, P. O. (2006). Emplacement of Jurassic‐Lower Cretaceous radiolarites of the Nicoya Complex (Costa Rica). Geologica Acta, 4, 203–218.
    [Google Scholar]
  52. Denyer, P., & Gazel, E. (2009). The Costa Rican Jurassic to Miocene oceanic complexes: Origin, tectonics and relations. Journal of South American Earth Sciences, 28, 429–442. https://doi.org/10.1016/j.jsames.2009.04.010
    [Google Scholar]
  53. Denyer, P., Montero, W., & Flores, K. (2005). Apuntes sobre la geologia de la hojas Golfo y Berrugate, Costa Rica. Revista Geológica de América Central, 32, 99–108.
    [Google Scholar]
  54. Di Marco, G. (1994). Les terrains accrétés du Costa Rica: Évolution tectonostratigraphique de la marge occidentale de la Plaque Caraïbe. Mém. Géol. (Lausanne), 20, 166.
    [Google Scholar]
  55. Di Marco, G., Baumgartner, P. O., & Chanell, J. E. T. (1995). Late Cretaceous‐Early Tertiary paleomagnetic data and a revised tectonostratigraphic subdivision of Costa Rica and western Panama. In P.Mann (Ed.) Geologic and tectonic development of the Caribbean Plate Boundary in Southern Central America. Geological Society of America, Special Paper, 295, 1–27.
    [Google Scholar]
  56. Dickinson, W. R., & Burley, D. V. (2007). Geoarchaeology of Tonga: Geotectonic and geomorphic controls. Geoarchaeology, 22, 229–259. https://doi.org/10.1002/gea.20164
    [Google Scholar]
  57. Dickinson, W. R., & Lawton, T. F. (2001). Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geological Society of America Bulletin, 113, 1142–1160. https://doi.org/10.1130/0016-7606(2001)113<1142:CTCAAF>2.0.CO;2
    [Google Scholar]
  58. Donnelly, T. W. (1973). Late Cretaceous basalts from the Caribbean, a possible flood basalt province of vast size. EOS, 54, 1004.
    [Google Scholar]
  59. Donnelly, T. W. (1994). The Caribbean Cretaceous basalt association: A vast igneous province that includes the Nicoya Complex of Costa Rica. Profil, 7, 17–45.
    [Google Scholar]
  60. Donnelly, T. W., Melson, W., Kay, E., & Rogers, J. J. W. (1973). Basalts and dolerites of Late Cretaceous age from the central Caribbean. In: N.T.Edgar , J.B.Saunders , H.M.Bolli , R.E.Boyce , W.S.Broecker , T.W.Donnelly , … M.A.Storms (Eds.), Initial DSDP reports, US gov. printing office (Washington), 15, 989–1004.
    [Google Scholar]
  61. Draut, A. E., & Clift, P. D. (2013). Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes. Earth Science Reviews, 116, 57–84. https://doi.org/10.1016/j.earscirev.2012.11.003
    [Google Scholar]
  62. Dunbar, R. B., Marty, R. C., & Baker, P. A. (1990). Cenozoic marine sedimentation in the Sechura and Pisco basins, Peru. Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 235–261. https://doi.org/10.1016/0031-0182(90)90179-B
    [Google Scholar]
  63. Dupont, J., & Herzer, R. H. (1985). Effect of subduction of the Louisville Ridge on the structure and morphology of the Tonga arc. In: D. W.Scholl & T. L.Vallier (Eds.), Geology and offshore resources of Pacific island arcs—Tonga region. Circum‐Pacific Council for Energy and Mineral Resources, Earth Science Series, 2, 323–332.
    [Google Scholar]
  64. Edgar, N. T., Ewing, J. I., & Hennion, J. (1971). Seismic refraction and reflection in the Caribbean Sea. AAPG Bulletin, 55, 833–870.
    [Google Scholar]
  65. Elming, S.‐A., Layer, P., & Ubieta, K. (2001). A paleomagnetic study and age determinations of Tertiary rocks in Nicaragua, Central America. Geophysical Journal International, 147, 294–309. https://doi.org/10.1046/j.0956-540x.2001.01526.x
    [Google Scholar]
  66. Erlich, R. N., Astorga, A., Soler, Z., Patts, M., & Palmer, E. (1996). Paleoceanography of organic‐rich rocks of the Loma Chumico formation of Costa Rica, Late Cretaceous, eastern Pacific. Sedimentology, 43, 691–718. https://doi.org/10.1111/j.1365-3091.1996.tb02021.x
    [Google Scholar]
  67. Erlich, R. N., Villamil, T., & Keens‐Dumas, J. (2003). Controls on the deposition of Upper Cretaceous organic carbon– rich rocks from Costa Rica to Suriname. In C.Bartolini , R. T.Buffler & J.Blickwede (Eds.), The Circum‐Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. A.A.P.G. Memoir, 79, 1–45.
    [Google Scholar]
  68. Escuder‐Viruete, J., & Baumgartner, P. O. (2014). Structural evolution and deformation kinematics of a subduction‐related serpentinite‐matrix mélange, Santa Elena Peninsula, northwest Costa Rica. Journal of Structural Geology, 66, 356–381. https://doi.org/10.1016/j.jsg.2014.06.003
    [Google Scholar]
  69. Escuder‐Viruete, J., Baumgartner, P. O., & Castillo‐Carrión, M. (2015). Compositional diversity in ophiolitic peridotites as result of a multi‐process history: The Santa Elena ophiolite, northwest Costa Rica. Lithos, 231, 16–34. https://doi.org/10.1016/j.lithos.2015.05.019
    [Google Scholar]
  70. Escuder‐Viruete, J., Joubert, M., Abad, M., Pérez‐Valera, F., & Gabites, J. (2016). The basaltic volcanism of the Dumisseau Formation in the Sierra de Bahoruco, SW Dominican Republic: A record of the mantle plume‐related magmatism of the Caribbean Large Igneous Province. Lithos, 254–255, 67–83. https://doi.org/10.1016/j.lithos.2016.03.013
    [Google Scholar]
  71. Escuder‐Viruete, J., Pérez‐Estaún, A., Joubert, M., & Weis, D. (2011). The Pelona‐Pico Duarte basalts formation, Central Hispaniola. An on‐land section of Late Cretaceous volcanism related to the Caribbean large‐igneous province. Geologica Acta, 9, 307–328.
    [Google Scholar]
  72. Escuder‐Viruete, J., Valverde‐Vaquero, P., Rojas‐Agramonte, Y., Gabites, J., & Pérez‐Estaún, A. (2013). From intra‐oceanic subduction to arc accretion and arc‐continent collision: Insights from the structural evolution of the Río San Juan metamorphic complex, northern Hispaniola. Journal of Structural Geology, 46, 34–56. https://doi.org/10.1016/j.jsg.2012.10.008
    [Google Scholar]
  73. Falvey, D. A., & Greene, H. G. (1988). Origin and evolution of the sedimentary basins of the New Hebrides Arc. In H. G.Greene & F. L.Wong (Eds.), Geology and offshore resources of Pacific island arcs – Vanuatu region. Circum‐Pacific Council for Energy and Resources, Earth Sciences Series, 8, 413–442.
    [Google Scholar]
  74. Feigenson, M. D., Carr, M. J., Maharaj, S. V., Juliano, S., & Bolge, L. L. (2004). Lead isotope composition of Central American volcanoes: Influence of the Galapagos plume. Geochemistry Geophysics Geosystems, 5, Q06001. https://doi.org/10.1029/2003GC000621
    [Google Scholar]
  75. Flores, K. (2003). Propuesta tectonoestratigráfica de la región septentrional del Golfo de Nicoya, Costa Rica. Licenciatura thesis, University of Costa Rica, 176 p.
  76. Flores, K. (2006). Jurassic – Late Cretaceous oceanic crustal terranes and arc‐derived sediments south Chortis Block (NE Nicaragua to NW Costa Rica). Preliminary results of two key areas: Nicoya Peninsula and Siuna District. DEA thesis, University of Lausanne, 107 p.
  77. Flores, K. (2009). Mesozoic Oceanic Terranes of Southern Central America: Geology, geochemistry and geodynamics. Ph.D. thesis, University of Lausanne, 290 p.s
  78. Flores, K., Denyer, P., & Aguilar, T. (2003a). Nueva propuesta estratigráfica: Geología de las hojas Matambú y Talolinga, Guanacaste, Costa Rica. Revista Geológica de América Central, 28, 131–138.
    [Google Scholar]
  79. Flores, K., Denyer, P., & Aguilar, T. (2003b). Nueva propuesta estratigráfica: Geología de la hoja Abangares, Guanacaste, Costa Rica. Revista Geológica de América Central, 29, 127–136.
    [Google Scholar]
  80. Flores, K., Skora, S., Martin, C., Harlow, G. E., Rodríguez, D., & Baumgartner, P. O. (2015). Metamorphic history of riebeckite‐ and aegirine‐augite‐bearing high‐pressure–low‐temperature blocks within the Siuna Serpentinite Mélange, northeastern Nicaragua. International Geologiy Review, 57, 943–977. https://doi.org/10.1080/00206814.2015.1027747
    [Google Scholar]
  81. Funnell, M. J., Peirce, C., & Robinson, A. H. (2017). Structural variability of the Tonga‐Kermadec forearc characterized using robustly constrained geophysical data. Geophysical Journal International, 210, 1681–1702. https://doi.org/10.1093/gji/ggx260
    [Google Scholar]
  82. Gardner, T. W., Fisher, D. M., Morell, K. D., & Cupper, M. L. (2013). Upper‐plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica. Lithosphere, 5, 247–264. https://doi.org/10.1130/L251.1
    [Google Scholar]
  83. Gazel, E., Carr, M. J., Hoernle, K., Feigenson, M. D., Hauff, F., Szymanski, D., & Van Den Bogaard, P. (2009). The Galapagos‐OIB signature in southern Central America: Mantle re‐fertilization by arc‐hotspot interaction. Geochemistry, Geophysics, Geosystems, 10, Q02S11, https://doi.org/10.1029/2008gc002246
    [Google Scholar]
  84. Geist, E. L., Fisher, M. A., & Scholl, D. W. (1993). Large‐scale deformation associated with ridge subduction. Geophysical Journal International, 115, 344–366. https://doi.org/10.1111/j.1365-246X.1993.tb01191.x
    [Google Scholar]
  85. Graham, I. J., Reyes, A. G., Wright, I. C., Peckett, K. M., Smith, I. E. M., & Arculus, R. J. (2008). Structure and petrology of newly discovered volcanic centers in the northern Kermadec–southern Tofua arc, South Pacific Ocean. Journal of Geophysical Research, 113, B08S02, https://doi.org/10.1029/2007jb005453
    [Google Scholar]
  86. Greene, H. G., Collot, J.‐Y., Fisher, M. A., & Crawford, A. J. (1994). Neogene tectonic evolution of the New Hebrides island arc: a review incorporating ODP drilling results. In H.G.Greene , J.‐Y.Collot , L.B.Stokking , K.Akimoto , M.Ask , P.E.Baker , … X.Zhao (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 134. Ocean Drilling Program, College Station (Texas), 19–46.
    [Google Scholar]
  87. Guerrera, F., Martín‐Martín, M., Raffaelli, G., & Tramontana, M. (2015). The Early Miocene “Bisciaro volcaniclastic event” (northern Apennines, Italy): a key study for the geodynamic evolution of the central‐western Mediterranean. International Journal of Earth Sciences (Geol Rundsch), 104, 1083–1106. https://doi.org/10.1007/s00531-014-1131-5
    [Google Scholar]
  88. Gursky, M. M. (1988). Analisis tectonico de la Peninsula de Nicoya (Costa Rica) y su significado para el dessarrollo estructural‐geodinamico de America Central meridional. Revista Geologica de America Central, 8, 19–75.
    [Google Scholar]
  89. Hall, R., & Smyth, H. R. (2008). Cenozoic arc processes in Indonesia: identification of the key influences on the stratigraphic record in active volcanic arcs. In A. E.Draut , P. D.Clift & D. W.Scholl (Eds.), Formation and applications of the sedimentary record in arc collision zones. Geological Society of America, Special Paper, 436, 27–54.
    [Google Scholar]
  90. Hampel, A. (2002). The migration history of the Nazca Ridge along the Peruvian active margin: A re‐evaluation. Earth and Planetary Science Letters, 203, 665–679. https://doi.org/10.1016/S0012-821X(02)00859-2
    [Google Scholar]
  91. Hauff, F., Hoernle, K., Schmincke, H.‐U., & Werner, R. (1997). A Mid Cretaceous origin for the Galápagos hotspot: Volcanological, petrological and geochemical evidence from Costa Rican oceanic crustal segments. Geologische Rundschau, 86, 141–155. https://doi.org/10.1007/PL00009938
    [Google Scholar]
  92. Hauff, F., Hoernle, K., Van Den Bogaard, P., Alvarado, G., & Garbe‐Schönberg, D. (2000). Age and geochemistry of basaltic complexes in western Costa Rica; contributions to the geotectonic evolution of Central America. Geochemistry, Geophysics, Geosystems, 1, 1009, https://doi.org/10.1029/1999gc000020
    [Google Scholar]
  93. Hochard, C. (2008). GIS and Geodatabases Application to Global Scale Plate Tectonics Modelling. Ph.D. thesis, University of Lausanne, 174 p.
  94. Hochmuth, K., Gohl, K., & Uenzelmann‐Neben, G. (2015). Playing jigsaw with Large Igneous Provinces – A plate tectonic reconstruction of Ontong Java Nui, West Pacific. Geochemistry, Geophysics, Geosystems, 16, 3789–3807. https://doi.org/10.1002/2015GC006036
    [Google Scholar]
  95. Hodgson, G. (1998). Resumen de la geologia en el perfil geotransversal Nicaragüense – Estado del conocimiento 1984. In S. A.Elming , L.Widenfalk , & D.Rodriguez (Eds.), Investigación geocientifica en Nicaragua 1981–1991 (pp. 41–51). Suecia: Universidad Tecnologica de Lulea.
    [Google Scholar]
  96. Hoernle, K., Abt, D. L., Fisher, K. M., Nichols, H, Hauff, F, Abers, G. A., … Strauch, W. (2008). Arc‐parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451, 1094–1098. https://doi.org/10.1038/nature06550
    [Google Scholar]
  97. Hoernle, K., Hauff, F., & van den Bogaard, P. (2004). 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology, 32, 697–700. https://doi.org/10.1130/G20574.1
    [Google Scholar]
  98. Hoernle, K., van den Bogaard, P., Werner, R., Lissinna, B., Hauff, F., Alvarado, G., & Garbe‐Schonberg, D. (2002). Missing history (16–71 Ma) of the Galapagos hotspot: Implications for the tectonic and biological evolution of the Americas. Geology, 30, 795–798. https://doi.org/10.1130/0091-7613(2002)030<0795:MHMOTG>2.0.CO;2
    [Google Scholar]
  99. Hsu, J. T. (1992). Quaternary uplift of the Peruvian coast related to the subduction of the Nazca Ridge; 13.5 to 15.6 degrees south latitude. Quaternary International, 15/16, 87–97. https://doi.org/10.1016/1040-6182(92)90038-4
    [Google Scholar]
  100. von Huene, R., & Suess, E. (1988). Ocean Drilling Program Leg‐112, Peru Continental‐Margin. 1. Tectonic History. Geology, 16, 934–938. https://doi.org/10.1130/0091-7613(1988)016<0934:ODPLPC>2.3.CO;2
    [Google Scholar]
  101. Jaccard, S., Münster, M., Baumgartner, P. O., Baumgartner‐Mora, C., & Denyer, P. (2001). Barra Honda (Upper Paleocene‐Lower Eocene) and El Viejo (Campanian–Maastrichtian) carbonate platforms in the Tempisque area (Guanacaste, Costa Rica). Revista Geologica de America Central, 24, 9–28.
    [Google Scholar]
  102. Johnston, S. T., & Borel, G. D. (2007). The odyssey of the Cache Creek terrane, Canadian Cordillera: Implications for accretionary orogens, tectonic setting of Panthalassa, the Pacific superwell, and break‐up of Pangea. Earth and Planetary Science Letters, 253, 415–428. https://doi.org/10.1016/j.epsl.2006.11.002
    [Google Scholar]
  103. Kerr, A. C. (2014). Oceanic Plateaus. In H.Holland , & K.Turekian (Eds.), Treatise on geochemistry: The crust, 2nd ed. (pp. 631–667). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00320-X
    [Google Scholar]
  104. Kerr, A. C., Tarney, J., Kempton, P. D., Spadea, P., Nivia, A., Marriner, G. F., & Duncan, R. A. (2002). Pervasive mantle plume head heterogeneity: Evidence from the late Cretaceous Caribbean‐Colombian oceanic plateau. Journal of Geophysical Research, 107, https://doi.org/10.1029/2001JB000790
    [Google Scholar]
  105. Kerr, A. C., White, R. V., Thompson, P. M. E., Tarney, J., & Saunders, A. D. (2003). No oceanic plateau; no Caribbean Plate? The seminal role of an oceanic plateau in Caribbean Plate evolution. The circum‐Gulf of Mexico and the Caribbean; hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir, 79, 126–168.
    [Google Scholar]
  106. Kolarsky, R. A., Mann, P., Monechi, P., Meyerhoff, H. D., & Pessagno, E. A Jr. (1995). Stratigraphic development of southwestern Panama as determined from integration of marine seismic data and onshore geology. In P.Mann (Ed.). Geologic and tectonic development of the Caribbean Plate Boundary in Southern Central America. Geological Society of America, Special Paper, 295, 159–200. https://doi.org/10.1130/SPE295
    [Google Scholar]
  107. Kuijpers, E. P. (1980). The geologic history of the Nicoya Ophiolite Complex, Costa Rica and its geotectonic significance. Tectonophysics, 68, 233–255. https://doi.org/10.1016/0040-1951(80)90178-X
    [Google Scholar]
  108. Kulm, L. D., Thornburg, T., Suess, E., Resig, J., & Fryer, P. (1988). Clastic, diagenetic, and metamorphic lithologies of a subsiding continental block: Central Peru forearc. In E.Suess , R.von Huene , K.Emeis , J.Bourgois , J.Cruzado Castaneda , P.De Wever , … M.Yamano (Eds.), Proceedings of the Ocean Drilling Program, initial reports, volume 112. Ocean Drilling Program, College Station (Texas), 91–108.
    [Google Scholar]
  109. Larter, R. D., & Leat, P. T. (2003). Intra‐oceanic subduction systems: introduction. In R. D.Larter & P. T.Leat (Eds.), Intra‐oceanic subduction systems: Tectonic and magmatic processes. Geological Society, London, Special Publications, 219, 1–17.
    [Google Scholar]
  110. Lissinna, B. (2005). A profile though the Central American Landbridge in western Panama: 115 Ma interplay between the Galápagos Hotspot and the Central American Subduction Zone. Ph.D. thesis, Christian Albrechts University, Kiel, Germany, 102 p.
  111. Loewen, M. W., Duncan, R. A., Kent, A. J. R., & Krawl, K. (2013). Prolonged plume volcanism in the Caribbean Large Igneous Province: New insights from Curaçao and Haiti. Geochemistry, Geophysics, Geosystems, 14, 4241–4259. https://doi.org/10.1002/ggge.20273
    [Google Scholar]
  112. Lonsdale, P. (1986). A multibeam reconnaissance of the Tonga trench axis and its intersection with the Louisville guyot chain. Marine Geophysical Researches, 8, 295–327. https://doi.org/10.1007/BF02084016
    [Google Scholar]
  113. Lundberg, N. (1982). Evolution of the slope landward of the Middle America Trench, Nicoya Peninsula, Costa Rica. In J. K.Leggett (Ed.) Trench‐forearc geology. Geological Society, London, Special Publications, 10, 131–147.
    [Google Scholar]
  114. Lundberg, N. (1991). Detrital record of the early Central American magmatic arc: Petrography of intraoceanic forearc sandstones, Nicoya Peninsula, Costa Rica. Geological Society of America Bulletin, 103, 905–915. https://doi.org/10.1130/0016-7606(1991)103<0905:DROTEC>2.3.CO;2
    [Google Scholar]
  115. Machare, J., & Ortlieb, L. (1992). Plioquaternary vertical motions and the subduction of the Nazca Ridge, Central Coast of Peru. Tectonophysics, 205, 97–108. https://doi.org/10.1016/0040-1951(92)90420-B
    [Google Scholar]
  116. Madrigal, P., Gazel, E., Denyer, P., Smith, I., Jicha, B., Flores, K. E., … Snow, J. (2015). A melt‐focusing zone in the lithospheric mantle preserved in the Santa Elena ophiolite, Costa Rica. Lithos, 230, 189–205. https://doi.org/10.1016/j.lithos.2015.04.015
    [Google Scholar]
  117. Madrigal, P., Gazel, E., Flores, K. E., Bizimis, M., & Brian, J. (2016). Record of massive upwellings from the Pacific large low shear velocity province. Nature Communications, 7, 13309. https://doi.org/10.1038/ncomms13309
    [Google Scholar]
  118. Mann, P. (2007). Overview of the tectonic history of northern Central America. In P.Mann (Ed.), Geologic and tectonic development of the Caribbean plate boundary in northern Central America. Geological Society of America, Special Paper, 428, 1–19.
    [Google Scholar]
  119. Mann, P., Rogers, R. D., & Gahagan, L. (2007). Overview of plate tectonic history and its unresolved tectonic problems. In J.Bundschuh & G. E.Alvarado (Eds.), Central America: Geology, resources, hazards (vol. 1, pp. 201–241). London: Taylor & Francis.
    [Google Scholar]
  120. Mann, P., Taylor, F. W., Lagoe, M. B., Quarles, A., & Burr, G. (1998). Accelerating late Quaternary uplift of the New Georgia Island Group (Solomon island arc) in response to subduction of the recently active Woodlark spreading center and Coleman seamount. Tectonophysics, 295, 259–306. https://doi.org/10.1016/S0040-1951(98)00129-2
    [Google Scholar]
  121. Manville, V., Németh, K., & Kano, K. (2009). Source to sink; a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sedimentary Geology, 220, 136–161. https://doi.org/10.1016/j.sedgeo.2009.04.022
    [Google Scholar]
  122. Marsaglia, K. M., Mann, P., Hyatt, R., & Olson, H. (1999). Evaluating the influence of aseismic ridge subduction and accretion(?) on the detrital modes of forearc sandstone: an example from the Kronotsky Peninsula, Kamchatka forearc. Lithos, 46, 17–42. https://doi.org/10.1016/S0024-4937(98)00054-1
    [Google Scholar]
  123. Mauffret, A., & Leroy, S. (1997). Seismic stratigraphy and structure of the Caribbean igneous province. Tectonophysics, 283, 61–104. https://doi.org/10.1016/S0040-1951(97)00103-0
    [Google Scholar]
  124. McCann, W. R., & Habermann, R. E. (1989). Morphologic and geologic effects of the subduction of bathymetric highs. Pure and Applied Geophysics, 129, 41–69. https://doi.org/10.1007/BF00874624
    [Google Scholar]
  125. McGeary, S., Nur, A., & Benavraham, Z. (1985). Spatial Gaps in Arc Volcanism: The Effect of Collision or Subduction of Oceanic Plateaus. Tectonophysics, 119, 195–221. https://doi.org/10.1016/0040-1951(85)90039-3
    [Google Scholar]
  126. van der Meer, D. G., Torsvik, T. H., Spakman, W., van Hinsbergen, D. J. J., & Amaru, M. L. (2012). Intra‐Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nature Geoscience, 5, 215–219. https://doi.org/10.1038/ngeo1401
    [Google Scholar]
  127. Meffre, S., & Crawford, A. J. (2001). Collision tectonics in the New Hebrides arc (Vanuatu). Island Arc, 10, 33–50. https://doi.org/10.1046/j.1440-1738.2001.00292.x
    [Google Scholar]
  128. Miller, M. S., Gorbatov, A., & Kennett, B. L. N. (2005). Heterogeneity within the subducting Pacific slab beneath the Izu‐Bonin‐Mariana arc: evidence from tomography using 3D ray tracing inversion techniques. Earth and Planetary Science Letters, 235, 331–342. https://doi.org/10.1016/j.epsl.2005.04.007
    [Google Scholar]
  129. Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., … Valencia, V. (2012). Arc‐continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research, 117, B04105. https://doi.org/10.1029/2011JB008959
    [Google Scholar]
  130. Montgomery, H. A., Pessagno, E. A. J. R., Lewis, J. A., & Schellekens, J. H. (1994a). Paleogeography of the Jurassic fragments of the Caribbean. Tectonics, 13, 725–732. https://doi.org/10.1029/94TC00455
    [Google Scholar]
  131. Montgomery, H., Pessagno, E. A. J. R., & Munoz, I. M. (1992). Jurassic(Tithonian) Radiolaria from La Désirade (Lesser Antilles): Preliminary paleontological and tectonic implications. Tectonics, 11, 1426–1432. https://doi.org/10.1029/92TC01326
    [Google Scholar]
  132. Montgomery, H., Pessagno, E. A. J. R., & Pindell, J. L. (1994b). A 195 Ma Terrane in a 165 Ma Sea: Pacific Origin of the Carribbean plate. Geological Society of America Today, 4, 1–6.
    [Google Scholar]
  133. Morell, K. D., Fisher, D. M., Gardner, T. W., Lafemina, P., Davidson, D., & Teletzke, A. (2011). Quaternary outer fore‐arc deformation and uplift inboard of the Panama Triple Junction, Burica Peninsula. Journal of Geophysical Research, 116, B05402. https://doi.org/10.1029/2010JB007979
    [Google Scholar]
  134. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., & Heine, C. (2008). Long‐term sea‐level fluctuations driven by ocean basin dynamics. Science, 319, 1357–1362. https://doi.org/10.1126/science.1151540
    [Google Scholar]
  135. Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., … Cannon, J. (2016). Ocean basin evolution and global‐scale plate reorganization events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44, 107–138. https://doi.org/10.1146/annurev-earth-060115-012211
    [Google Scholar]
  136. Nerlich, R., Clark, S. R., & Bunge, H.‐P. (2014). Reconstructing the link between the Galapagos hotspot and the Caribbean Plateau. GeoResJ, 1–2, 1–7. https://doi.org/10.1016/j.grj.2014.02.001
    [Google Scholar]
  137. Neuhuber, S., Gier, S., Hohenegger, J., Wolfgring, E., Spötl, C., Strauss, P., & Wagreich, M. (2016). Palaeoenvironmental changes in the northwestern Tethys during the Late Campanian Radotruncana calcarata Zone: Implications from stable isotopes and geochemistry. Chemical Geology, 420, 280–296. https://doi.org/10.1016/j.chemgeo.2015.11.023
    [Google Scholar]
  138. Nokleberg, W. J., Parfenov, L. M., Monger, J. W. H., Norton, I. O., Khanchuk, A. I., Stone, D., … Fujita, K. (2000). Phanerozoic tectonic evolution of the Circum‐North Pacific. United States Geological Survey Professional Paper, 1626, 122.
    [Google Scholar]
  139. Nur, A., & Ben‐Avraham, Z. (1981). Volcanic gaps and the consumption of aseismic ridges in South America. In L. D.Kulm , J.Dymond , E. J.Dasch , D. M.Hussong & R.Roderick (Eds.) Nazca Plate: Crustal formation and Andean convergence. Geological Society of America Memoir, 154, 729–740. https://doi.org/10.1130/MEM154
    [Google Scholar]
  140. Obando Rodriguez, J. A. (1986). Sedimentología y tectónica del Cretacico y Palógeno de la región de Golfito, Península de Burica y Península de Osa, Provincia de Puntarenas, Costa Rica. Tesis de Licenciatura. Escuela Centroamericana de Geología, Universidad de Costa Rica.
  141. Parson, L. M., Hawkins, J. W., Allan, J. F., Abrahamsen, N., Bednarz, U., Blanc, G., … Styzen, M. J. (1992a). Shipboard Scientific Party, Site 840. Proc. ODP, Init. Repts., 135, College Station, TX (Ocean Drilling Program), 489–570, https://doi.org/10.2973/odp.proc.ir.135.110.1992
  142. Parson, L. M., Hawkins, J. W., Allan, J. F., Abrahamsen, N., Bednarz, U., Blanc, G., … Styzen, M. J. (1992b). Shipboard Scientific Party, Site 841. Proc. ODP, Init. Repts., 135, College Station, TX (Ocean Drilling Program), 571–677, https://doi.org/10.2973/odp.proc.ir.135.111.1992
  143. Pilger, R. H. (1981). Plate reconstructions, aseismic ridges, and low‐angle subduction beneath the Andes. Geological Society of America Bulletin, 92, 448–456. https://doi.org/10.1130/0016-7606(1981)92<448:PRARAL>2.0.CO;2
    [Google Scholar]
  144. Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In K. H.James , M. A.Lorente & J. L.Pindell . The origin and evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328, 1–55.
    [Google Scholar]
  145. Pizarro, D. A. (1993). Los pozos profundos perforados en Costa Rica; aspectos litologicos i bioestratigraficos. Revista Geologica de America Central, 15, 81–85.
    [Google Scholar]
  146. Pons, J. M., Vicens, E., & Schmidt‐Effing, R. (2016). Campanian rudists (Hippuritida, Bivalvia) from Costa Rica (Central America). Journal of Paleontology, 90, 211–238. https://doi.org/10.1017/jpa.2016.27
    [Google Scholar]
  147. Ramos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In S. M.Kay , V. A.Ramos & W. R.Dickinson (Eds.) Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America Memoir, 204, 31–65.
    [Google Scholar]
  148. Ranero, C., von Huene, R., Flueh, E., Duarte, M., Baca, D., & McIntosh, K. (2000). A cross section of the convergent Pacific margin of Nicaragua. Tectonics, 19, 335–357. https://doi.org/10.1029/1999TC900045
    [Google Scholar]
  149. Rivier, F. (1983). Síntesis geológica y mapa geológica del area del Bajo Tempisque, Guanacaste, Costa Rica. Informe Semestral (Instituto Geográfico Nacional), 1, 7–30.
    [Google Scholar]
  150. Rogers, R. D., Mann, P., & Emmet, P. A. (2007). Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data. In P.Mann (Ed.) Geologic and tectonic development of the Caribbean plate in northern Central America. Geological Society of America, Special Paper, 428, 65–88.
    [Google Scholar]
  151. Rosenbaum, G., Giles, D., Saxon, M., Betts, P. G., Weinberg, R., & Duboz, C. (2005). Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters, 239, 18–32. https://doi.org/10.1016/j.epsl.2005.08.003
    [Google Scholar]
  152. Rosenbaum, G., & Mo, W. (2011). Tectonic responses to the subduction of high bathymetric relief. Gondwana Research, 19, 571–582. https://doi.org/10.1016/j.gr.2010.10.007
    [Google Scholar]
  153. Ruellan, E., Delteil, J., Wright, I., & Matsumoto, T. (2003). From rifting to active spreading in the Lau Basin – Havre Trough backarc system (SW Pacific): Locking/unlocking induced by seamount chain subduction. Geochemistry, Geophysics, Geosystems, 4, https://doi.org/10.1029/2001GC000261
    [Google Scholar]
  154. Sak, P. B., Fisher, D. M., Gardner, T. W., Marshall, J. S., & la Femina, P. C. (2009). Rough crust subduction, forearc kinematics, and Quaternary uplift rates, Costa Rican segment of the Middle America Trench. Geological Society of America Bulletin, 121, 992–1012. https://doi.org/10.1130/B26237.1
    [Google Scholar]
  155. Sallarès, V., Dañobeitia, J. J., & Flueh, E. R. (2001). Lithospheric structure of the Costa Rican Isthmus: Effects of subduction zone magmatism on an oceanic plateau. Journal of Geophysical Research, 106, 621–643. https://doi.org/10.1029/2000JB900245
    [Google Scholar]
  156. Schmidt‐Effing, R. (1974). El primer hallazgo de amonites en América Central Meridional y notas sobre facies cretácicas en dicha región. Informe Semestral (Instituto Geográfico Nacional), 1, 53–61.
    [Google Scholar]
  157. Schmidt‐Effing, R. (1979). Alter und Genese des Nicoya‐Komplexes, einer ozeanischen Paläokruste (Oberjura bis Eozän) im südlichen Zentralamerika. Geologische Rundschau, 68, 457–494. https://doi.org/10.1007/BF01820803
    [Google Scholar]
  158. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., … Chandler, M. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth Science Reviews, 113, 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    [Google Scholar]
  159. Seyfried, H., Astorga, A., Ammann, H., Calvo, C., Kolb, W., Schmidt, H., & Winsemann, J. (1991). Anatomy of an evolving island arc: tectonic and eustatic control in the south Central American fore‐arc area. In D. I. M.Macdonald (Ed.), Sedimentation, tectonics and eustasy: Sea‐level changes at active margins. S.E.P.M. Special Publication, 12, 217–240. https://doi.org/10.1002/9781444303896
    [Google Scholar]
  160. Seyfried, H., & Sprechmann, P. (1985). Acerca de la formación del puente‐istmo Centroamericano Meridional, con énfasis en el desarrollo acaecido desde Campanénse al Eoceno. Revista Geologica de America Central, 2, 63–87.
    [Google Scholar]
  161. Sigloch, K., & Mihalynuk, M. (2013). Intra‐oceanic subduction shaped the assembly of Cordilleran North America. Nature, 496, 50–56. https://doi.org/10.1038/nature12019
    [Google Scholar]
  162. Sinton, C. W., Duncan, R. A., & Denyer, P. (1997). Nicoya Peninsula, Costa Rica: A single suite of Caribbean oceanic plateau magmas. Journal of Geophysical Research‐Solid Earth, 102, 15507–15520. https://doi.org/10.1029/97JB00681
    [Google Scholar]
  163. Sinton, C. W., Duncan, R. A., Storey, M., Lewis, J., & Estrada, J. J. (1998). An oceanic flood basalt province within the Caribbean plate. Earth and Planetary Science Letters, 155, 221–235. https://doi.org/10.1016/S0012-821X(97)00214-8
    [Google Scholar]
  164. Sinton, C. W., Pyle, D. G., Hanan, B. B., Denyer, P., & Alavarado, G. E. (2009). Distinct Mantle Source for the Caribbean Large Igneous Province Ultramafic of Tortugal, Costa Rica. GSA Annual Meeting, Portland, Abstract with Programs, 41(7), 370.
    [Google Scholar]
  165. Sinton, C. W., Sigurdsson, H., & Duncan, R. A. (2000). Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. In R. M.Leckie , H.Sigurdsson , G. D.Acton & G.Draper (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Leg 165. Ocean Drilling Program, College Station (Texas), 165, 233–236.
    [Google Scholar]
  166. Spikings, R., & Simpson, G. (2014). Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust. Tectonics, 33, 635–655. https://doi.org/10.1002/2013TC003425
    [Google Scholar]
  167. Sprechmann, P. (Ed.) (1984). Manual de geologia de Costa Rica: estratigrafia. 320 p. Editorial Universidad de Costa Rica.
  168. Struss, I., Artiles, V., Cramer, B., & Winsemann, J. (2008). The petroleum system in the Sandino Forearc Basin, offshore western Nicaragua. Journal of Petroleum Geology, 31, 221–244. https://doi.org/10.1111/j.1747-5457.2008.00418.x
    [Google Scholar]
  169. Taylor, F. W. Jr., & Bloom, A. L. (1977). Coral reefs on tectonic blocks, Tonga island arc. Third International Coral Reef Symposium, Miami University, 2, 275–281.
    [Google Scholar]
  170. Tetreault, J. L., & Buiter, S. (2012). Geodynamic models of terrane accretion: testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. Journal of Geophysical Research, 117, B08403. https://doi.org/10.1029/2012JB009316
    [Google Scholar]
  171. Timm, C., Bassett, D., Graham, I. J., Leybourne, M. I., de Ronde, C. E. J., Woodhead, J., … Watts, A. B. (2013). Louisville seamount subduction and its implication on mantle flow beneath the central Tonga‐Kermadec arc. Nature Communications, 4, 1720. https://doi.org/10.1038/ncomms2702
    [Google Scholar]
  172. Torsvik, T. H., Steinberger, B., Gurnis, M., & Gaina, C. (2010). Plate tectonics and net lithosphere rotation over the past 150 My. Earth and Planetary Science Letters, 291, 106–112. https://doi.org/10.1016/j.epsl.2009.12.055
    [Google Scholar]
  173. Trehu, A. M., Blakely, R. J., & Williams, M. C. (2012). Subducted seamounts and recent earthquakes beneath the central Cascadia forearc. Geology, 40, 103–106. https://doi.org/10.1130/G32460.1
    [Google Scholar]
  174. Trela, J., Vidito, C., Gazel, E., Herzberg, C., Class, C., Whalen, W., … Alvarado, G. E. (2015). Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution. Earth and Planetary Science Letters, 425, 268–277. https://doi.org/10.1016/j.epsl.2015.05.036
    [Google Scholar]
  175. Vallejo, C., Winkler, W., Spikings, R. A., Luzieux, L., Heller, F., & Bussy, F. (2009). Mode and timing of terrane accretion in the forearc of the Andes in Ecuador. In S.Mahlburg Kay , V. A.Ramos & W. R.Dickinson (Eds.), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America Memoir, 204, 197–216.
    [Google Scholar]
  176. Vogt, K., & Gerya, T. V. (2014). From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondwana Research, 25, 494–508. https://doi.org/10.1016/j.gr.2012.11.002
    [Google Scholar]
  177. Watanabe, M., Okino, K., & Kodera, T. (2010). Rifting to spreading in the southern Lau Basin: Variations within the transition zone. Tectonophysics, 494, 226–234. https://doi.org/10.1016/j.tecto.2010.09.001
    [Google Scholar]
  178. Weber, P. (2013). Assessing sedimentary evolution by means of Sr‐isotope ratios: 3 case studies on the Caribbean Plate (Cretaceous: Nicoya Peninsula, Costa Rica, Tertiary: Hess Rise, and La Désirade, Guadeloupe, France). Ph.D. thesis, University of Lausanne, 176 p.
  179. Wegner, W., Wörner, G., Harmon, R. S., & Jicha, B. R. (2011). Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geological Society of America Bulletin, 123, 703–724. https://doi.org/10.1130/B30109.1
    [Google Scholar]
  180. Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long‐lived Yellowstone hotspot. Geosphere, 10, 692–719. https://doi.org/10.1130/GES01018.1
    [Google Scholar]
  181. Weyl, R. (1980). Geology of Central America. Berlin: Gebrüder Borntraeger, 371 p.
    [Google Scholar]
  182. Whattam, S. A., Gazel, E., Yi, K., & Denyer, P. (2016). Origin of plagiogranites in oceanic complexes. A case study of the Nicoya and Santa Elena terranes, Costa Rica. Lithos, 262, 75–87. https://doi.org/10.1016/j.lithos.2016.06.017
    [Google Scholar]
  183. Whattam, S. A., & Stern, R. J. (2015). Late Cretaceous plume‐induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27, 38–63. https://doi.org/10.1016/j.gr.2014.07.011
    [Google Scholar]
  184. Wipf, M., Zeilinger, G., Seward, D., & Schlunegger, F. (2008). Focused subaerial erosion during ridge subduction: Impact on the geomorphology in south‐central Peru. Terra Nova, 20, 1–10. https://doi.org/10.1111/j.1365-3121.2007.00780.x
    [Google Scholar]
  185. Wörner, G., Harmon, R. S., & Wegner, W. (2009). Geochemical evolution of igneous rocks and changing magma sources during the formation and closure of the Central American land bridge of Panama. In S. M.Kay , V. A.Ramos & W. R.Dickinson (Eds.), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America Memoir204, 183–196.
    [Google Scholar]
  186. Zeumann, S., & Hampel, A. (2015). Deformation of erosive and accretive forearcs during subduction of migrating and non‐migrating aseismic ridges: Results from 3‐D finite element models and application to the Central American, Peruvian, and Ryukyu margins. Tectonics, 34, 1769–1791. https://doi.org/10.1002/2015TC003867
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12284
Loading
/content/journals/10.1111/bre.12284
Loading

Data & Media loading...

Supplements

 

PDF

 

PDF

 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error