1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Kilometre‐scale geobodies of diagenetic origin have been documented for the first time in a high‐resolution 3D seismic survey of the Upper Cretaceous chalks of the Danish Central Graben, North Sea Basin. Based on detailed geochemical, petrographic and petrophysical analyses, it is demonstrated that the geobodies are of an open‐system diagenetic origin caused by ascending basin fluids guided by faults and stratigraphic heterogeneities. Increased amounts of porosity‐occluding cementation, contact cement and/or high‐density/high‐velocity minerals caused an impedance contrast that can be mapped in seismic data, and represent a hitherto unrecognized, third type of heterogeneity in the chalk deposits in addition to the well‐known sedimentological and structural features. The distribution of the diagenetic geobodies is controlled by porosity/permeability contrasts of stratigraphic origin, such as hardgrounds associated with formation tops, and the feeder fault systems. One of these, the Top Campanian Unconformity at the top of the Gorm Formation, is particularly effective and created a basin‐wide barrier separating low‐porosity chalk below from high‐porosity chalk above (a Regional Porosity Marker, RPM). It is in particular in this upper high‐porosity unit (Tor and Ekofisk Formations) that the diagenetic geobodies occur, delineated by “Stratigraphy Cross‐cutting Reflectors” (SCRs) of which eight different types have been distinguished. The geobodies have been interpreted as the result of: (i) escaping pore fluids due to top seal failure, followed by local mechanical compaction of high‐porous chalks, paired with (ii) ascension of basinal diagenetic fluids along fault systems that locally triggered cementation of calcite and dolomite within the chalk, causing increased contact cements and/or reducing porosity. The migration pathway of the fluids is marked by the SCRs, which are the outlines of high‐density bodies of chalk nested in highly porous chalks. This study, thus, provides new insights into the 3D relationship between fault systems, fluid migration and diagenesis in chalks and has important applications for basin modelling and reservoir characterization.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12285
2018-06-05
2024-03-28
Loading full text...

Full text loading...

References

  1. Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146, 54–62. https://doi.org/10.2118/942054-G
    [Google Scholar]
  2. Arfai, J., Lutz, R., Franke, D., Gaedicke, C., & Kley, J. (2015). Mass‐transport deposits and reservoir quality of Upper Cretaceous chalk within the German Central Graben, North Sea. International Journal of Earth Sciences, 105, 797–818.
    [Google Scholar]
  3. Back, S., Van Gent, H., Reuning, L., Grotsch, J., Niederau, J., & Kukla, P. (2011). 3D seismic geomorphology and sedimentology of the Chalk Group, Southern Danish North Sea. Journal of the Geological Society, London, 168, 393–405. https://doi.org/10.1144/0016-76492010-047
    [Google Scholar]
  4. Banner, J. L., & Hanson, G. N. (1990). Calculation of simultaneous isotopic and trace element variations during water‐rock interaction with applications to carbonate diagnosis. Geochimica et Cosmochimica Acta, 54, 3123–3137. https://doi.org/10.1016/0016-7037(90)90128-8
    [Google Scholar]
  5. Bons, P. D., Elburg, M. A., & Gomez‐Rivas, E. (2012). A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33–62. https://doi.org/10.1016/j.jsg.2012.07.005
    [Google Scholar]
  6. Boussaha, M., Thibault, N., & Stemmerik, L. (2016). Integrated stratigraphy of the late Campanian & – Maastrichtian in the Danish Basin: Revision of the Boreal Calcareous Nannofossil Zonation. Newsletters on Stratigraphy, 49, 337–360. https://doi.org/10.1127/nos/2016/0075
    [Google Scholar]
  7. Brewster, J., & Dangerfield, J. A. (1984). Chalk fields along the Lindesness Ridge, Eldfisk. Marine and Petroleum Geology, 1, 239–278. https://doi.org/10.1016/0264-8172(84)90148-X
    [Google Scholar]
  8. van Buchem, F. S. P., Smit, F. W. H., Buijs, G. J. A., Trudgill, B., & Larsen, P. H. (2018). Tectonostratigraphic framework and depositional history of the Cretaceous–Danian succession of the Danish Central Graben (North Sea) – New light on a mature area. In M.Bowman & B.Levell (Eds.), Petroleum geology of NW Europe: 50 years of learning – Proceedings of the 8th Petroleum Geology Conference (pp. 9–46). London, UK: Geological Society of London.
    [Google Scholar]
  9. Bulhöes, E.M., & Nogueira de Amorim, W. (2005). Princípio de SismoCamada Elementar e sua aplicação à Técnica Volume de Amplitudes (TecVA). Sociedade Brasileira de Geofísica, 9th International Congress of the Brazilian Geophysical Society, 1382‐1387.
  10. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architechture and permeability structure. Geology, 24, 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  11. Cartwright, J. (1989). The kinematics of inversion in the Danish Central Graben. Geological Society, London, Special Publications, 44, 153–175. https://doi.org/10.1144/GSL.SP.1989.044.01.10
    [Google Scholar]
  12. Cartwright, J. (2007). The impact of 3D seismic data on understanding compaction, fluid flow, and diagenesis in sedimentary basins. Geological Society, London, 164, 881–893. https://doi.org/10.1144/0016-76492006-143
    [Google Scholar]
  13. Cherret, A. J., Escobar, I., & Hansen, H. P. (2011). Fast deterministic geostatiscal inversion. In 73rd EAGE Conference and Exhibition Incorporating SPE EUROPEC 2011.
  14. Coward, M. P., Dewwey, J. R., Hempton, M., Holroyd, J., & Mange, M. A. (2003). Chapter 2: Tectonic evolution. In D.Evans , C.Graham , A.Armour , & P.Bathurst (Eds.), The millennium Atlas: Petroleum geology of the Central and Northern North Sea (Vol. 1, pp. 157–189). London, UK: The Geological Society of London.
    [Google Scholar]
  15. Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass‐spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta, 12, 133–149. https://doi.org/10.1016/0016-7037(57)90024-8
    [Google Scholar]
  16. D'Heur, M. (1984). Porosity and hydrocarbon distribution in the North Sea Chalk reservoirs. Marine and Petroleum Geology, 1, 223–238.
    [Google Scholar]
  17. Egeberg, P. K., & Saigal, G. C. (1991). North Sea chalk diagenesis: Cementation of chalks and healing of fractures. Chemical Geology, 92, 339–354. https://doi.org/10.1016/0009-2541(91)90078-6
    [Google Scholar]
  18. El Husseiny, A., & Vanorio, T. (2015). The effect of micrite content on the acoustic velocity of carbonate rocks. Geophysics, 80, L45–L55. https://doi.org/10.1190/geo2014-0599.1
    [Google Scholar]
  19. Esmerode, E. V., Lykke‐Andersen, H., & Surlyk, F. (2007). Ridge and valley systems in the Upper Cretaceous chalk of the Danish Basin: Contourites in an epeiric sea. Geological Society, London, Special Publications, 276(1), 265–282. https://doi.org/10.1144/GSL.SP.2007.276.01.13
    [Google Scholar]
  20. Esmerode, E. V., Lykke‐Andersen, H., & Surlyk, F. (2008). Interaction between Bottom currents and slope failure in the late Cretaceous of the Southern Danish Central Graben, North Sea. Journal of the Geological Society, 165, 55–72. https://doi.org/10.1144/0016-76492006-138
    [Google Scholar]
  21. Fabricius, I. L. (2003). How burial diagenesis of chalk sediments controls sonic velocity and porosity. AAPG Bulletin, 87, 1755–1778. https://doi.org/10.1306/06230301113
    [Google Scholar]
  22. Fabricius, I. L. (2007). Chalk: Composition, diagenesis and physical properties. Bulletin of the Geological Society of Denmark, 55, 97–128.
    [Google Scholar]
  23. Fabricius, I. L. (2014). Burial stress and elastic strain of carbonate rocks. Geophysical Prospecting, 62, 1327–1336. https://doi.org/10.1111/1365-2478.12184
    [Google Scholar]
  24. Faÿ‐Gomord, O., Soete, J., Katika, K., Galaup, S., Caline, B., Descamps, F., … Vandycke, S. (2016). New insight into the microtexture of chalks from NMR analysis. Marine and Petroleum Geology, 75, 252–271. https://doi.org/10.1016/j.marpetgeo.2016.04.019
    [Google Scholar]
  25. Fraser, S. I., Robinson, A. M., Johnson, H. D., Underhill, J. R., Kadolsky, D. G. A., Connell, R., … Ravnås, R. (2002). Upper Jurassic. In D.Evans , C.Graham , A.Armour , & P.Bathurst (Eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Vol. 1, pp. 157–189). London, UK: The Geological Society of London.
    [Google Scholar]
  26. Fritsen, A., Bailey, H., Gallagher, L. T., Hampton, M. J., Krabbe, H., Jones, B., … Riis, F. (1999). A joint chalk stratigraphic framework. In A.Fritsen , (Ed.), Joint chalk research program topic V. Stavanger (206 pp). Norway: Norwegian Petroleum Directorate.
    [Google Scholar]
  27. Gennaro, M. (2011). 3D seismic stratigraphy and reservoir characterization of the Chalk Group in the Norwegian Central Graben, North Sea. PhD dissertation, University of Bergen, Norway.
  28. Gennaro, M., & Wonham, J. P. (2014). Channel development in the chalk of the tor formation, North Sea (pp. 551–586). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118920435
    [Google Scholar]
  29. Gennaro, M., Wonham, J. P., Sælen, G., Walgenwitz, F., Caline, B., & Faÿ‐Gomord, O. (2013). Characterization of dense zones within the Danian chalks of the Ekofisk Field. Norwegian North Sea, Petroleum Geoscience, 19, 39–64. https://doi.org/10.1144/petgeo2012-013
    [Google Scholar]
  30. Glennie, K. W., Higham, J., & Stemmerik, L. (2003). Permian. In D.Evans , C.Graham , A.Armour , & P.Bathurst (Eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (pp. 91–103). London, UK: The Geological Society of London.
    [Google Scholar]
  31. Goldsmith, P. J., Hudsen, G., & Van Veen, P. (2003). Triassic. In D.Evans , C.Graham , A.Armour , & P.Bathurst (Eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Vol. 1, pp. 105–127). London, UK: The Geological Society of London.
    [Google Scholar]
  32. Gommesen, L., Fabricius, I. L., Mukerji, T., Mavko, G., & Pedersen, J. M. (2007). Elastic behaviour of North Sea chalk: A well‐log study. Geophysical Prospecting, 55, 307–322. https://doi.org/10.1111/j.1365-2478.2007.00622.x
    [Google Scholar]
  33. Hancock, J. M. (1975). The petrology of the chalk. Proceedings of the Geologists’ Association, 86, 499–535. https://doi.org/10.1016/S0016-7878(75)80061-7
    [Google Scholar]
  34. Harding, R., & Huuse, M. (2015). Salt on the move: Multi‐stage evolution of salt diapirs in the Netherlands North Sea. Marine and Petroleum Geology, 61, 39–55. https://doi.org/10.1016/j.marpetgeo.2014.12.003
    [Google Scholar]
  35. Ineson, J. R., Bojesen‐Koefoed, J. A., Dybkjær, K., & Nielsen, L. H. (2003). Volghian‐Ryazanian ‘hot shales’ of the Bo Member (Farsund Formation) in the Danish Central Graben. Geological Survey of Denmark and Greenland Bulletin, 1, 403–436.
    [Google Scholar]
  36. Japsen, P. (1998). Regional velocity‐depth anomalies, North Sea chalk: A record of overpressure and neogene uplift and erosion. AAPG Bulletin, 82, 2031–2074.
    [Google Scholar]
  37. Japsen, P., Britze, P., & Andersen, C. (2003). Upper Jurassic – Lower Cretaceous of the Danish Central Graben: Structural framework and nomenclature. Geological Survey of Denmark and Greenland Bulletin, 1, 233–246.
    [Google Scholar]
  38. Japsen, P., Mavko, G., Gommesen, L., Fabricius, I. L., Jacobsen, F., Vejbæk, O. V., … Schiøtt, C. R. (2005). Chalk background velocity: Influence of effective stress and texture. 67th EAGE Conference & Exhibition, European Association of Geoscientists & Engineers Publications B.V. (EAGE).
  39. Jensenius, J., & Munksgaard, N. C. (1989). Large‐scale hot water migration systems around salt diapirs in the Danish Central Trough and their impact on diagenesis of chalk reservoirs. Geochimica et Cosmochimica Acta, 53, 79–87. https://doi.org/10.1016/0016-7037(89)90274-3
    [Google Scholar]
  40. Jung, C., Voigt, S., Friedrich, O., Koch, M. C., & Frank, M. (2013). Campanian‐Maastrichtian ocean circulation in the tropical Pacific. Paleoceanography, 28, 562–573. https://doi.org/10.1002/palo.20051
    [Google Scholar]
  41. Karlo, J. F., van Buchem, F. S. P., Moen, J., & Milroy, K. (2014). Triassic‐age salt tectonics of the Central North Sea. Interpretation, 2, SM19–SM28. https://doi.org/10.1190/INT-2014-0032.1
    [Google Scholar]
  42. Keszthelyi, D., Dysthe, D. K., & Jamtveit, B. (2016). Compaction of North Sea chalk by pore‐failure and pressure solution in a producing reservoir. Frontiers in Physics, 4, 4.
    [Google Scholar]
  43. Kyrkjebø, R., Gabrielsen, R., & Faleide, J. (2004). Unconformities related to the Jurassic‐Cretaceous synrift‐postrift transition of the northern North Sea. Journal of the Geological Society, 161, 1–17. https://doi.org/10.1144/0016-764903-051
    [Google Scholar]
  44. Laake, A. (2013). Structural interpretation in color—A new Rgb processing technique for extracting geological structures from seismic data. SEG Technical Program Expanded Abstracts 2013, Society of Exploration Geophysicists.
  45. Lieberkind, K., Bang, I., Mikkelsen, N., & Nygaard, E. (1982). Late Cretaceous and Danian limestone. In O. Michelsen (Ed.), Geology of the Danish Central Graben, Geological Survey of Denmark, Series B, 8, 49–62.
    [Google Scholar]
  46. Lykke‐Andersen, H., & Surlyk, F. (2004). The Cretaceous‐Palaeogene boundary at Stevns Klint, Denmark: Inversion tectonics or sea‐floor topography?Journal of the Geological Society, 161, 343–352. https://doi.org/10.1144/0016-764903-021
    [Google Scholar]
  47. Martín‐Martín, J. D., Travé, A., Gomez‐Rivas, E., Salas, R., Sizun, J.‐P., Vergés, J., … Alfonso, P. (2015). Fault‐controlled and stratabound dolostones in the Late Aptian–earliest Albian Benassal Formation (Maestrat Basin, E Spain): petrology and geochemistry constrains. Marine and Petroleum Geology, 65, 83–102.
    [Google Scholar]
  48. Megson, J. B. (1992). The North Sea chalk play: Examples from the Danish Central Graben. Geological Society, London, Special Publications, 67, 247–282. https://doi.org/10.1144/GSL.SP.1992.067.01.10
    [Google Scholar]
  49. Michelsen, O., Nielsen, L. H., Johannesen, P. N., Andsbjerg, J., & Surlyk, F. (2003). Jurassic lithostratigraphy and stratigraphic development onshore and offshore Denmark. Geological Survey of Denmark and Greenland Bulletin, 1, 147–216.
    [Google Scholar]
  50. van der Molen, A. (2004). Sedimentary development, seismic stratigraphy and burial compaction of the CHalk Group in the Netherlands. PhD dissertation, Utrecht University.
  51. Møller, J. J., & Rasmussen, E. S. (2003). Middle Jurassic–Early Cretaceous rifting of the Danish Central Graben. The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 247–264.
    [Google Scholar]
  52. Molenaar, N., & Zijlstra, J. J. P. (1997). Differential early diagenetic low‐Mg calcite cementation and rhythmic hardground development in Campanian – Maastrichtian chalk. EAGE Sedimentary Geology, 109, 261–281. https://doi.org/10.1016/S0037-0738(96)00064-4
    [Google Scholar]
  53. Morozov, P., Paton, G., Milyushkin, A. M., Kiselev, V. V., Llc, S., Myasoedov, D. N., & Llc, L. (2013). Application of high definition frequency decomposition techniques on Western Siberia reservoirs. EAGE Tyumen, 2013, 2013.
    [Google Scholar]
  54. Ogg, J. G., Ogg, G., & Gradstein, F. M. (2016). A concise geological time scale. Amsterdam: Elsevier.
    [Google Scholar]
  55. Partyka, G., Gridley, J., & Lopez, J. (1999). Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge, 18, 353–360. https://doi.org/10.1190/1.1438295
    [Google Scholar]
  56. Pauget, F., Lacaze, S., & Valding, T. (2009). A global approach in seismic interpretation based on cost function minimization, Society of Exploration Geophysicists.
  57. Pedersen, S. I., Randen, T., Sonneland, L., & Steen, Ø. (2003). Automatic fault extraction using artificial ants. In A.Iske , & T.Randen (Eds.), Mathematical methods and modelling in hydrocarbon exploration and production (pp. 107–116). Berlin, Germany: Springer Science & Business Media.
    [Google Scholar]
  58. Posamentier, H. W., Davies, R. J., Cartwright, J. A., & Wood, L. (2007). Seismic geomorphology – An overview. Geological Society, London, Special Publications, 277, 1–14. https://doi.org/10.1144/GSL.SP.2007.277.01.01
    [Google Scholar]
  59. Rasmussen, E. S. (2013). Cenozoic structures in the eastern North Sea Basin – A case for salt tectonics: Discussion. Tectonophysics, 601, 226–233. https://doi.org/10.1016/j.tecto.2012.10.038
    [Google Scholar]
  60. Rasmussen, E. S., Dybkjær, K., & Piasecki, S. (2010). Lithostratigraphy of the Upper Oligocene‐Miocene succession of Denmark. Geological Survey of Denmark and Greenland Bulletin, 22, 92.
    [Google Scholar]
  61. Regnet, J. B., Robion, P., David, C., Fortin, J., Brigaud, B., & Yven, B. (2015). Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology. Journal of Geophysical Research: Solid Earth, 120, 790–811.
    [Google Scholar]
  62. Sachau, T., Bons, P. D., & Gomez‐Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3, 63.
    [Google Scholar]
  63. Schiøler, P., Andsbjerg, J., Clausen, O. R., Dam, G., Dybkjær, K., Hamberg, L., … Rasmussen, J. A. (2007). Lithostratigraphy of the Palaeogene – Lower Neogene succession of the Danish North Sea. Geological Survey of Denmark and Greenland Bulletin, 12, 1–77.
    [Google Scholar]
  64. Scholle, P. A., & Halley, R. B. (1985). Burial diagenesis: Out of sight, out of mind!. In P. A.Scholle , N. P.James , & J. F.Read (Eds.), Carbonate sedimentology and petrology (Vol. 36, pp. 135–160). Washington, DC: American Geophysical Union.
    [Google Scholar]
  65. Sharp, I., Gillespie, P., Morsalnezhad, D., Taberner, C., Karpuz, R., Vergés, J., … Hunt, D. (2010). Stratigraphic architecture and fracture‐controlled dolomitization of the Cretaceous Khami and Bangestan groups: An outcrop case study, Zagros Mountains, Iran. Geological Society, London, Special Publications, 329, 343–396. https://doi.org/10.1144/SP329.14
    [Google Scholar]
  66. Sheriff, R. E. (1980). Nomogram for Fresnel‐zone calculation. Geophysics, 45, 968–972.
    [Google Scholar]
  67. Smit, F. W. H. (2014). Seismic stratigraphy, basin evolution, and seismic geomorphology of the late Cretaceous and earliest paleocene chalk group in the Danish Central Graben. MSc thesis, Aarhus University.
  68. Smit, F. W. H., Van Buchem, F. S. P., Schmidt, I., & Stemmerik, L. (2017). Updated seismic geomorphological workflow applied to the Chalk Group. Society of Exploration Geophysicists, SEG Technical Program Expanded Abstracts, 2017, 1976–1981.
    [Google Scholar]
  69. Starmer, I. C. (1995). Deformation of the Upper Cretaceous chalk at Selwicks Bay, Flamborough Head, Yorkshire: Its significance in the structural evolution of North‐East England and the North Sea Basin. Proceedings of the Yorkshire Geological Society, 50, 213–228. https://doi.org/10.1144/pygs.50.3.213
    [Google Scholar]
  70. Surlyk, F., Dons, T., Clausen, C. K., & Higham, J. (2003). Upper Cretaceous. In D.Evans , C.Graham , A.Armour , & P.Bathurst (Eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Vol. 1, pp. 213–233). London, UK: The Geological Society of London.
    [Google Scholar]
  71. Swart, P. K. (2015). The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology, 62, 1233–1304. https://doi.org/10.1111/sed.12205
    [Google Scholar]
  72. Thibault, N., & Gardin, S. (2006). Maastrichtian calcareous nannofossil biostratigraphy and paleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Revue de Micropaléontologie, 49, 199–214. https://doi.org/10.1016/j.revmic.2006.08.002
    [Google Scholar]
  73. Vejbæk, O. V., & Andersen, C. (2002). Post Mid‐Cretaceous inversion tectonics in the Danish Central Graben – Regionally synchronous tectonic events?Bulletin of the Geological Society of Denmark, 49, 139–144.
    [Google Scholar]
  74. Vejbæk, O. V., Frykman, P., Bech, N., & Nielsen, C. M. (2005). The history of hydrocarbon filling of Danish chalk fields (Vol. 12, pp. 1331–1345). London, UK: Geological Society of London.
    [Google Scholar]
  75. Wagner, H. (2014). Tove acoustic inversion. Maersk Oil in‐house report GST QI Geophysics.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12285
Loading
/content/journals/10.1111/bre.12285
Loading

Data & Media loading...

Supplements

 

 

 

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error