1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12287
2018-05-15
2024-04-23
Loading full text...

Full text loading...

References

  1. Allen, P. A., & Allen, R. R. (2005). Basin Analysis: Principles and Applications (549 pp). Oxford, UK: Blackwell.
    [Google Scholar]
  2. Anderson, J. E. (1991) Subsidence history and structural evolution of the western margin of the Pelagian Platform, central Tunisia. PhD Thesis, Kingston University, UK.
  3. Anderson, J. E. (1996). The Neogene structural evolution of the western margin of the Pelagian Platform, central Tunisia. Journal of Structural Geology, 18, 819–833. https://doi.org/10.1016/S0191-8141(96)80015-0
    [Google Scholar]
  4. Arkai, P., Sassi, F., & Desmons, J. (2007). Very low‐ to low‐grade metamorphic rocks (Chapter 2.5). In D.Fettes , & J.Desmons (Eds.), Metamorphic Rocks: A Classification and Glossary of Terms (Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks): Cambridge (pp. 36–42). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  5. Audet, P., & Burgmann, R. (2011). Dominant role of tectonic inheritance in supercontinent cycles. Nature Geoscience, 4, 184–187. https://doi.org/10.1038/ngeo1080
    [Google Scholar]
  6. Baird, A. W., Grocott, J., Sandman, R. I., Grant, G. G., & Moody, R. T. J. (1990). A radial reinterpretation of the Tunisian Atlas thrust belt and foreland basin system. International Conference on Thrust Tectonics, Royal Holloway and Bedford New College. Program and Abstracts, 81
  7. Barker, C. E., & Pawlewicz, M. J. (1986). The Correlation of vitrinite reflectance with maximum temperature in humic organic matter. In S.Bhatachajri , et al. (Eds.), Lecture Notes in Earth Science, Vol. 5 (pp. 79–93). Paleogeothermics. New York, NY: Pringer‐Verlag.
    [Google Scholar]
  8. Barker, E., & Pawlewitcz, M. J. (1994). Calculation of Vitrinite reflectance from thermal Histories and Peak Temperatures: Reevaluation of vitrinite Reflectance. American Chemical Society Symposium Series, 570, 216–229. https://doi.org/10.1021/symposium
    [Google Scholar]
  9. Baudin, F., Tribollard, N., & Trichet, J. (2008). Géologie de la matière organique : Société géologique de France Vuibert, Paris, pp. 1–263.
  10. Ben Ayed, N., & Viguier, C. (1981). Interprétation structurale de la Tunisie atlasique. CRAS Paris, 292, 1445–1448.
    [Google Scholar]
  11. Ben Dhia, H. (1987). The geothermal gradient map of Central Tunisia: Comparison with structural, gravimetric and petroleum data. Tectonophysics, 142(15), 99–109. https://doi.org/10.1016/0040-1951(87)90297-6
    [Google Scholar]
  12. Bonini, M., Sani, F., & Antonielli, B. (2012). basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics, 522–523, 55–88. https://doi.org/10.1016/j.tecto.2011.11.014
    [Google Scholar]
  13. Bouaziz, S., Barrier, E., Soussi, M., Turki, M., & Zouari, H. (2002). Tectonic evolution of the Northern African Margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357, 227–253. https://doi.org/10.1016/S0040-1951(02)00370-0
    [Google Scholar]
  14. Brahim, N., & Mercier, E. (2007). Commentaire à la note intitulée « Mise en évidence en subsurface d’événements compressifs Eocène moyen‐supérieur en Tunisie orientale (sahel) : Généralité de la phase atlasique en Afrique du Nord de Sami Khomsi, Mourad Bédir, Mohamed Soussi, Mohamed Ghazi Ben Jemia et Kmar Ben Ismail‐Lattrache. Compte Rendu Geoscience, 338, 41–49.
    [Google Scholar]
  15. Burollet, P. F. (1967). General geology of Tunisia In: Guidebook to the geology and history of Tunisia (Ed. Martin, L.). Petroleum Exploration Society of Libya, Ninth Annual Field Confeence, 51‐58.
  16. Bustin, R. M. (1983). Heating during thrust faulting in the rocky Mountains: Friction or fiction. Tectonophysics, 95, 309–328. https://doi.org/10.1016/0040-1951(83)90075-6
    [Google Scholar]
  17. Butler, R. W. H., Tavarnelli, E., & Grasso, M. (2006). Structural inheritance in mountain belts: An Alpine‐Apennine perspective. Journal of Structural Geology., 28, 1893–1908. https://doi.org/10.1016/j.jsg.2006.09.006
    [Google Scholar]
  18. Castany, G. (1951). Etude géologique de l'Atlas tunisien oriental. Ann. Min. et Géol., Tunisie, 8. Thèse Doct. Ès‐Sc., Paris
  19. Chihi, L. (1995). Les fossés néogènes à quaternaires de la Tunisie et de la mer pélagienne : leur signification dans le cadre géodynamique de la méditerranée centrale. Unpublished Thèse ès Sciences, Université Tunis II, Tunisie, 324 p.
  20. Compagnie Des Petroles de Tunisie
    Compagnie Des Petroles de Tunisie (1955). Compte rendu de la fin de forage n°5, Pont du Fahs, Champ d’ Edjehaf, Forage eh1. Unpublished Compagnie des Pétroles de Tunisie report (Tunis) referenced as RI3487 in Office National des Mines, Tunisia, 30 p.
  21. Eppelbaum, L., Kutasov, I., & Pilchin, A. (2014). Applied geothermics, Lecture notes in Earth System Sciences: Springer‐Verlag Berlin, 732 pp. https://doi.org/10.1007/978-3-642-34023-9_2
  22. Fillon, C:., Huismans, R. S., van der Beek, P., & Munoz, J. A. (2003). Syntectonic sedimentation controls on the evolution of the southern Pyrenean fold and thrust belt: Inferences from coupled tectonic‐surface processes models. Journal of Geophysical Research, 118, 1–16.
    [Google Scholar]
  23. Frizon de Lamotte, D., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O., … Michard, A. (2009). Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics, 475, 9–28. https://doi.org/10.1016/j.tecto.2008.10.024
    [Google Scholar]
  24. Frizon de Lamotte, D., Michard, A., & Saddiqi, O. (2006). Quelques développements récents sur la géodynamique du Maghreb. Comptes Rendus Géoscience, 336, 1–10.
    [Google Scholar]
  25. Green, P. F., Duddy, I. R., Japsen, P., Bonow, J. M., & Malan, J. A. (2016). Post‐breakup burial and exhumation of the southern margin of Africa. Basin Research, 29, 96–127. https://doi.org/10.1111/bre.12167
    [Google Scholar]
  26. Guilhaumau, N., & Dumas, P. (2005). Synchrotron FTIR Hydrocarbon fluid inclusion microanalysis applied to diagenetic history and fluid flow reconstruction in reservoir appraisal. Oil and Gas Science and Technology‐Rev IFP, 60, 763–779. https://doi.org/10.2516/ogst:2005054
    [Google Scholar]
  27. Guiraud, R. (1998). Mesozoic rifting and basin inversion along the northern African Tethyan margin: An overview. In D. S.Mc Gregor , R. T. J.Moody & D. D.Clark‐lowes (Eds.), Petroleum Geology of North Africa, Vol. 132 (pp. 217–229). London: Geological Society of London, Special Publications.
    [Google Scholar]
  28. Guiraud, R., & Bosworth, W. (1997). Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate‐scale tectonics. Tectonophysics, 282, 39–82. https://doi.org/10.1016/S0040-1951(97)00212-6
    [Google Scholar]
  29. Hezzi, I. (2014). Caractérisation géophysique de la plateforme du Sahel, Tunise nord‐orientale et ses consequences géodynamique, PhD thesis, Tunis, 315 pp.
  30. Hood, A., Gutjahr, C. C., & Heacock, R. L. (1975). Organic metamorphism and the generation of petroleum. AAPG Bulletin, 59, 986–996.
    [Google Scholar]
  31. Huang, W. L. (1996). Experimental study of vitrinite maturation: Effects of temperature, time, pressure, water, and hydrogen index. Organic Geochemistry, 24, 233–241. https://doi.org/10.1016/0146-6380(96)00032-0
    [Google Scholar]
  32. International Standard ISO 7404‐2:1985
    International Standard ISO 7404‐2:1985 (1985). Methods for the petrographic analysis of bituminous coal and anthracite, Part 2: Preparation of coal samples (8 pp). Geneva, Switzerland: International Organization for Standardization.
    [Google Scholar]
  33. International Standard ISO 7404‐3:1984
    International Standard ISO 7404‐3:1984 (1984). Methods for the petrographic analysis of bituminous coal and anthracite, Part 3: Method of determining maceral group composition (4 pp). Geneva, Switzerland: International Organization for Standardization.
    [Google Scholar]
  34. International Standard ISO 7404‐5:1994
    International Standard ISO 7404‐5:1994 (1994). Methods for the petrographic analysis of bituminous coal and anthracite, Part 5: Method of determining microscopically the reflectance of vitrinite (12 pp). Geneva, Switzerland : International Organization for Standardization.
    [Google Scholar]
  35. Kett, T. R. (2001). Total Petroleum Systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta, The Bou Dabbous – Tertiary and Jurassic‐Cretaceous Composite. US Department of the Interior, US Geological Survey.
  36. Khomsi, S., Bedir, M., Soussi, M., Jemia, M. G. B., & Ismail‐Lattrache, K. B. (2006). Mise en évidence en subsurface d’événements compressifs Eocène moyen‐supérieur en Tunisie orientale (Sahel) : Généralités de la phase atlasique en Afrique du Nord. Comptes Rendus Géoscience, 338(41), 49.
    [Google Scholar]
  37. Khomsi, S., Ghazi Ben Jemia, M., Frizon de Lamotte, D., Maherssi, C., Echihi, O., & Mezni, R. (2009). An overview of the Late Cretaceous – Eocene positive inversions and Oligo‐Miocene subsidence events in the foreland of theTunisian Atlas: Structural style and implications for the tectonic agenda of the Maghrebian Atlas system. Tectonophysics, 475, 38–58. https://doi.org/10.1016/j.tecto.2009.02.027
    [Google Scholar]
  38. Kubler, B., & Jaboyedoff, M. (2000). Illite Crystallinity, Compte Rendu Académie des Sciences, Sciences de la Terre et des planètes. Earth and Planetary Sciences, 331, 75–90.
    [Google Scholar]
  39. Labaume, P., Jolivet, M., Souquière, F., & Chauvet, A. (2008). Tectonic control on diagenesis in a foreland basin: Combined petrologic and thermochronologic approaches in the Grès d'Annot basin (late Eocene‐ early Oligocene, French‐italian external Alps). Terra Nova, 20, 95–101. https://doi.org/10.1111/j.1365-3121.2008.00793.x
    [Google Scholar]
  40. Laffite, R. (1939). Etude de l'Aurès. Bulletin du Service des Cartes Géologiques Algérie, 2° série, 15, 484 pp.
  41. Laughland, M., & Underwood, M. B. (1993). Vitrinite reflectance and estimates of paleotemperature within the Upper Shimanto Group, Muroo Peninsula, Shikoku, Japan. In M. B.Underwood (Ed.), Thermal Evolution of the Shimanto Belt, Southwest Japan: An example of Ridge‐Trench Interaction, Vol. 273 (pp. 25–44). Boulder, CO: Geological Society of America Special Paper. https://doi.org/10.1130/SPE273
    [Google Scholar]
  42. Lucazeau, F., & Ben Dhia, H. (1989). Preliminary heat‐flow density data from Tunisia and the Pelagian Sea. Canadian Journal of Earth Sciences, 26(5), 993–1000. https://doi.org/10.1139/e89-080
    [Google Scholar]
  43. Mahlmann, R. F., & le Bayon, R. (2016). Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: Correlations from diagenesis to incipient metamorphism in different geodynamic settings. International Journal of Coal Geology, 157, 52–73. https://doi.org/10.1016/j.coal.2015.12.008
    [Google Scholar]
  44. Mazurek, M., Hurford, A. J., & Leu, W. (2006). Unravelling the multi‐stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerization analysis. Basin Research, 18, 27–50. https://doi.org/10.1111/j.1365-2117.2006.00286.x
    [Google Scholar]
  45. Mejri, F., Burollet, P. F., & Ben Ferjani, A. (2006) Petroleum Geology of Tunisia: A Renewed Synthesis. ETAP Memoir (Eds.), vol. 22, Tunis, 230 pp.
  46. Melki, F., Zouaghi, T., Ben Chelbi, M., Bédir, M., & Zargouni, F. (2010). Tectono‐sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north‐eastern Tunisia offshore. Comptes Rendus Geoscience, 342, 741–753. https://doi.org/10.1016/j.crte.2010.04.005
    [Google Scholar]
  47. Melki, F., Zouaghi, T., Harrab, S., Casas Sainz, A., Bédir, M., & Zargouni, F. (2011). Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north‐eastern Tunisia. Journal of Geodynamics, 52, 57–69. https://doi.org/10.1016/j.jog.2010.11.009
    [Google Scholar]
  48. Metcalf, J. R., Fitzgerald, P. G., Baldwin, S. L., & Munoz, J. A. (2009). Thermochronology of a convergent orogeny: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Science Letters, 832, 488–503. https://doi.org/10.1016/j.epsl.2009.08.036
    [Google Scholar]
  49. Morgan, M. A., Grocott, J., Richard, T. J., & Moody, R. T. J. (1998). The structural evolution of the Zaghouan–Ressas structural belt, northern Tunisia. In D.Macgregor , T.Moody & D.Clark‐Lowes (Eds.), Petroleum Geology of North Africa, Vol. 132 (pp. 405–422). London, UK: The Geological Society of London Special Publication.
    [Google Scholar]
  50. O'Hara, K., Hower, J. C., & Rimmer, S. (1990). Constraints on the emplacement and uplift history of the Pine Mountain Thrust Sheet, Eastern Kentucky: Evidence from Coal Rank trends. The Journal of Geology, 98, 43–51. https://doi.org/10.1086/629373
    [Google Scholar]
  51. Outtani, F., Addoum, B., Mercier, E., Frizon de Lamotte, F., & Andrieux, J. (1995). Geometry and kinematics of the South Atlas Front, Algeria and Tunisia. Tectonophysics, 249, 233–248. https://doi.org/10.1016/0040-1951(95)00022-F
    [Google Scholar]
  52. Panien, M., Schreurs, G., & Pfiffner, A. (2005). Sandbox experiments on basin inversion: Testing the influence of basin orientation and basin fill. Journal of Structural Geology, 27(433), 445.
    [Google Scholar]
  53. Philip, H., Andrieux, J., Dlala, M., Ben Chihi, L., & Ayed, N. (1986). Evolution tectonique mio‐plio‐quaternaire du Fossé de Kasserine (Tunisie centrale) implications sur l’évolution géodynamique récente de la Tunisie. Bulletin de la Société Géologique de France, 8(5–6), 559–568. https://doi.org/10.2113/gssgfbull.II.4.559
    [Google Scholar]
  54. Price, L. C. (1983). Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. Journal of Petrology and Geology, 6, 5–38. https://doi.org/10.1111/j.1747-5457.1983.tb00260.x
    [Google Scholar]
  55. Richert, J. P. (1971). Mise en évidence de quatre phases tectoniques successives en Tunisie. Notes du Service Géologique de Tunisie, 34(115), 125.
    [Google Scholar]
  56. Rigane, A., & Gourmelen, C. (2011). Inverted intracontinental basin and vertical tectonics: The Saharan Atlas in Tunisia. Journal of African Earth Sciences, 61, 109–128. https://doi.org/10.1016/j.jafrearsci.2011.05.003
    [Google Scholar]
  57. Rouvier, H. (1977). Géologie de l'extrême Nord tunisien: tectoniques et paléogéographies superposées à l'extrémité orientale de la chaîne maghrébine. Thèse Doctorat d'Etat, Université de Paris, Paris, France.
  58. Saadi, J. (1990). Exemple de sédimentation syntectonique au Crétacé inférieur le long d'une zone de décrochement NS.: Les structures d'Enfidha (Tunisie nord‐orientale). Géodynamique, 5, 17–33.
    [Google Scholar]
  59. Sakaguchi, A., Yanagihara, A., Ujiie, K., Tanaka, H., & Kameyama, M. (2007). Thermal maturity of a fold‐thrust belt based on vitrinite reflectance analysis in the Western Foothills complex, western Taiwan. Tectonophysics, 443, 220–232. https://doi.org/10.1016/j.tecto.2007.01.017
    [Google Scholar]
  60. Scholz, C. (1980). Shear heating and the state of stress on faults. Journal of Geophysical Research, 85, 6174–6184. https://doi.org/10.1029/JB085iB11p06174
    [Google Scholar]
  61. Stach, E., Mackowsky, M.‐T. H., Teichmuller, M., Taylor, G. H., Chandra, D., & Teichmuller, R. (1982) Coal Petrology. Gebruder Borntraeger (Berlin ‐ Stuttgart), 535 pp.
  62. Suchy, V., Frey, M., & Wolf, M. (1997). Vitrinite reflectance and shear‐induced graphitization in orogenic bels: A case study from the Kandersteg area, Helvetic Alps, Switzerland. International Journal of Coal Geology, 34, 1–20. https://doi.org/10.1016/S0166-5162(97)00018-9
    [Google Scholar]
  63. Sweeney, J. J., & Burnham, K. A. (1990). Evaluation of a simple model of Vitrinite Reflectance Based on. Chemical Kinetics: The American Association of Petroleum Geologists Bulletin, 74, 1559–1570.
    [Google Scholar]
  64. Thomas, W. A. (2004). Genetic relationship of rift‐stage crustal structure, terrane 590 accretion, and foreland tectonics along the southern Appalachian‐Ouachita orogen. Journal of Geodynamics, 37(3–5), 549–563. https://doi.org/10.1016/j.jog.2004.02.020
    [Google Scholar]
  65. Tobin, C. R., & Claxton, L. (2000). Multidisciplinary thermal maturity studies using vitrinite reflectance and fluid inclusion microthermometry: A new calibration of old techniques. AAPG Bulletin, 84, 1647–1665.
    [Google Scholar]
  66. Turki, M. M. (1985). Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan‐Nebhana. Thèse ès‐Sc., Univ. Tunis, Revue Sc. Terre, édit. INRST, Tunis, 1988, 262p.
  67. Vassoyevich, N. B., Korchagina, Yu. I., Lopatin, N. V., & Chernyshev, V. V. (1970). Principal phase of oil formation. International Geology Review, 12, 1276–1296. Translated from Vestn. Mosk. Unio. (1969), 6, 3–27. https://doi.org/10.1080/00206817009475359
    [Google Scholar]
  68. Waples, D. W. (1980). Time and temperature in petroleum formation: Application of Lopatin's method to petroleum exploration. AAPG Bulletin, 64, 351–369.
    [Google Scholar]
  69. Yuan, Y., Hu, S., Wang, H., & Sun, F. (2007). Meso‐Cenozoic tectonothermal evolution of Ordos Basin, central China: Insights from newly acquired vitrinite reflectance data and a revision of existing paleothermal indicator data. Journal of Geodynamics, 44, 33–46. https://doi.org/10.1016/j.jog.2006.12.002
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12287
Loading
/content/journals/10.1111/bre.12287
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Atlas; inverted structures; oil; tectonics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error