1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Fault‐controlled dolostone bodies have been described as potential hydrocarbon‐bearing reservoirs. Numerous case studies have described the shape and size of these often non fabric selective dolostone bodies within the vicinity of crustal‐scale lineaments, usually from Palaeozoic or Mesozoic carbonate platforms, which have undergone one or more phases of burial and exhumation. There has been little attention paid, however, to fault‐strike variability in dolostone distribution or the preferential localization of these bodies on particular faults. This study focuses on dolostone bodies adjacent to the Hammam Faraun Fault (HFF), Gulf of Suez. This crustal‐scale normal fault was activated in the Late Oligocene, coincident with the onset of extension within the Suez Rift. Dolomitization in the prerift Eocene Thebes Formation occurred in the immediate footwall of the HFF forming two massive, non facies selective dolostone bodies, ca. 500 m wide. Facies‐controlled tongues of dolostone on the margins of the massive dolostone bodies extend for up to 100 m. The geochemical signature of the dolostone bodies is consistent with replacement by Miocene seawater, contemporaneous with the rift climax and localization of strain along the HFF. A conceptual model of dolomitization from seawater that circulated within the HFF during the rift climax is presented. Seawater was either directly drawn down the HFF or circulated from the hanging wall basin via a permeable aquifer towards the HFF. The lateral extent of the massive dolostone bodies was controlled by pre‐existing HFF‐parallel fracture corridors on the outer margins of the damage zone of the fault. The behaviour of these fracture corridors alternated between acting as barriers to fluid flow before rupture and acting as flow conduits during or after rupture. Multiple phases of dolomitization and recrystallization during the ca. 10 Ma period in which dolomitization occurred led to mottled petrographical textures and wide‐ranging isotopic signatures. The localization of dolomitization on the HFF is interpreted to reflect its proximity to a rift accommodation zone which facilitated vertical fluid flow due to perturbed and enhanced stresses during fault interaction. It is possible that the presence of jogs along the strike of the fault further focused fluid flux. As such, it is suggested that the massive dolostones described in this study provide a window into the earliest stages of formation of fault‐controlled hydrothermal dolostone bodies, which could have occurred in other areas and subsequently been overprinted by more complex diagenetic and structural fabrics.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12290
2018-05-15
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/5/bre12290.html?itemId=/content/journals/10.1111/bre.12290&mimeType=html&fmt=ahah

References

  1. Alsharhan, A. S. (2003). Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. AAPG Bulletin, 87(1), 143–180.
    [Google Scholar]
  2. Alsharhan, A. S., & Salah, M. G. (1995). Geology and hydrocarbon habitat in rift setting: Northern and central Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology, 43, 156–176.
    [Google Scholar]
  3. Banner, J. L., Hanson, G. N., & Meyers, W. J. (1988). Water‐rock interaction history of regionally extensive dolomites of the Burlington‐Keokuk Formation (Mississippian): Isotopic evidence. Sedimentology and Geochemistry of Dolostones SEPM Special pulications, 43, 97–113.
    [Google Scholar]
  4. Bastesen, E., & Rotevatn, A. (2012). Evolution and structural style of relay zones in layered limestone–shale sequences: Insights from the Hammam Faraun Fault Block, Suez rift, Egypt. Journal of the Geological Society, 169, 477–488. https://doi.org/10.1144/0016-76492011-100
    [Google Scholar]
  5. Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare‐earth elements in the Penge and Kuruman iron‐formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55. https://doi.org/10.1016/0301-9268(95)00087-9
    [Google Scholar]
  6. Bayon, G., Barrat, J. A., Etoubleau, J., Benoit, M., Bollinger, C., & Révillon, S. (2009). Determination of rare earth elements, Sc, Y, Zr, Ba, Hf and Th in geological samples by ICP‐MS after Tm addition and alkaline fusion. Geostandards and Geoanalytical Research, 33, 51–62. https://doi.org/10.1111/j.1751-908X.2008.00880.x
    [Google Scholar]
  7. Bons, P., Elburg, M., & Gomez‐Rivas, E. (2012). A review of the formation of tectonic veins and their microstructure. Journal of Structural Geology, 43, 33–62. https://doi.org/10.1016/j.jsg.2012.07.005
    [Google Scholar]
  8. Bosworth, W. (2015). Geological evolution of the Red Sea: Historical background, review, and synthesis. In The Red Sea (pp. 45–78). Berlin, Germany: Springer.
    [Google Scholar]
  9. Bosworth, W., Crevello, P., Winn JR, R. D., & Steinmetz, J. (1998). Structure, sedimentation, and basin dynamics during rifting of the Gulf of Suez and north‐western Red Sea. In Sedimentation and tectonics in Rift Basins Red Sea:‐Gulf of Aden. Dordrecht, Netherlands: Springer.
    [Google Scholar]
  10. Bosworth, W., Huchon, P., & McClay, K. (2005). The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences, 43, 334–378. https://doi.org/10.1016/j.jafrearsci.2005.07.020
    [Google Scholar]
  11. Bosworth, W., & Stockli, D. F. (2016). Early magmatism in the greater Red Sea rift: Timing and significance. Canadian Journal of Earth Sciences, 53(11), 1158–1176. https://doi.org/10.1139/cjes-2016-0019
    [Google Scholar]
  12. Boulos, F. (1990). Some aspects of the geophysical regime of Egypt in relation to heat flow, groundwater and microearthquakes. In The geology of Egypt (pp. 29–61). Rotterdam, Netherlands: Balkema.
    [Google Scholar]
  13. Braithwaite, C. J., Rizzi, G., & Darke, G. (2004). The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Introduction. Geological Society, London, Special Publications, 235, 1–6. https://doi.org/10.1144/GSL.SP.2004.235.01.01
    [Google Scholar]
  14. Brand, U., & Veizer, J. (1980). Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements. Journal of Sedimentary Research, 50, 1219–1236.
    [Google Scholar]
  15. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24, 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  16. Childs, C., Manzocchi, T., Walsh, J. J., Bonson, C. G., Nicol, A., & Schöpfer, M. P. J. (2009). A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31, 117–127. https://doi.org/10.1016/j.jsg.2008.08.009
    [Google Scholar]
  17. Clegg, N., Harwood, G., & Kendall, A. (1998). The dolomitization and post‐dolomite diagenesis of Miocene platform carbonates: Abu Shaar, Gulf of Suez, Egypt. In Sedimentation and tectonics in Rift Basins Red Sea:‐Gulf of Aden. Dordrecht, Netherlands: Springer.
    [Google Scholar]
  18. Coniglio, M., James, N., & Aissaoui, D. (1988). Dolomitization of Miocene carbonates, Gulf of Suez, Egypt. Journal of Sedimentary Petrology, 59, 100–119.
    [Google Scholar]
  19. Crider, J. G., & Pollard, D. D. (1998). Fault linkage: Three‐dimensional mechanical interaction between echelon normal faults. Journal of Geophysical Research, 103(B10), 24373–24391. https://doi.org/10.1029/98JB01353
    [Google Scholar]
  20. Davies, G. R., & Smith, L. B. (2006). Structurally controlled hydrothermal dolomite reservoir facies: An overview. American Association of Petroleum Geologists Bulletin, 90, 1641–1690. https://doi.org/10.1306/05220605164
    [Google Scholar]
  21. Dewit, J., Foubert, A., el Desouky, H., Muchez, P., Hunt, D., Vanhaecke, F., & Swennen, R. (2014). Characteristics, genesis and parameters controlling the development of a large stratabound HTD body at Matienzo (Ramales Platform, Basque‐Cantabrian Basin, northern Spain). Marine and Petroleum Geology, 55, 6–25. https://doi.org/10.1016/j.marpetgeo.2013.12.021
    [Google Scholar]
  22. Dewit, J., Huysmans, M., Muchez, P., Hunt, D. W., Thurmond, J. B., Vergés, J., … Esestime, P. (2012). Reservoir characteristics of fault‐controlled hydrothermal dolomite bodies: Ramales Platform case study. Geological Society, London, Special Publications, 370, 83–109. https://doi.org/10.1144/SP370.1
    [Google Scholar]
  23. Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, 36, 491–505.
    [Google Scholar]
  24. Dimmen, V., Rotevatn, A., Peacock, D., Nixon, C., & Naerland, K. (2017). Quantifying structural controls on fluid flow: Insights from carbonate‐hosted fault damage zones on the Maltese Islands. Journal of Structural Geology, 101, 43–57. https://doi.org/10.1016/j.jsg.2017.05.012
    [Google Scholar]
  25. Duggan, J. P., Mountjoy, E. W., & Stasiuk, L. D. (2001). Fault‐controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west‐central Alberta, Canada. Sedimentology, 48, 301–323. https://doi.org/10.1046/j.1365-3091.2001.00364.x
    [Google Scholar]
  26. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists Memoirs, 1, 108–121.
    [Google Scholar]
  27. Eker, A. (2013). Structural analysis of limestones and dolomites within the Hammam Faraun Fault Block, Egypt: Implications for fluid transport and dolomitization. University of Bergen Masters Thesis.
  28. Ferrill, D. A., & Morris, A. P. (2003). Dilational normal faults. Journal of Structural Geology, 25, 183–196. https://doi.org/10.1016/S0191-8141(02)00029-9
    [Google Scholar]
  29. Fossen, H., Johansen, T. E. S., Hesthammer, J., & Rotevatn, A. (2005). Fault interaction in porous sandstone and implications for reservoir management; examples from Southern Utah. American Association of Petroleum Geologists Bulletin, 89, 1593–1606. https://doi.org/10.1306/07290505041
    [Google Scholar]
  30. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings—A review. Earth‐Science Reviews, 154, 14–28. https://doi.org/10.1016/j.earscirev.2015.11.014
    [Google Scholar]
  31. Frazer, M., Whitaker, F., & Hollis, C. (2014). Fluid expulsion from overpressured basins: Implications for Pb–Zn mineralisation and dolomitisation of the East Midlands platform, Northern England. Marine and Petroleum Geology, 55, 68–86.
    [Google Scholar]
  32. Gabrielsen, R. H., & Braathen, A. (2014). Models of fracture lineaments — Joint swarms, fracture corridors and faults in crystalline rocks, and their genetic relations. Tectonophysics, 628, 26–44. https://doi.org/10.1016/j.tecto.2014.04.022
    [Google Scholar]
  33. Gartrell, A., Zhang, Y., Lisk, M., & Dewhurst, D. (2004). Fault intersections as critical hydrocarbon leakage zones: Integrated field study and numerical modelling of an example from the Timor Sea, Australia. Marine and Petroleum Geology, 21, 1165–1179. https://doi.org/10.1016/j.marpetgeo.2004.08.001
    [Google Scholar]
  34. Gaspirrini, M., Bechstadt, T., & Boni, M. (2006). Hydrothermal dolomites in the southwestern Cantabiran Zone (Spain) and their relation to the Late Variscan Orogeny. Marine and Petroleum Geology, 23, 543–568. https://doi.org/10.1016/j.marpetgeo.2006.05.003
    [Google Scholar]
  35. Gawthorpe, R. L., Jackson, C. A. L., Young, M. J., Sharp, I. R., Moustafa, A. R., & Leppard, C. W. (2003). Normal fault growth, displacement localisation and the evolution of normal fault populations: The Hammam Faraun fault block, Suez rift, Egypt. Journal of Structural Geology, 25, 883–895. https://doi.org/10.1016/S0191-8141(02)00088-3
    [Google Scholar]
  36. Gomez‐Rivas, E., Corbella, M., Martin‐Martin, J. D., Stafford, S. L., Teixell, A., Bons, P. D., … Cardellach, E. (2014). Reactivity of dolomitizing fluids and Mg source evaluation of fault‐controlled dolomitization at the Benicassim outcrop analogue (Maestrat Basin, E Spain). Marine and Petroleum Geology, 55, 26–42. https://doi.org/10.1016/j.marpetgeo.2013.12.015
    [Google Scholar]
  37. Haley, B. A., Klinkhammer, G. P., & McManus, J. (2004). Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta, 68, 1265–1279. https://doi.org/10.1016/j.gca.2003.09.012
    [Google Scholar]
  38. Hirani, J. (2014). Integrated structural, sedimentological and diagenetic evaluation of fault‐fracture controlled dolomite, Hammam Faraun Fault Block, Gulf of Suez. [Ph.D. thesis]: University of Manchester, 295 pp.
  39. Hirani, J., Bastesen, E., Boyce, A., Corlett, H., Gawthorpe, R., Hollis, C., … Whitaker, F. (2018). Controls on the formation of stratabound dolostone bodies, Hammam Faraun Fault block, Gulf of Suez. Sedimentology. https://doi.org/10.1111/sed.12454
    [Google Scholar]
  40. Hollis, C., Bastesen, B., Boyce, A., Corlett, H., Gawthorpe, R., Hirani, J., … Whitaker, F. (2017). Fault‐controlled dolomitization within rift basins. Geology, 45, 219–222. https://doi.org/10.1130/G38s394.1
    [Google Scholar]
  41. Horwitz, E. P., & Bloomquist, C. A. A. (1975). Chemical separations for super‐heavy element searches in irradiated uranium targets. Journal of Inorganic and Nuclear Chemistry, 37, 425–434. https://doi.org/10.1016/0022-1902(75)80350-2
    [Google Scholar]
  42. Jackson, C., Gawthorpe, R., Leppard, C., & Sharp, I. (2006). Rift initiation development of normal fault blocks: Insights from the Hammam Faraun fault block, Suez Rift, Egypt. Journal of the Geological Society, 163, 165–183. https://doi.org/10.1144/0016-764904-164
    [Google Scholar]
  43. Jackson, C., Gawthorpe, R., & Sharp, I. (2006). Style and sequence of deformation during extensional fault‐related folding: examples from the Hammam Faraun and El‐Qaa fault blocks, Suez Rift, Egypt. Journal of Structural Geology, 28, 519–535. https://doi.org/10.1016/j.jsg.2005.11.009
    [Google Scholar]
  44. Jarrige, J.‐J., D'Estevou, P. O., Burollet, P. F., Montenat, C., Prat, P., Richert, J.‐P., & Thiriet, J.‐P. (1990). The multistage tectonic evolution of the Gulf of Suez and northern Red Sea continental rift from field observations. Tectonics, 9, 441–465. https://doi.org/10.1029/TC009i003p00441
    [Google Scholar]
  45. Johansen, T. E. S., Fossen, H., & Kluge, R. (2005). The impact of syn‐faulting porosity reduction on damage zone architecture in porous sandstone: An outcrop example from the Moab Fault, Utah. Journal of Structural Geology, 27, 1469–1485. https://doi.org/10.1016/j.jsg.2005.01.014
    [Google Scholar]
  46. Kattenhorn, S. A., Aydin, A., & Pollard, D. D. (2000). Joints at high angles to normal fault strike: An explanation using 3‐D numerical models of fault‐perturbed stress fields. Journal of Structural Geology, 22, 1–23. https://doi.org/10.1016/S0191-8141(99)00130-3
    [Google Scholar]
  47. Khalil, S. M., & McClay, K. R. (2001). Tectonic evolution of the NW Red Sea‐Gulf of Suez rift system. Geological Society, London, Special Publications, 187(1), 453–473.
    [Google Scholar]
  48. Knott, S. D., Beach, A., Welbon, A. I., & Brockbank, P. J. (1995). Basin inversion in the Gulf of Suez: Implications for exploration and development in failed rifts. Geological Society, London, Special Publications, 88, 59–81. https://doi.org/10.1144/GSL.SP.1995.088.01.05
    [Google Scholar]
  49. Koepnick, R., Burke, W., Denison, R., Hetherington, E., Nelson, H., Otto, J., & Waite, L. (1985). Construction of the seawater 87Sr/86Sr curve for the cenozoic and cretaceous: Supporting data. Chemical Geology: Isotope Geoscience Section, 58, 55–81. https://doi.org/10.1016/0168-9622(85)90027-2
    [Google Scholar]
  50. Korneva, I., Bastesen, E., Corlett, H., Eker, A., Hirani, J., Hollis, C., … Taylor, R. (2017). The effects of dolomitization on petrophysical properties and fracture distribution within rift‐related carbonates (Hammam Faraun Fault Block, Suez Rift, Egypt). Journal of Structural Geology, 108, 108–120.
    [Google Scholar]
  51. Kristensen, T. B., Rotevatn, A., Peacock, D. C., Henstra, G. A., Midtkandal, I., & Grundvåg, S. A. (2016). Structure and flow properties of syn‐rift border faults: The interplay between fault damage and fault‐related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland). Journal of Structural Geology, 92, 99–115. https://doi.org/10.1016/j.jsg.2016.09.012
    [Google Scholar]
  52. Land, L. S. (1980). The isotopic and trace element geochemistry of dolomite: The state of the art. Concepts and Models of Dolomitization: Society of Economic Paleontologists and Mineralogists, Special Publication, 28, 87–110. https://doi.org/10.2110/pec.80.28
    [Google Scholar]
  53. Lonnee, J., & Machel, H. G. (2006). Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada. American Association of Petroleum Geologists Bulletin, 90, 1739–1761. https://doi.org/10.1306/03060605069
    [Google Scholar]
  54. López‐Horgue, M. A., Iriarte, E., Schröder, S., Fernández‐Mendiola, P. A., Caline, B., Corneyllie, H., … Zerti, S. (2010). Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón valley, Basque Cantabrian Basin, Northern Spain. Marine and Petroleum Geology, 27, 1069–1092. https://doi.org/10.1016/j.marpetgeo.2009.10.015
    [Google Scholar]
  55. Lumsden, D. N. (1979). Discrepancy between thin‐section and X‐ray estimates of dolomite in limestone. Journal of Sedimentary Research, 49, 429–435.
    [Google Scholar]
  56. Machel, H., & Lonnee, J. (2002). Hydrothermal dolomite – a product of poor definition and imagination. Sedimentary Geology, 152, 163–171. https://doi.org/10.1016/S0037-0738(02)00259-2
    [Google Scholar]
  57. Maerten, L., Gillespie, P., & Pollard, D. D. (2002). Effects of local stress perturbation on secondary fault development. Journal of Structural Geology, 24, 145–153.
    [Google Scholar]
  58. Martin‐Martin, J. D., Gomez‐Rivaz, E., Gomes‐Gras, D., Trave, A., Ameneiro, R., Koehn, D., & Bons, P. D. (2018). Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. Geological Society, London, Special Publications, 459(1), 157–176. https://doi.org/10.1144/SP459.3
    [Google Scholar]
  59. Matthews, A., & Katz, A. (1977). Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochimica et Cosmochimica Acta, 41, 1431–1438.
    [Google Scholar]
  60. McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18, 849. https://doi.org/10.1063/1.1747785
    [Google Scholar]
  61. Montenat, C., Ott D'estevou, P., Purser, B., Burollet, P.‐F., Jarrige, J.‐J., Orsazag‐Sperber, F., … Thiriet, J.‐P. (1988). Tectonic and sedimentary evolution of the Gulf of Suez and the northwestern Red Sea. Tectonophysics, 153, 161–177. https://doi.org/10.1016/0040-1951(88)90013-3
    [Google Scholar]
  62. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African Rift system and their relevance to hydrocarbon exploration in rifts. American Association of Petroleum Geologists Bulletin, 74, 1234–1253.
    [Google Scholar]
  63. Moustafa, A. R. (1996). Internal structure and deformation of an accommodation zone in the northern part of the Suez rift. Journal of Structural Geology, 18, 93–107. https://doi.org/10.1016/0191-8141(95)00078-R
    [Google Scholar]
  64. Moustafa, A. R. (2003). Explanatory notes for the geologic maps of the eastern side of the Suez Rift (western Sinai Peninsula): Cairo, Egypt. AAPG Datapages GIS Series. 34.
  65. Moustafa, A. R., & Abdeen, M. M. (1992). Structural setting of the Hammam Faraun block, eastern side of the Suez rift. Journal of the University of Kuwait (Science), 19, 291.
    [Google Scholar]
  66. Nabawy, B., Geraud, Y., Rochette, P., & Bur, N. (2009). Pore throat characterization in highly porous and permeable sandstones. AAPG Bulletin, 93, 719–739. https://doi.org/10.1306/03160908131
    [Google Scholar]
  67. Nance, W. B., & Taylor, S. R. (1976). Rare earth element patterns and crustal evolution—I. Australian post‐Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40, 1539–1551. https://doi.org/10.1016/0016-7037(76)90093-4
    [Google Scholar]
  68. Nothdurft, L. D., Webb, G. E., & Kamber, B. S. (2004). Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68, 263–283. https://doi.org/10.1016/S0016-7037(03)00422-8
    [Google Scholar]
  69. Patton, T. L., Moustafa, A. R., Nelson, R. A., & Abdine, S. A. (1994). Tectonic evolution and structural setting of the Suez Rift. American Association of Petroleum Geologists Memoirs, 59, 9–55.
    [Google Scholar]
  70. Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., & Zuluaga, L. F. (2017). Interacting faults. Journal of Structural Geology, 97, 1–22. https://doi.org/10.1016/j.jsg.2017.02.008
    [Google Scholar]
  71. Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt‐Brown, K.G., Nicholas, C.J., Olsson, R.K., … Hall, M.A. (2001) Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413(6855), 481–487.
    [Google Scholar]
  72. Prokoph, A., Shields, G., & Veizer, J. (2008). Compilation and time series analysis of a marine carbonate d18O, d13C and d34S database through Earth history. Earth Science Reviews, 87, 113–133. https://doi.org/10.1016/j.earscirev.2007.12.003
    [Google Scholar]
  73. Questiaux, J.‐M., Couples, G. D., & Ruby, N. (2010). Fractured reservoirs with fracture corridors. Geophysical Prospecting, 58, 279–295. https://doi.org/10.1111/j.1365-2478.2009.00810.x
    [Google Scholar]
  74. Reilly, T. J., Miller, K. G., & Feigenson, M. D. (2002). Latest Eocene‐earliest Miocene Sr isotopic reference section, Site 522, eastern South Atlantic. Paleoceanography, 17, 18–19.
    [Google Scholar]
  75. Robson, D. A. (1971). The structure of the Gulf of Suez (Clysmic) rift, with special reference to the eastern side. Journal of the Geological Society, 127, 247–271. https://doi.org/10.1144/gsjgs.127.3.0247
    [Google Scholar]
  76. Rotevatn, A., & Bastesen, E. (2014). Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): Implications for permeability structure along segmented normal faults. Geological Society, London, Special Publications, 374, 79–95.
    [Google Scholar]
  77. Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., & Gupta, S. (2000). Fault‐propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Geological Society of America Bulletin, 112, 1877–1899. https://doi.org/10.1130/0016-7606(2000)112<1877:FPFIES>2.0.CO;2
    [Google Scholar]
  78. Sharp, I., Gillespie, P., Morsalnezhad, D., Taberner, C., Karpuz, R., Vergés, J., … Hunt, D. (2010). Stratigraphic architecture and fracture‐controlled dolomitization of the Cretaceous Khami and Bangestan groups: An outcrop case study, Zagros Mountains, Iran. Geological Society, London, Special Publications, 329, 343–396. https://doi.org/10.1144/SP329.14
    [Google Scholar]
  79. Sibley, D. F., & Gregg, J. M. (1987). Classification of dolomite rock textures. Journal of Sedimentary Research, 57, 967–975.
    [Google Scholar]
  80. Soliva, R., Benedicto, A., Schultz, R. A., Maerten, L., & Micarelli, L. (2008). Displacement and interaction of normal fault segments branched at depth: Implications for fault growth and potential earthquake rupture size. Journal of Structural Geology, 30, 1288–1299. https://doi.org/10.1016/j.jsg.2008.07.005
    [Google Scholar]
  81. Sturchio, T., Arehart, G., Sultan, M., Sano, Y., Abokamer, Y., & Sayed, M. (1996). Composition and origin of thermal waters in the Gulf of Suez area, Egypt. Applied Geochemistry, 11, 471–479. https://doi.org/10.1016/S0883-2927(96)00025-X
    [Google Scholar]
  82. Swennen, R., Vandeginste, V, & Ellam, R. (2003). Genesis of zebra dolomites (Cathedral Formation: Canadian Fold and Thrust Belt, British Columbia. Journal of Geochemical Exploration, 78‐79, 571–577.
    [Google Scholar]
  83. Veizer, J., & Prokoph, A. (2015). Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth‐Science Reviews, 146, 92–104. https://doi.org/10.1016/j.earscirev.2015.03.008
    [Google Scholar]
  84. Webb, G. E., & Kamber, B. S. (2000). Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64, 1557–1565. https://doi.org/10.1016/S0016-7037(99)00400-7
    [Google Scholar]
  85. Winn, R. D., Crevello, P. D., & Bosworth, W. (2001). Lower Miocene Nukhul formation, Gebel el Zeit, Egypt: Model for structural control on early synrift strata and reservoirs, Gulf of Suez. AAPG Bulletin, 85, 1871–1890.
    [Google Scholar]
  86. Woodcock, N. H., Dickson, J. A. D., & Tarasewicz, J. P. T. (2007). Transient permeability and reseal hardening in fault zones: Evidence from dilation breccia textures. Geological Society, London, Special Publications, 270, 43–53. https://doi.org/10.1144/GSL.SP.2007.270.01.03
    [Google Scholar]
  87. Woodman, P. (2009). Controls on rift‐climax sedimentation: impact of sediment sources, sea‐level change and tectonics. Examples from the Gulf of Suez Rift, Egypt. [Ph.D. thesis]: University of Manchester, 401 pp.
  88. Wyndham, T., McCulloch, M., Fallon, S., & Alibert, C. (2004). High‐resolution coral records of rare earth elements in coastal seawater: Biogeochemical cycling and a new environmental proxy. Geochimica et Cosmochimica Acta, 68, 2067–2080. https://doi.org/10.1016/j.gca.2003.11.004
    [Google Scholar]
  89. Younes, A. I., & McClay, K. (2002). Development of accommodation zones in the Gulf of Suez‐Red Sea rift, Egypt. American Association of Petroleum Geologists Bulletin, 86, 1003–1026.
    [Google Scholar]
  90. Youssef, A. (2011). Early‐Middle Miocene Suez Syn‐rift‐Basin, Egypt: A sequence stratigraphy framework. GeoArabia, Journal of the Middle East Petroleum Geosciences, 16, 113–134.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12290
Loading
/content/journals/10.1111/bre.12290
Loading

Data & Media loading...

Supplements

 

WORD

 

  • Article Type: Research Article
Keyword(s): basin fluids , carbonates , dolomitization , rift basins and structure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error