1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Canyons and other sediment conduits are important components of the deep‐water environment and are the main pathways for sediment transport from the shelf to the basin floor. Using 3‐D and 2‐D seismic reflection data, seismic facies and statistical morphometric analyses, this study showed the architectural evolution of five canyons, two slide scars and four gullies on the southern part of the Loppa High, Barents Sea. Morphometric parameters such as thalweg depth (lowest point on a conduit's base), wall depth (middle point), height, width and base width, sinuosity, thalweg gradient, aspect ratio (width/height) and cross‐sectional area of the conduits were measured at intervals of 250‐m perpendicular to the conduits’ pathways. Our results show that the canyons and slide scars in the study area widen down slope, whereas the gullies are narrow and short with uniform widths. The sediment conduits in the study area evolved in three stages. The first stage is correlated with a time when erosion and bypass were dominant in the conduits, and sediment transferred to the basin in the south. The second stage occurred when basin subsidence was prevalent, and a widespread fine‐grained sequence was deposited as a drape blanketing the canyons and other conduits. A final stage occurred when uplift and glacial erosion configured the entire southern Loppa High into an area of denudation. Our work demonstrates that the morphometric parameters of the canyons, slide scars and gullies generally have increasing linear trends with down‐slope distance, irrespective of their geometries. The morphometric analysis of the sediment conduits in the study area has wider applications for understanding depositional processes, reservoir distribution and petroleum prospectivity in frontier basins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12291
2018-05-01
2020-04-04
Loading full text...

Full text loading...

References

  1. Alves, T. M. (2015). Submarine slide blocks and associated soft‐sediment deformation in deep‐water basins: A review. Marine and Petroleum Geology, 67, 262–285. https://doi.org/10.1016/j.marpetgeo.2015.05.010
    [Google Scholar]
  2. Amblas, D., Ceramicola, S., Gerber, T. P., Canals, M., Chiocci, F. L., Dowdeswell, J. A., … Lastras, G. (2018). Submarine canyons and gullies, submarine geomorphology (pp. 251–272). Cham, Switzerland: Springer.
    [Google Scholar]
  3. Babonneau, N., Savoye, B., Cremer, M., & Bez, M. (2004). Multiple terraces within the deep incised Zaire Valley (ZaïAngo Project): Are they confined levees?Geological Society, London, Special Publications, 222(1), 91–114. https://doi.org/10.1144/GSL.SP.2004.222.01.06
    [Google Scholar]
  4. Bøe, R., Hovland, M., Instanes, A., Rise, L., & Vasshus, S. (2000). Submarine slide scars and mass movements in Karmsundet and Skudenesfjorden, southwestern Norway: Morphology and evolution. Marine Geology, 167(1), 147–165. https://doi.org/10.1016/S0025-3227(00)00017-7
    [Google Scholar]
  5. Bohacs, K. M., Passey, Q. R., Rudnicki, M., Esch, W. L., & Lazar, O. R. (2013). The Spectrum of Fine‐Grained Reservoirs from shale gas to shale oil/tight liquids: Essential attributes, key controls, practical characterization. International Petroleum Technology Conference.
  6. Bouma, A. H. (2000). Coarse‐grained and fine‐grained turbidite systems as end member models: Applicability and dangers. Marine and Petroleum Geology, 17(2), 137–143. https://doi.org/10.1016/S0264-8172(99)00020-3
    [Google Scholar]
  7. Bouma, A. (2001). Geological architecture and reservoir characteristics of fine‐grained and coarse‐grained turbidite systems. Houston Geological Society Bulletin, 43(9), 23–33.
    [Google Scholar]
  8. Brothers, D. S., Ten Brink, U. S., Andrews, B. D., Chaytor, J. D., & Twichell, D. C. (2013). Geomorphic process fingerprints in submarine canyons. Marine Geology, 337(Suppl C), 53–66. https://doi.org/10.1016/j.margeo.2013.01.005
    [Google Scholar]
  9. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26(7), 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  10. Catterall, V., Redfern, J., Gawthorpe, R., Hansen, D., & Thomas, M. (2010). Architectural style and quantification of a submarine channel–levee system located in a structurally complex area: Offshore Nile Delta. Journal of Sedimentary Research, 80(11), 991–1017. https://doi.org/10.2110/jsr.2010.084
    [Google Scholar]
  11. Catuneanu, O. (2006). Principles of sequence stratigraphy. New York, NY: Elsevier.
    [Google Scholar]
  12. Clark, J. D., & Pickering, K. T. (1996). Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG Bulletin, 80(2), 194–220.
    [Google Scholar]
  13. Covault, J. (2011). Submarine fans and canyon‐channel systems: A review of processes, products, and models. Nature Education Knowledge, 3(10), 4.
    [Google Scholar]
  14. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands: Tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10), 939–942. https://doi.org/10.1130/G31081.1
    [Google Scholar]
  15. Covault, J. A., Romans, B. W., Graham, S. A., Fildani, A., & Hilley, G. E. (2011). Terrestrial source to deep‐sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California. Geology, 39(7), 619–622. https://doi.org/10.1130/G31801.1
    [Google Scholar]
  16. Deptuck, M. E., Piper, D. J. W., Savoye, B., & Gervais, A. (2008). Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55(4), 869–898. https://doi.org/10.1111/j.1365-3091.2007.00926.x
    [Google Scholar]
  17. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O'Byrne, C. (2007). Migration–aggradation history and 3‐D seismic geomorphology of submarine channels in the Pleistocene Benin‐major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24(6–9), 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005
    [Google Scholar]
  18. Doré, A. (1995). Barents Sea geology, petroleum resources and commercial potential. Arctic, 48, 207–221.
    [Google Scholar]
  19. Estrada, F., Ercilla, G., & Alonso, B. (2005). Quantitative study of a Magdalena submarine channel (Caribbean Sea): Implications for sedimentary dynamics. Marine and Petroleum Geology, 22(5), 623–635. https://doi.org/10.1016/j.marpetgeo.2005.01.004
    [Google Scholar]
  20. Faleide, J. I., Solheim, A., Fiedler, A., Hjelstuen, B. O., Andersen, E. S., & Vanneste, K. (1996). Late Cenozoic evolution of the western Barents Sea‐Svalbard continental margin. Global and Planetary Change, 12(1–4), 53–74. https://doi.org/10.1016/0921-8181(95)00012-7
    [Google Scholar]
  21. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10(3), 186–214. https://doi.org/10.1016/0264-8172(93)90104-Z
    [Google Scholar]
  22. Farre, J. A., McGregor, B. A., Ryan, W. B., & Robb, J. M. (1983). Breaching the shelfbreak: Passage from youthful to mature phase in submarine canyon evolution. SEPM Special Publication, 33, 25–39.
    [Google Scholar]
  23. Field, M. E., Gardner, J. V., & Prior, D. B. (1999). Geometry and significance of stacked gullies on the northern California slope. Marine Geology, 154(1–4), 271–286. https://doi.org/10.1016/S0025-3227(98)00118-2
    [Google Scholar]
  24. Fildani, A. (2017). Submarine Canyons: A brief review looking forward. Geology, 45(4), 383–384. https://doi.org/10.1130/focus042017.1
    [Google Scholar]
  25. Flint, S. S., & Hodgson, D. M. (2005). Submarine slope systems: Processes and products. Geological Society, London, Special Publications, 244(1), 1–6. https://doi.org/10.1144/GSL.SP.2005.244.01.01
    [Google Scholar]
  26. Friend, P. F. (1983). Towards the field classification of alluvial architecture or sequence, modern and ancient fluvial systems (pp. 345–354). Hoboken, NJ: Blackwell Publishing Ltd.
    [Google Scholar]
  27. Gabrielsen, R. H., Faerseth, R. B., & Jensen, L. N. (1990). Structural elements of the Norwegian continental shelf. Pt. 1. The Barents Sea Region. Stavanger, Norway: Norwegian Petroleum Directorate.
    [Google Scholar]
  28. Gales, J. A., Larter, R. D., Mitchell, N. C., & Dowdeswell, J. A. (2013). Geomorphic signature of Antarctic submarine gullies: Implications for continental slope processes. Marine Geology, 337, 112–124. https://doi.org/10.1016/j.margeo.2013.02.003
    [Google Scholar]
  29. Galloway, W. E. (1989). Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding‐surface bounded depositional units. AAPG Bulletin, 73(2), 125–142.
    [Google Scholar]
  30. Gamboa, D., & Alves, T. M. (2015). Spatial and dimensional relationships of submarine slope architectural elements: A seismic‐scale analysis from the Espírito Santo Basin (SE Brazil). Marine and Petroleum Geology, 64, 43–57. https://doi.org/10.1016/j.marpetgeo.2015.02.035
    [Google Scholar]
  31. Gamboa, D., Alves, T. M., & Cartwright, J. (2012). A submarine channel confluence classification for topographically confined slopes. Marine and Petroleum Geology, 35(1), 176–189. https://doi.org/10.1016/j.marpetgeo.2012.02.011
    [Google Scholar]
  32. Goodwin, R. H., & Prior, D. B. (1989). Geometry and depositional sequences of the Mississippi Canyon, Gulf of Mexico. Journal of Sedimentary Research, 59(2), 318–329.
    [Google Scholar]
  33. Gradstein, F. M., Anthonissen, E., Brunstad, H., Charnock, M., Hammer, O., Hellem, T., & Lervik, K. S. (2010). Norwegian offshore stratigraphic lexicon (NORLEX). Newsletters on Stratigraphy, 44(1), 73–86. https://doi.org/10.1127/0078-0421/2010/0005
    [Google Scholar]
  34. Haflidason, H., Sejrup, H. P., Nygård, A., Mienert, J., Bryn, P., Lien, R., … Masson, D. (2004). The Storegga Slide: Architecture, geometry and slide development. Marine Geology, 213(1), 201–234. https://doi.org/10.1016/j.margeo.2004.10.007
    [Google Scholar]
  35. Hansen, L., Janocko, M., Kane, I., & Kneller, B. (2017). Submarine channel evolution, terrace development, and preservation of intra‐channel thin‐bedded turbidites: Mahin and Avon channels, offshore Nigeria. Marine Geology, 383, 146–167. https://doi.org/10.1016/j.margeo.2016.11.011
    [Google Scholar]
  36. Harris, P. T., & Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285(1–4), 69–86. https://doi.org/10.1016/j.margeo.2011.05.008
    [Google Scholar]
  37. Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., … Sollid, K. (2011a). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281. https://doi.org/10.1144/M35.17
    [Google Scholar]
  38. Henriksen, E., Ryseth, A., Larssen, G., Heide, T., Rønning, K., Sollid, K., & Stoupakova, A. (2011b). Tectonostratigraphy of the greater Barents Sea: Implications for petroleum systems. Geological Society, London, Memoirs, 35(1), 163–195. https://doi.org/10.1144/M35.10
    [Google Scholar]
  39. Indrevær, K., Gabrielsen, R. H., & Faleide, J. I. (2016). Early Cretaceous synrift uplift and tectonic inversion in the Loppa High area, southwestern Barents Sea, Norwegian shelf. Journal of the Geological Society, 174, 242–254.
    [Google Scholar]
  40. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (112 pp.). Berlin, Germany: Springer. https://doi.org/10.1007/978-1-4614-7138-7
    [Google Scholar]
  41. Jo, A., Eberli, G. P., & Grasmueck, M. (2015). Margin collapse and slope failure along southwestern Great Bahama Bank. Sedimentary Geology, 317, 43–52. https://doi.org/10.1016/j.sedgeo.2014.09.004
    [Google Scholar]
  42. Jobe, Z. R., Lowe, D. R., & Uchytil, S. J. (2011). Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Marine and Petroleum Geology, 28(3), 843–860. https://doi.org/10.1016/j.marpetgeo.2010.07.012
    [Google Scholar]
  43. Klaus, A., & Taylor, B. (1991). Submarine canyon development in the Izu‐Bonin forearc: A SeaMARC II and seismic survey of Aoga Shima Canyon. Marine Geophysical Researches, 13(2), 131–152.
    [Google Scholar]
  44. Kolla, V. (2007). A review of sinuous channel avulsion patterns in some major deep‐sea fans and factors controlling them. Marine and Petroleum Geology, 24(6), 450–469. https://doi.org/10.1016/j.marpetgeo.2007.01.004
    [Google Scholar]
  45. Kuenen, P. H. (1953). Origin and classification of submarine canyons. Geological Society of America Bulletin, 64(11), 1295–1314. https://doi.org/10.1130/0016-7606(1953)64[1295:OACOSC]2.0.CO;2
    [Google Scholar]
  46. Lee, S. H., & Stow, D. A. V. (2007). Laterally contiguous, concave‐up basal shear surfaces of submarine landslide deposits (Miocene), southern Cyprus: Differential movement of sub‐blocks within a single submarine landslide lobe. Geosciences Journal, 11(4), 315–321. https://doi.org/10.1007/BF02857048
    [Google Scholar]
  47. Lonergan, L., Jamin, N. H., Jackson, C. A. L., & Johnson, H. D. (2013). U‐shaped slope gully systems and sediment waves on the passive margin of Gabon (West Africa). Marine Geology, 337, 80–97. https://doi.org/10.1016/j.margeo.2013.02.001
    [Google Scholar]
  48. Marín, D., Escalona, A., Śliwińska, K. K., Nøhr‐Hansen, H., & Mordasova, A. (2016). Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the southwestern Barents Sea. AAPG Bulletin, 101, 1487–1517.
    [Google Scholar]
  49. Mattos, N. H., Alves, T. M., & Omosanya, K. O. (2016). Crestal fault geometries reveal late halokinesis and collapse of the Samson Dome, Northern Norway: Implications for petroleum systems in the Barents Sea. Tectonophysics, 690(Part A), 76–96. https://doi.org/10.1016/j.tecto.2016.04.043
    [Google Scholar]
  50. May, J. A., Warme, J. E., & Slater, R. A. (1983). Role of submarine canyons on shelfbreak erosion and sedimentation: Modern and ancient examples. SEPM Special Publication, 33, 315–332.
    [Google Scholar]
  51. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8), 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  52. McCaffrey, W., & Kneller, B. (2001). Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation. AAPG Bulletin, 85(6), 971–988.
    [Google Scholar]
  53. Miall, A. D. (1989). Architectural elements and bounding surfaces in channelized clastic deposits: Notes on comparisons between fluvial and turbidite systems (pp. 3–15). Tokyo, Japan: Sedimentary Facies in the Active Plate Margin: Terra Scientific Publishing Company.
    [Google Scholar]
  54. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  55. Mountjoy, J. J., Barnes, P. M., & Pettinga, J. R. (2009). Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand. Marine Geology, 260(1), 45–68. https://doi.org/10.1016/j.margeo.2009.01.006
    [Google Scholar]
  56. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett , & G. G.Zuffa (Eds.), Marine clastic sedimentology: Concepts and case studies (pp. 1–38). Dordrecht, The Netherlands: Springer Netherlands.
    [Google Scholar]
  57. Mutti, E., & Normark, W. R. (1991). An integrated approach to the study of turbidite systems. In P.Weimer , & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–106). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4684-8276-8
    [Google Scholar]
  58. Normark, W. R., & Carlson, P. R. (2003). Giant submarine canyons: Is size any clue to their importance in the rock record?Geological Society of America Special Papers, 370, 175–190.
    [Google Scholar]
  59. Normark, W. R., Posamentier, H., & Mutti, E. (1993). Turbidite systems: State of the art and future directions. Reviews of Geophysics, 31(2), 91–116. https://doi.org/10.1029/92RG02832
    [Google Scholar]
  60. Obelcz, J., Brothers, D., Chaytor, J., Brink, U. T., Ross, S. W., & Brooke, S. (2014). Geomorphic characterization of four shelf‐sourced submarine canyons along the U.S. Mid‐Atlantic continental margin. Deep Sea Research Part II: Topical Studies in Oceanography, 104(Suppl C), 106–119. https://doi.org/10.1016/j.dsr2.2013.09.013
    [Google Scholar]
  61. O'Leary, D. W. (1986). The Munson‐Nygren slide: A major lower‐slope slide off Georges Bank. Marine Geology, 72(1), 101–114. https://doi.org/10.1016/0025-3227(86)90101-5
    [Google Scholar]
  62. O'Leary, D. W. (1995). Canyon‐filling debrite indicates that canyon erosion and large‐scale mass movement off Georges Bank, USA, are unrelated processes. In K. T.Pickering , R. N.Hiscott , N. H.Kenyon , F.Ricci Lucchi & R. D. A.Smith (Eds.), Atlas of deep water environments: Architectural style in turbidite systems (pp. 23–25). Dordrecht, The Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-011-1234-5
    [Google Scholar]
  63. Omeru, T., Cartwright, J. A., & Bull, S. (2016). Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand. In G.Lamarche , J.Mountjoy , S.Bull , T.Hubble , S.Krastel , E.Lane , A.Micallef , L.Moscardelli , C.Mueller , I.Pecher & S.Woelz (Eds.), Submarine mass movements and their consequences: 7th International Symposium (pp. 61–70). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-20979-1
    [Google Scholar]
  64. Omosanya, K. D. O., & Alves, T. M. (2013). Ramps and flats of mass‐transport deposits (MTDs) as markers of seafloor strain on the flanks of rising diapirs (Espírito Santo Basin, SE Brazil). Marine Geology, 340, 82–97. https://doi.org/10.1016/j.margeo.2013.04.013
    [Google Scholar]
  65. Omosanya, K. O., Harishidayat, D., Marheni, L., Johansen, S. E., Felix, M., & Abrahamson, P. (2016). Recurrent mass‐wasting in the Sørvestsnaget Basin Southwestern Barents Sea: A test of multiple hypotheses. Marine Geology, 376, 175–193. https://doi.org/10.1016/j.margeo.2016.03.003
    [Google Scholar]
  66. Orange, D. L., Anderson, R. S., & Breen, N. A. (1994). Regular canyon spacing in the submarine environment: The link between hydrology and geomorphology. GSA Today, 4(2), 35–39.
    [Google Scholar]
  67. Ortiz‐Karpf, A., Hodgson, D. M., Jackson, C. A.‐L., & McCaffrey, W. D. (2017). Influence of seabed morphology and substrate composition on mass‐transport flow processes and pathways: Insights from the Magdalena Fan, Offshore Colombia. Journal of Sedimentary Research, 87(3), 189–209. https://doi.org/10.2110/jsr.2017.10
    [Google Scholar]
  68. Paquet, F., Proust, J.‐N., Barnes, P. M., & Pettinga, J. R. (2009). Inner‐forearc sequence architecture in response to climatic and tectonic forcing since 150 ka: Hawke's Bay, New Zealand. Journal of Sedimentary Research, 79(3), 97–124. https://doi.org/10.2110/jsr.2009.019
    [Google Scholar]
  69. Posamentier, H. W., Erskine, R. D., & Mitchum, R. M. (1991). Models for submarine‐fan deposition within a sequence‐stratigraphic framework. In P.Weimer , & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 127–136). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4684-8276-8
    [Google Scholar]
  70. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73(3), 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  71. Posamentier, H., & Vail, P. (1985). Eustatic Control on Depositional Stratal Patterns. Soc. Econ. Pal. Min. Research Conference, Sea‐level changes: An Integrated Approach.
  72. Posamentier, H., & Vail, P. (1988). Eustatic controls on clastic deposition II—sequence and systems tract models. SEPM Special Publication, 42(Sea level changes ‐ An integrated approach).
  73. Posamentier, H., & Walker, R. G. (2006). Deep‐water turbidites and submarine fans (pp. 397–520). Facies models revisited, vol.84, SEPM Special Publication.
  74. Pratson, L. F., Nittrouer, C. A., Wiberg, P. L., Steckler, M. S., Swenson, J. B., Cacchione, D. A., … Fedele, J. J. (2009). Seascape evolution on clastic continental shelves and slopes, continental margin sedimentation (pp. 339–380). Hoboken, NJ: Blackwell Publishing Ltd.
    [Google Scholar]
  75. Prélat, A., Pankhania, S. S., Jackson, C. A. L., & Hodgson, D. M. (2015). Slope gradient and lithology as controls on the initiation of submarine slope gullies; Insights from the North Carnarvon Basin, Offshore NW Australia. Sedimentary Geology, 329, 12–17. https://doi.org/10.1016/j.sedgeo.2015.08.009
    [Google Scholar]
  76. Qin, Y., Alves, T. M., Constantine, J., & Gamboa, D. (2016). Quantitative seismic geomorphology of a submarine channel system in SE Brazil (Espírito Santo Basin): Scale comparison with other submarine channel systems. Marine and Petroleum Geology, 78, 455–473. https://doi.org/10.1016/j.marpetgeo.2016.09.024
    [Google Scholar]
  77. Reimchen, A. P., Hubbard, S. M., Stright, L., & Romans, B. W. (2016). Using sea‐floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77(Suppl C), 92–115. https://doi.org/10.1016/j.marpetgeo.2016.06.003
    [Google Scholar]
  78. Richardsen, G., Vorren, T. O., & Tørudbakken, B. O. (1993). Post‐Early Cretaceous uplift and erosion in the southern Barents Sea: A discussion based on analysis of seismic interval velocities. Norsk Geologisk Tidsskrift, 73(1), 3–20.
    [Google Scholar]
  79. Richardson, S. E. J., Davies, R. J., Allen, M. B., & Grant, S. F. (2011). Structure and evolution of mass transport deposits in the South Caspian Basin, Azerbaijan. Basin Research, 23(6), 702–719. https://doi.org/10.1111/j.1365-2117.2011.00508.x
    [Google Scholar]
  80. Roep, T. B., & Fortuin, A. R. (1996). A submarine slide scar and channel filled with slide blocks and megarippled Globigerina sands of possible contourite origin from the Pliocene of Sumba, Indonesia. Sedimentary Geology, 103(1), 145–160. https://doi.org/10.1016/0037-0738(95)00084-4
    [Google Scholar]
  81. Sattar, N., Juhlin, C., Koyi, H., & Ahmad, N. (2017). Seismic stratigraphy and hydrocarbon prospectivity of the Lower Cretaceous Knurr Sandstone lobes along the southern margin of Loppa High, Hammerfest Basin, Barents Sea. Marine and Petroleum Geology, 85, 54–69. https://doi.org/10.1016/j.marpetgeo.2017.04.008
    [Google Scholar]
  82. Sayago‐Gil, M., Pérez‐García, C., Vázquez, J., Hernández‐Molina, F., Fernández‐Salas, L., Alveirinho‐Dias, J., … Somoza, L. (2008). Slides on the flanks of submarine canyons in the upper slope of the Algarve. Thalassas, 24(1), 65–72.
    [Google Scholar]
  83. Shanmugam, G. (2006). Deep‐water processes and facies models: Implications for sandstone petroleum reservoirs (5 pp.). New York, NY: Elsevier.
    [Google Scholar]
  84. Shanmugam, G., Lehtonen, L. R., Straume, T., Syvertsen, S. E., Hodgkinson, R. J., & Skibeli, M. (1994). Slump and debris‐flow dominated upper slope facies in the Cretaceous of the Norwegian and northern North Seas (61–67 N): Implications for sand distribution. AAPG Bulletin, 78(6), 910–937.
    [Google Scholar]
  85. Shepard, F. P. (1952). Composite origin of submarine canyons. The Journal of Geology, 60(1), 84–96. https://doi.org/10.1086/625932
    [Google Scholar]
  86. Shepard, F. P. (1963). Importance of submarine valleys in funneling sediments to the deep sea. Progress in Oceanography, 3, 321–332. https://doi.org/10.1016/0079-6611(65)90028-5
    [Google Scholar]
  87. Shepard, F. P. (1965). Types of submarine valleys. AAPG Bulletin, 49(3), 304–310.
    [Google Scholar]
  88. Shepard, F. P. (1972). Submarine canyons. Earth‐Science Reviews, 8(1), 1–12. https://doi.org/10.1016/0012-8252(72)90032-3
    [Google Scholar]
  89. Shepard, F. P. (1981). Submarine canyons: Multiple causes and long‐time persistence. AAPG Bulletin, 65(6), 1062–1077.
    [Google Scholar]
  90. Shepard, F. P., & Marshall, N. F. (1973). Currents along floors of submarine canyons. AAPG Bulletin, 57(2), 244–264.
    [Google Scholar]
  91. Shepard, F. P., Marshall, N. F., & McLoughlin, P. A. (1974). Currents in submarine canyons. Deep Sea Research and Oceanographic Abstracts, 21(9), 691–706. https://doi.org/10.1016/0011-7471(74)90077-1
    [Google Scholar]
  92. Shumaker, L. E., Jobe, Z. R., & Graham, S. A. (2016). Evolution of submarine gullies on a prograding slope: Insights from 3D seismic reflection data. Marine Geology, 393, 35–46.
    [Google Scholar]
  93. Stevenson, C. J., Jackson, C. A.‐L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85(9), 1058–1081. https://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  94. Stow, D. A. V., & Mayall, M. (2000). Deep‐water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17(2), 125–135. https://doi.org/10.1016/S0264-8172(99)00064-1
    [Google Scholar]
  95. Stow, D. A. V., Reading, H. G., & Collinson, J. D. (1996). Deep clastic seas. In H. G.Reading (Ed.), Sedimentary environments and facies (3rd ed., pp. 399–444). Oxford, UK: Blackwell Scientific Publications.
    [Google Scholar]
  96. Talling, P. J. (2014). On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 352, 155–182. https://doi.org/10.1016/j.margeo.2014.02.006
    [Google Scholar]
  97. Thornton, S. (1984). Hemipelagites and associated facies of slopes and Slope Basins. Geological Society of London, Special Publications, 15, 377e394.
    [Google Scholar]
  98. Tubau, X., Lastras, G., Canals, M., Micallef, A., & Amblas, D. (2013). Significance of the fine drainage pattern for submarine canyon evolution: The Foix Canyon System, Northwestern Mediterranean Sea. Geomorphology, 184(Suppl C), 20–37. https://doi.org/10.1016/j.geomorph.2012.11.007
    [Google Scholar]
  99. Tubau, X., Paull, C. K., Lastras, G., Caress, D. W., Canals, M., Lundsten, E., … Amblas, D. (2015). Submarine canyons of Santa Monica Bay, Southern California: Variability in morphology and sedimentary processes. Marine Geology, 365(Suppl C), 61–79. https://doi.org/10.1016/j.margeo.2015.04.004
    [Google Scholar]
  100. Vail, P. R., Mitchum, R.Jr, & Thompson, S.III (1977). Seismic stratigraphy and global changes of sea level: Part 3. Relative changes of sea level from Coastal Onlap: section 2. Application of seismic reflection Configuration to Stratigrapic Interpretation.
  101. Van Wagoner, J., Posamentier, H., Mitchum, R., Vail, P., Sarg, J., Loutit, T., & Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. SEPM Society for Sedimentary Geology, Special Publication No.42.
  102. Völker, D., Geersen, J., Behrmann, J. H., & Weinrebe, W. R. (2012). Submarine mass wasting off Southern Central Chile: Distribution and possible mechanisms of slope failure at an active continental margin. In Y.Yamada , K.Kawamura , K.Ikehara , Y.Ogawa , R.Urgeles , D.Mosher , J.Chaytor & M.Strasser (Eds.), Submarine mass movements and their consequences: 5th International Symposium (pp. 379–389). Dordrecht, The Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-2162-3
    [Google Scholar]
  103. Weaver, P. P. E., Wynn, R. B., Kenyon, N. H., & Evans, J. (2000). Continental margin sedimentation, with special reference to the north‐east Atlantic margin. Sedimentology, 47, 239–256. https://doi.org/10.1046/j.1365-3091.2000.0470s1239.x
    [Google Scholar]
  104. Wood, R., Edrich, S., & Hutchison, I. (1989). Influence of North Atlantic tectonics on the large‐scale uplift of the stappen high and loppa high, Western Barents Shelf: Chapter 36: North Sea and barents shelf . AAPG Special Volume 46Tulsa, OK: AAPG.
    [Google Scholar]
  105. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27(3), 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
  106. Wynn, R. B., Cronin, B. T., & Peakall, J. (2007). Sinuous deep‐water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 24(6), 341–387. https://doi.org/10.1016/j.marpetgeo.2007.06.001
    [Google Scholar]
  107. Yu, G.‐A., Liu, L., Li, Z., Li, Y., Huang, H., Brierley, G., … Pan, B. (2013). Fluvial diversity in relation to valley setting in the source region of the Yangtze and Yellow Rivers. Journal of Geographical Sciences, 23(5), 817–832. https://doi.org/10.1007/s11442-013-1046-2
    [Google Scholar]
  108. Zieba, K. J., Omosanya, K. O., & Knies, J. (2017). A flexural isostasy model for the Pleistocene evolution of the Barents Sea bathymetry. Norwegian Journal of Geology, 97(1), 1–19.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12291
Loading
/content/journals/10.1111/bre.12291
Loading

Data & Media loading...

Supplements

 

WORD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error