1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Temperature impacts the quality of reservoir and source rocks, thereby representing an important aspect of petroleum prospect assessments of any basin. This case study of the Triassic basin of Edgeøya, eastern Svalbard, reevaluate earlier burial estimates that were solely based on organic matter maturation data from organic rich shales. Here, we estimate temperatures using a multi‐method approach: Rock‐Eval pyrolysis parameters, fluid inclusions in diagenetic quartz, and inorganic diagenesis signatures of sandstones. Data were collected from organic rich shales of the Botneheia and Tschermakfjellet formations and coal bearing sandstones of the De Geerdalen Formation. Rock‐Eval pyrolysis data indicate that Botneheia and Tschermakfjellet formations experienced burial temperatures of about 124–138°C while the De Geerdalen Formation experienced temperatures ≥92°C. Homogenization temperatures of the De Geerdalen Formation sandstones give similar diagenetic temperatures, from 70 to 124°C, while the kaolinite to dickite transformation implies the temperatures >90°C. Furthermore, the absence of illite formation associated with kaolinite suggest that temperature have never exceed 130°C. Integrating various methods validate spatial variations in temperature proxies and constrain the thermal history of this basin. Cretaceous intrusions have locally affected the temperatures and have obscured regional subsidence and uplift trends. The effect of igneous intrusions on inorganic matter is very limited, but intensive on organic matter. These differences between organic and inorganic thermal indices help in distinguishing of magmatic from burial heating. This study has therefore relevance in deciphering the thermal history of sandstones experiencing magmatic activity coupled with multiple burial and uplift events.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12292
2018-05-23
2024-04-19
Loading full text...

Full text loading...

References

  1. Aagaard, P., Jahren, J. S., Harstad, A. O., Nilsen, O., & Ramm, M. (2000). Formation of grain‐coating chlorite in sandstones. Laboratory synthesized vs. natural occurrences. Clay Minerals, 35, 261. https://doi.org/10.1180/000985500546639
    [Google Scholar]
  2. Abay, T., Karlsen, D., Lerch, B., Olaussen, S., Pedersen, J., & Backer‐Owe, K. (2017). Migrated petroleum in outcropping Mesozoic sedimentary rocks in Spitsbergen: Organic geochemical characterization and implications for regional exploration. Journal of Petroleum Geology, 40, 5–36. https://doi.org/10.1111/jpg.12662
    [Google Scholar]
  3. Abay, T. B., Karlsen, D. A., & Pedersen, J. H. (2014) Source rocks at Svalbard: An overview of Jurassic and Triassic formations and comparison with offshore Barents Sea time equivalent source rock formations. Istanbul, Turkey: AAPG International Conference and Exhibition, AAPG.
    [Google Scholar]
  4. Abay, T. B., Karlsen, D. A., Pedersen, J. H., Olaussen, S., & Backer‐Owe, K. (2017). Thermal maturity, hydrocarbon potential and kerogen type of some Triassic–Lower Cretaceous sediments from the SW Barents Sea and Svalbard. Petroleum Geoscience. https://doi.org/10.1144/petgeo2017-035.
    [Google Scholar]
  5. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment, 3rd edn. Chichester, UK: Wiley‐Blackwell.
    [Google Scholar]
  6. Anell, I., Braathen, A., Olaussen, S., & Osmundsen, P. (2013). Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic. First Break, 31, 67–76.
    [Google Scholar]
  7. Anell, I., Faleide, J.‐I., & Braathen, A. (2016). Regional tectono‐sedimentary development of the highs and basins of the northwestern Barents Shelf. Norwegian Journal of Geology, 96, 27–41.
    [Google Scholar]
  8. Antonsen, P., Elverhoi, A., Dypvik, H., & Solheim, A. (1991). Shallow bedrock geology of the Olga Basin Area, Northwestern Barents Sea (1). AAPG Bulletin, 75, 1178–1194.
    [Google Scholar]
  9. Bailey, S. W. (1963). Polymorphism of kaolin minerals. American Mineralogist, 48, 1196.
    [Google Scholar]
  10. Barker, C. E., & Pawlewicz, M. J. (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures: A comparison of methods. In P. K.Mukhopadhyay & W. G.Dow (Eds.), Vitrinite reflectance as a naturity parameter : Applications and limitations, Vol. 570 (pp. 216–229). Ann Arbor, MI: The University of Michigan.
    [Google Scholar]
  11. Beaufort, D., Cassagnabere, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J., & Johansen, H. (1998). Kaolinite‐to‐dickite reaction in sandstone reservoirs. Clay Minerals, 33, 297–316. https://doi.org/10.1180/000985598545499
    [Google Scholar]
  12. Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S., & Patrier, P. (2015). Chlorite and chloritization processes through mixed‐layer mineral series in lowtemperature geological systems–A review. Clay Minerals, 50, 497–523. https://doi.org/10.1180/claymin.2015.050.4.06
    [Google Scholar]
  13. Behar, F., Beaumont, V., & Penteado, H. D. B. (2001). Rock‐Eval 6 technology: Performances and developments. Oil & Gas Science and Technology, 56, 111–134. https://doi.org/10.2516/ogst:2001013
    [Google Scholar]
  14. Bergh, S. G., Braathen, A., & Andresen, A. (1997). Interaction of basement‐involved and thin‐skinned tectonism in the Tertiary fold‐thrust belt of central Spitsbergen, Svalbard. AAPG Bulletin, 81, 637–661.
    [Google Scholar]
  15. Bjørkum, P. A., & Nadeau, P. H. (1998). Temperature controlled porosity/permeability reduction, fluid migration, and petroleum exploration in sedimentary basins. Australian Petroleum Production and Exploration Association Journal, 38, 453–464.
    [Google Scholar]
  16. Bjørlykke, K. (1998). Clay mineral diagenesis in sedimentary basins—a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Minerals, 33, 15–34. https://doi.org/10.1180/claymin.1998.033.1.03
    [Google Scholar]
  17. Bjørlykke, K. (2014). Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301, 1–14. https://doi.org/10.1016/j.sedgeo.2013.12.002
    [Google Scholar]
  18. Bjørlykke, K., Aagaard, P., Dypvik, H., D. Hastings, S., & A. Harper, S. (1986) Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid‐Norway. In A. M.Spencer (Ed.), Habitat of hydrocarbons on the Norwegian Continental Shelf: Proceedings of an international conference (Habitat of hydrocarbons, Norwegian oil and gas finds) (pp. 275–286). London, UK: Graham and Trotman.
    [Google Scholar]
  19. Bjørlykke, K., & Jahren, J. (2015) Sandstones and sandstone reservoirs. In K.Bjørlykke (Ed.), Petroleum geoscience : From sedimentary environments to rock physics (pp. 119–149). Berlin: Springer‐Verlag.
    [Google Scholar]
  20. Blaise, T., Barbarand, J., Kars, M., Ploquin, F., Aubourg, C., Brigaud, B., … Landrein, P. (2014). Reconstruction of low temperature (<100°C) burial in sedimentary basins: A comparison of geothermometer in the intracontinental Paris Basin. Marine and Petroleum Geology, 53, 71–87. https://doi.org/10.1016/j.marpetgeo.2013.08.019
    [Google Scholar]
  21. Blythe, A. E., & Kleinspehn, K. L. (1998). Tectonically versus climatically driven Cenozoic exhumation of the Eurasian plate margin, Svalbard: Fission track analyses. Tectonics, 17, 621–639. https://doi.org/10.1029/98TC01890
    [Google Scholar]
  22. Bodnar, R. J. (2003a). Reequilibration of fluid inclusions. Fluid Inclusions: Analysis and Interpretation, 32, 213–230.
    [Google Scholar]
  23. Bodnar, R. J. (2003b) Introduction to aqueous‐electrolyte fluid inclusions. In I.Samson , A.Anderson & D.Marshall (Eds.), Fluid inclusions: Analysis and interpretation, Vol. 32 (pp. 81–99). Ann Arbor, MI: The University of Michigan.
    [Google Scholar]
  24. Bourdelle, F., Parra, T., Chopin, C., & Beyssac, O. (2013). A new chlorite geothermometer for diagenetic to low‐grade metamorphic conditions. Contributions to Mineralogy and Petrology, 165, 723–735. https://doi.org/10.1007/s00410-012-0832-7
    [Google Scholar]
  25. Braathen, A., Bælum, K., Christiansen, H. H., Dahl, T., Eiken, O., Elvebakk, H., … Vagle, K. (2012). The longyearbyen CO2 lab of svalbard, norway‐initial assessment of the geological conditions for CO2 sequestration. Norsk Geologisk Tidsskrift, 92, 353–376.
    [Google Scholar]
  26. Braathen, A., Bergh, S. G., & Maher, H. D.Jr (1999). Application of a critical wedge taper model to the Tertiary transpressional fold‐thrust belt on Spitsbergen, Svalbard. Geological Society of America Bulletin, 111, 1468–1485. https://doi.org/10.1130/0016-7606(1999)111&lt;1468:AOACWT&gt;2.3.CO;2
    [Google Scholar]
  27. Bray, R., Green, P., & Duddy, I. (1992). Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: A case study from the UK East Midlands and Southern North Sea. Geological Society, London, Special Publications, 67, 3–25. https://doi.org/10.1144/GSL.SP.1992.067.01.01
    [Google Scholar]
  28. Breivik, A. J., Faleide, J. I., & Gudlaugsson, S. T. (1998). Southwestern Barents Sea margin: Late Mesozoic sedimentary basins and crustal extension. Tectonophysics, 293, 21–44. https://doi.org/10.1016/S0040-1951(98)00073-0
    [Google Scholar]
  29. Brekke, T., Krajewski, K. P., & Hubred, J. H. (2014). Organic geochemistry and petrography of thermally altered sections of the Middle Triassic Botneheia Formation on south‐western Edgeøya, Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 111–128.
    [Google Scholar]
  30. Burley, S. (1986). The development and destruction of porosity within Upper Jurassic reservoir sandstones of the Piper and Tartan Fields, Outer Moray Firth, North Sea. Clay Minerals, 21, 649–694. https://doi.org/10.1180/claymin.1986.021.4.14
    [Google Scholar]
  31. Carvajal‐Ortiz, H., & Gentzis, T. (2015). Critical considerations when assessing hydrocarbon plays using Rock‐Eval pyrolysis and organic petrology data: Data quality revisited. International Journal of Coal Geology, 152, 113–122. https://doi.org/10.1016/j.coal.2015.06.001
    [Google Scholar]
  32. Copard, Y., Disnar, J.‐R., & Becq‐Giraudon, J.‐F. (2002). Erroneous maturity assessment given by T max and HI Rock‐Eval parameters on highly mature weathered coals. International Journal of Coal Geology, 49, 57–65. https://doi.org/10.1016/S0166-5162(01)00065-9
    [Google Scholar]
  33. Dörr, N., Lisker, F., Clift, P. D., Carter, A., Gee, D. G., Tebenkov, A. M., & Spiegel, C. (2012). Late Mesozoic‐Cenozoic exhumation history of northern Svalbard and its regional significance: Constraints from apatite fission track analysis. Tectonophysics, 514, 81–92. https://doi.org/10.1016/j.tecto.2011.10.007
    [Google Scholar]
  34. Duddy, I. R., Green, P. F., Hegarty, K. A., & Bray, R. J. (1991). Reconstruction of thermal history in basin modelling using apatite fission track analysis: What is really possible?Melbourne, Vic.: Proceedings of the First offshore Australia Conference.
    [Google Scholar]
  35. Ehrenberg, S., Aagaard, P., Wilson, M., Fraser, A., & Duthie, D. (1993). Depth‐dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 28, 325–352. https://doi.org/10.1180/claymin.1993.028.3.01
    [Google Scholar]
  36. Ehrenberg, S., & Nadeau, P. (1989). Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, mid‐Norwegian continental shelf. Clay Minerals, 24, 233–253. https://doi.org/10.1180/claymin.1989.024.2.09
    [Google Scholar]
  37. Elverhøi, A., & Grønlie, G. (1981). Diagenetic and sedimentologic explanation for high seismic velocity and low porosity in mesozoic‐tertiary sediments, Svalbard region: GEOLOGIC NOTES. AAPG Bulletin, 65, 145–153.
    [Google Scholar]
  38. Espitalié, J. (1986). Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. Thermal Modelling in Sedimentary Basins, 44, 475–496.
    [Google Scholar]
  39. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., … Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91.
    [Google Scholar]
  40. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10, 186–214. https://doi.org/10.1016/0264-8172(93)90104-Z
    [Google Scholar]
  41. Forsberg, A., & Bjorøy, M. (1981). A sedimentological and organic geochemical study of the Botneheia Formation, Svalbard, with special emphasis on the effects of weathering on the organic matter in shales. Advances in Organic Geochemistry, 5, 60–68.
    [Google Scholar]
  42. Gabrielsen, R. (1984). Long‐lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. Journal of the Geological Society, 141, 651–662. https://doi.org/10.1144/gsjgs.141.4.0651
    [Google Scholar]
  43. Galán, E., & Ferrell, R. E. (2013). Genesis of clay minerals. Handbook of Clay Science, 5, 83. https://doi.org/10.1016/B978-0-08-098258-8.00003-1
    [Google Scholar]
  44. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27, 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  45. Goldstein, R. H. (2003). Petrographic analysis of fluid inclusions. Fluid Inclusions: Analysis and Interpretation, 32, 9–53.
    [Google Scholar]
  46. Green, P., Crowhurst, P., & Duddy, I. (2004). Integration of AFTA and (U‐Th)/He thermochronology to enhance the resolution and precision of thermal history reconstruction in the Anglesea‐1 well, Otway Basin, SE Australia. In P. J.Boult , D. R.Johns & S. C.Land (Eds.), Eastern Australian basins symposium II (pp. 117–131). Adelaide, SA: Petroleum Exploration Society of Australia, Special publication.
    [Google Scholar]
  47. Gustavsen, F. B., Dypvik, H., & Solheim, A. (1997). Shallow geology of the northern Barents Sea: Implications for petroleum potential. AAPG Bulletin, 81, 1827–1842.
    [Google Scholar]
  48. Haile, B. G., Klausen, T. G., Czarniecka, U., Xi, K., Jahren, J., & Hellevang, H. (2017). How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, SvalbardMarine and Petroleum Geology, 92, 519–546.
    [Google Scholar]
  49. Harland, W. B., Anderson, L. M., Manasrah, D., Butterfield, N. J., Challinor, A., Doubleday, P. A., … Kelly, S. R. (1997). The geology of Svalbard. London, UK: Geological Society.
    [Google Scholar]
  50. Hartkopf‐Fröder, C., Königshof, P., Littke, R., & Schwarzbauer, J. (2015). Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review. International Journal of Coal Geology, 150, 74–119. https://doi.org/10.1016/j.coal.2015.06.005
    [Google Scholar]
  51. Helland‐Hansen, W. (2010). Facies and stacking patterns of shelf‐deltas within the Palaeogene Battfjellet Formation, Nordenskiöld Land, Svalbard: Implications for subsurface reservoir prediction. Sedimentology, 57, 190–208. https://doi.org/10.1111/j.1365-3091.2009.01102.x
    [Google Scholar]
  52. Hendry, J. P., Wilkinson, M., Fallick, A. E., & Haszeldine, R. S. (2000). Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North Sea. Journal of Sedimentary Research, 70, 227–239.
    [Google Scholar]
  53. Henriksen, E., Bjørnseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Kløvjan, O. S., … Sollid, K. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35, 271–281. https://doi.org/10.1144/M35.17
    [Google Scholar]
  54. Hubred, J. H. (2006). Thermal effects of basaltic sill emplacement in source rocks on maturation and hydrocarbon generation. Candidatus Scientarium Thesis, University of Oslo.
  55. Hunt, J. M. (1996). Petroleum geochemistry and geology, 2nd edn. New York, NY: W. H. Freeman.
    [Google Scholar]
  56. Jarvie, D. M., Claxton, B. L., Henk, F., & Breyer, J. T. (2001). Oil and shale gas from the Barnett Shale, Ft. Worth Basin, Texas. AAPG Annual Meeting Program, 10, A100.
    [Google Scholar]
  57. Johansen, S. E., Ostisty, B. K., Birkeland, ø., Fedorovsky, Y. F., Martirosjan, V. N., Bruun Christensen, O., … Margulis, L. S. (1993). Hydrocarbon potential in the Barents Sea region: Play distribution and potential. 2, (pp. 273–320). Amsterdam, the Netherlands: Norwegian Petroleum Society Special Publications, Elsevier.
    [Google Scholar]
  58. Karimi, A. R., Rabbani, A. R., & Kamali, M. R. (2016). A bulk kinetic, burial history and thermal modeling study of the Albian Kazhdumi and the Eocene‐Oligocene Pabdeh formations in the Ahvaz anticline, Dezful Embayment, Iran. Journal of Petroleum Science and Engineering, 146, 61–70. https://doi.org/10.1016/j.petrol.2016.04.015
    [Google Scholar]
  59. Klausen, T. (2013). Does evidence of faulting contradict a quiescent northern Barents Shelf during the Triassic?First Break, 31, 69–72.
    [Google Scholar]
  60. Klausen, T. G., & Mørk, A. (2014). The Upper Triassic paralic deposits of the De Geerdalen Formation on Hopen: Outcrop analog to the subsurface Snadd Formation in the Barents Sea. AAPG Bulletin, 98, 1911–1941. https://doi.org/10.1306/02191413064
    [Google Scholar]
  61. Klausen, T. G., Müller, R., Slama, J., & Helland‐Hansen, W. (2017). Evidence for Late Triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of northern Pangea. Lithosphere, 9, 14–28. https://doi.org/10.1130/L556.1
    [Google Scholar]
  62. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2014). Spatial and temporal changes in geometries of fluvial channel bodies from the Triassic Snadd Formation of offshore Norway. Journal of Sedimentary Research, 84, 567–585. https://doi.org/10.2110/jsr.2014.47
    [Google Scholar]
  63. Koevoets, M. J., Abay, T. B., Hammer, Ø., & Olaussen, S. (2016). High‐resolution organic carbon–isotope stratigraphy of the Middle Jurassic‐Lower Cretaceous Agardhfjellet Formation of central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 266–274. https://doi.org/10.1016/j.palaeo.2016.02.029
    [Google Scholar]
  64. Krajewski, K. P. (2008). The Botneheia Formation (Middle Triassic) in Edgeøya and Barentsøya, Svalbard: Lithostratigraphy, facies, phosphogenesis, paleoenvironment. Polish Polar Research, 29, 319–364.
    [Google Scholar]
  65. Krajewski, K. P. (2013). Organic matter–apatite–pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: Relevance to the formation of petroleum source rocks in the NW Barents Sea shelf. Marine and Petroleum Geology, 45, 69–105. https://doi.org/10.1016/j.marpetgeo.2013.04.016
    [Google Scholar]
  66. Lanson, B., Beaufort, D., Berger, G., Baradat, J., & Lacharpagne, J.‐C. (1996). Illitization of diagenetic kaolinite‐to‐dickite conversion series: Late‐stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, offshore of the Netherlands. Journal of Sedimentary Research, 66, 501–518.
    [Google Scholar]
  67. Leever, K. A., Gabrielsen, R. H., Faleide, J. I., & Braathen, A. (2011). A transpressional origin for the West Spitsbergen fold‐and‐thrust belt: Insight from analog modeling. Tectonics, 30, 1–24.
    [Google Scholar]
  68. Li, Y., Cai, J., Wang, X., Hao, Y., & Liu, Q. (2017). Smectite‐illitization difference of source rocks developed in saline and fresh water environments and its influence on hydrocarbon generation: A study from the Shahejie Formation, Dongying Depression, China. Marine and Petroleum Geology, 80, 349–357. https://doi.org/10.1016/j.marpetgeo.2016.12.004
    [Google Scholar]
  69. Littke, R., Klussmann, U., Krooss, B., & Leythaeuser, D. (1991). Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics. Geochimica et Cosmochimica Acta, 55, 3369–3378. https://doi.org/10.1016/0016-7037(91)90494-P
    [Google Scholar]
  70. Lord, G. S., Johansen, S. K., Støen, S. J., & Mørk, A. (2017). Facies development of the Upper Triassic succession on Barentsøya, Wilhelmøya and NE Spitsbergen, Svalbard. Norwegian Journal of Geology, 97, 33–62.
    [Google Scholar]
  71. Lord, G. S., Solvi, K. H., Klausen, T. G., & Mørk, A. (2014). Triassic channel bodies on Hopen, Svalbard: Their facies, stratigraphical significance and spatial distribution. Norwegian Petroleum Directorate Bulletin, 11, 41–59.
    [Google Scholar]
  72. Lundschien, B. A., Høy, T., & Mørk, A. (2014). Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin, 11, 3–20.
    [Google Scholar]
  73. Maher, H. D. Jr. (2001). Manifestations of the Cretaceous High Arctic large igneous province in Svalbard. The Journal of Geology, 109, 91–104. https://doi.org/10.1086/317960
    [Google Scholar]
  74. Maher, H. D., Ogata, K., & Braathen, A. (2016). Cone‐in‐cone and beef mineralization associated with Triassic growth basin faulting and shallow shale diagenesis, Edgeøya, Svalbard. Geological Magazine, 154, 201–216.
    [Google Scholar]
  75. Michelsen, J. K., & Khorasani, G. K. (1991). A regional study on coals from Svalbard; organic facies, maturity and thermal history. Bulletin de la Société Géologique de France, 162, 385–397.
    [Google Scholar]
  76. Morad, S., Al‐Aasm, I. S., Ramseyer, K., Marfil, R., & Aldahan, A. A. (1990). Diagenesis of carbonate cements in Permo‐Triassic sandstones from the Iberian Range, Spain: Evidence from chemical composition and stable isotopes. Sedimentary Geology, 67, 281–295. https://doi.org/10.1016/0037-0738(90)90039-V
    [Google Scholar]
  77. Morad, S., Ismail, H. B., Ros, L.d., Al‐Aasm, I., & SERRHINI, N. E. (1994). Diagenesis and formation water chemistry of Triassic reservoir sandstones from southern Tunisia. Sedimentology, 41, 1253–1272. https://doi.org/10.1111/j.1365-3091.1994.tb01452.x
    [Google Scholar]
  78. Mørk, M. B. E. (2013). Diagenesis and quartz cement distribution of low‐permeability Upper Triassic‐Middle Jurassic reservoir sandstones, Longyearbyen CO2 lab well site in Svalbard, Norway. AAPG Bulletin, 97, 577–596. https://doi.org/10.1306/10031211193
    [Google Scholar]
  79. Mørk, A., & Bjorøy, M. (1984) Mesozoic source rocks on Svalbard. In A. M.Spencer , P. C.Home & L. T.Berglund (Eds.), Petroleum geology of the North European margin (pp. 371–382). London, UK: Springer. https://doi.org/10.1007/978-94-009-5626-1
    [Google Scholar]
  80. Mørk, A., Dallmann, W., Dypvik, H., Johannessen, E., Larssen, G., Nagy, J., … Worsley, D. (1999) Mesozoic lithostratigraphy. In W.Dallmann (Ed.), Lithostratigraphic Lexicon of Svalbard. Upper Palaeozoic to Quaternary bedrock. Review and recommendations for nomenclature use (pp. 127–214). Tromsø, Norway: Norwegian Polar Institute.
    [Google Scholar]
  81. Mørk, A., & Elvebakk, G. (1999). Lithological description of subcropping Lower and Middle Triasic rocks from the Svalis Dome, Barents Sea. Polar Research, 18, 83–104. https://doi.org/10.3402/polar.v18i1.6559
    [Google Scholar]
  82. Mørk, A., Embry, A. F., & Weitschat, W. (1989). Triassic transgressive‐regressive cycles in the Sverdrup Basin, Svalbard and the Barents Shelf. In J. D.Collinson (Ed.), Correlation in hydrocarbon exploration (pp. 113–130). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-009-1149-9
    [Google Scholar]
  83. Mørk, A., Knarud, R., & Worsley, D. (1982) Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In A. F.Embry & H. R.Balkwill (Eds.), Arctic geology and geophysics: Proceedings of the third international symposium on arctic geology, Memoir 8 (pp. 371–398). Calgary, Canada: Canadian Society of Petoleum Geologists.
    [Google Scholar]
  84. Mullis, J., Mählmann, R. F., & Wolf, M. (2017). Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270° C), illite Kübler‐Index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science, 143, 307–319. https://doi.org/10.1016/j.clay.2017.03.023
    [Google Scholar]
  85. Mulrooney, M. J., Leutscher, J., & Braathen, A. (2017). A 3D structural analysis of the Goliat field, Barents Sea, Norway. Marine and Petroleum Geology, 86, 192–212. https://doi.org/10.1016/j.marpetgeo.2017.05.038
    [Google Scholar]
  86. Nejbert, K., Krajewski, K. P., Dubińska, E., & Pécskay, Z. (2011). Dolerites of Svalbard, north‐west Barents Sea Shelf: Age, tectonic setting and significance for geotectonic interpretation of the High‐Arctic Large Igneous Province. Polar Research, 30, 1–24.
    [Google Scholar]
  87. Nøttvedt, A., Cecchi, M., Gjelberg, J. G., Kristensen, S. E., Lønøy, A., Rasmussen, A., … Van Veen, P. M. (1993). Svalbard‐Barents Sea correlation: A short review. Arctic Geology and Petroleum Potential, Norwegian Petroleum Society (NPF) Special Publication, 2, 363–375. https://doi.org/10.1016/B978-0-444-88943-0.50027-7
    [Google Scholar]
  88. Nyland, B., Jensen, L., Skagen, J., Skarpnes, O., & Vorren, T. (1993). Tertiary uplift and erosion in the Barents Sea: Magnitude, timing and consequences. In R. M.Larsen , H.Brekke , B. T.Larsen & E.Talleraas (Eds.), Structural and tectonic modelling and its application to petroleum geology (pp. 153–162). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  89. Osmundsen, P. T., Braathen, A., Rød, R. S., & Hynne, I. B. (2014). Styles of normal faulting and fault‐controlled sedimentation in the Triassic deposits of Eastern Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 61–79.
    [Google Scholar]
  90. Pearson, M., & Small, J. (1988). Illite‐smectite diagenesis and palaeotemperatures in northern North Sea Quaternary to Mesozoic shale sequences. Clay Minerals, 23, 109–132. https://doi.org/10.1180/claymin.1988.023.2.01
    [Google Scholar]
  91. Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P., & Pappalardo, A. (2008). Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group, northeastern Calabria: Implications for burial history and diagenetic evolution. International Geology Review, 50, 1116–1131. https://doi.org/10.2747/0020-6814.50.12.1116
    [Google Scholar]
  92. Pitman, J. K., Price, L. C., & LeFever, J. A. (2001). Diagenesis and fracture development in the Bakken Formation, Williston Basin: Implications for reservoir quality in the middle member. US Department of the Interior, U.S. Geological Survey Professional Paper 1653, 19.
  93. Pollastro, R. M. (1993). Considerations and applications of the illite/smectite geothermometer in hydrocarbon‐bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119–133. https://doi.org/10.1346/CCMN.1993.0410202
    [Google Scholar]
  94. Pollastro, R. M., & Barker, C. E. (1986) Application of clay‐mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River basin, Wyoming. In D. L.Gautier (Ed.), Roles of organic matter in sediment diagenesis, Vol. 38 (pp. 73–83). Tulsa, OK: SEPM. https://doi.org/10.2110/pec.86.38
    [Google Scholar]
  95. Riis, F., Lundschien, B. A., Høy, T., Mørk, A., & Mørk, M. B. E. (2008). Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research, 27, 318–338. https://doi.org/10.1111/j.1751-8369.2008.00086.x
    [Google Scholar]
  96. Ritter, U., Duddy, I. R., Mørk, A., Johansen, H., & Arne, D. C. (1996). Temperature and uplift history of Bjørnøya (Bear Island), Barents Sea. Petroleum Geoscience, 2, 133–144. https://doi.org/10.1144/petgeo.2.2.133
    [Google Scholar]
  97. Rød, R. S., Hynne, I. B., & Mørk, A. (2014). Depositional environment of the Upper Triassic De Geerdalen Formation–An EW transect from Edgeøya to Central Spitsbergen, Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 21–40.
    [Google Scholar]
  98. Ruiz Cruz, M. D., & Reyes, E. (1998). Kaolinite and dickite formation during shale diagenesis: Isotopic data. Applied Geochemistry, 13, 95–104. https://doi.org/10.1016/S0883-2927(97)00056-5
    [Google Scholar]
  99. Schou, L., Mørk, A., & Bjorøy, M. (1984). Correlation of source rocks and migrated hydrocarbons by GC‐MS in the middle Triassic of Svalbard. Organic Geochemistry, 6, 513–520. https://doi.org/10.1016/0146-6380(84)90074-3
    [Google Scholar]
  100. Senger, K., Tveranger, J., Ogata, K., Braathen, A., & Planke, S. (2014). Late Mesozoic magmatism in Svalbard: A review. Earth‐Science Reviews, 139, 123–144. https://doi.org/10.1016/j.earscirev.2014.09.002
    [Google Scholar]
  101. Serck, C. S., Faleide, J. I., Braathen, A., Kjølhamar, B., & Escalona, A. (2017). Jurassic to Early Cretaceous basin configuration (s) in the Fingerdjupet Subbasin, SW Barents Sea. Marine and Petroleum Geology, 86, 874–891. https://doi.org/10.1016/j.marpetgeo.2017.06.044
    [Google Scholar]
  102. Sobolev, P. (2012). Cenozoic uplift and erosion of the Eastern Barents Sea–constraints from offshore well data and the implication for petroleum system modelling [Känozoische Hebung und Erosion der östlichen Barentssee‐Abschätzungen aus Offshore‐Bohrungsdaten und Auswirkung auf die Erdölsystem‐Modellierung)]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 163, 309–324. https://doi.org/10.1127/1860-1804/2012/0163-0323
    [Google Scholar]
  103. Surdam, R. C., & Crossey, L. J. (1987). Integrated diagenetic modeling: A process‐oriented approach for clastic systems. Annual Review of Earth and Planetary Sciences, 15, 141–170. https://doi.org/10.1146/annurev.ea.15.050187.001041
    [Google Scholar]
  104. Surdam, R. C., Crossey, L. J., Hagen, E. S., & Heasler, H. P. (1989). Organic‐inorganic interactions and sandstone diagenesis. AAPG Bulletin, 73, 1–23.
    [Google Scholar]
  105. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). AAPG Bulletin, 74, 1559–1570.
    [Google Scholar]
  106. Sykes, R., & Snowdon, L. R. (2002). Guidelines for assessing the petroleum potential of coaly source rocks using Rock‐Eval pyrolysis. Organic Geochemistry, 33, 1441–1455. https://doi.org/10.1016/S0146-6380(02)00183-3
    [Google Scholar]
  107. Teichmüller, M., & Durand, B. (1983). Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results of the rock‐eval pyrolysis. International Journal of Coal Geology, 2, 197–230. https://doi.org/10.1016/0166-5162(83)90001-0
    [Google Scholar]
  108. Tilley, B. J., Nesbitt, B. E., & Longstaffe, F. J. (1989). Thermal history of Alberta deep basin: Comparative study of fluid inclusion and vitrinite reflectance data. AAPG Bulletin, 73, 1206–1222.
    [Google Scholar]
  109. Tissot, B. P., Pelet, R., & Ungerer, P. H. (1987). Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin, 71, 1445–1466.
    [Google Scholar]
  110. Tong, Y., & Mukerji, T. (2017). Generalized sensitivity analysis study in basin and petroleum system modeling, case study on Piceance Basin, Colorado. Journal of Petroleum Science and Engineering, 149, 772–781. https://doi.org/10.1016/j.petrol.2016.11.019
    [Google Scholar]
  111. Tseng, H.‐Y., Burruss, R., Onstott, T., & Omar, G. (1999). Paleofluid‐flow circulation within a Triassic rift basin: Evidence from oil inclusions and thermal histories. Geological Society of America Bulletin, 111, 275–290. https://doi.org/10.1130/0016-7606(1999)111&lt;0275:PFCWAT&gt;2.3.CO;2
    [Google Scholar]
  112. Vangdal, B., Midtbø, R. E. A., Litlabø, R., & Johnsen, A. (2014). The kaolinite to dickite transformation as a geothermometer [Abstract]. Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction: The Geological Society of London. London, May 2014.
  113. Walderhaug, O. (1994). Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf–evidence from fluid inclusions. Journal of Sedimentary Research, 64, 311–323.
    [Google Scholar]
  114. Walderhaug, O. (1996). Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bulletin, 80, 731–745.
    [Google Scholar]
  115. Worden, R., & Burley, S. (2003) Sandstone diagenesis: The evolution of sand to stone. In S.Burley & R.Worden (Eds.), Sandstone diagenesis: Recent and ancient, Vol. 4 (pp. 3–42). Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781444304459
    [Google Scholar]
  116. Worden, R., & Morad, S. (2003) Clay minerals in sandstones: Controls on formation, distribution and evolution. In R.Worden & S.Morad (Eds.), Clay mineral cements in sandstones: IAS special publication, Vol. 34 (pp. 3–41). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  117. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27, 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12292
Loading
/content/journals/10.1111/bre.12292
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error