1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

A new dimension has recently been added to provenance analysis by the rapid development of detrital‐geochronology techniques. The application of any dating method to sediments allows the definition of a unique age pattern of parent rocks, a “time structure” that represents an essential complement to the information on their lithological structure obtained by traditional petrographic and mineralogical methods. This detrital‐geochronology study illustrates the distribution of U‐Pb zircon ages in all parts of the Nile catchment from its equatorial headwaters to the Delta, and surveys how the provenance signal is formed, transmitted, and modified along this huge sediment‐routing system. Age‐spectra obtained by targeting specific parts of zircon grains after cathodo‐luminesce imaging and by our Automated Phase Mapping + LAICPMS “blind‐dating strategy” were compared. The former approach emphasises specific magmatic or metamorphic events in source areas, whereas the latter aims at minimising selection bias and focuses on consistency among samples. Grain‐size and hydraulic‐sorting controls were also checked, but found to have only a minor effect on zircon‐age distributions. The trimodal age spectrum of Kagera zircons sourced from the rift highlands of Burundi and Rwanda, characterised by prominent late Neoarchean (Aruan) and mid‐Mesoproterozoic (Kibaran) peaks with a wider mid‐Palaeoproterozoic (Ubendian) cluster, is lost in the Lake Victoria sediment sink. The sharp unimodal Aruan peak displayed by zircon grains in both Victoria and Albert Nile is supplemented and finally superseded by Neoproterozoic grains across the vast marshlands of South Sudan, where detritus produced in equatorial regions is eventually stored. All Nile tributaries in Sudan and Egypt carry zircon grains yielding predominantly Neoproterozoic ages, with a major peak around 0.6 Ga associated with clusters around 0.8 and 1.0 Ga. A few Oligocene zircons represent the key diagnostic feature of Ethiopian provenance, the Ariadne's golden thread that allowed retracing the palaeo‐Nile to its Ethiopian sources back in the Oligocene. The Nile presents a text‐book case of discontinuous transmission of provenance signals along a segmented ultra‐long drainage system. Zircon‐age fingerprints as well as all other detrital signatures are lost repeatedly in large Ugandan lakes, reconstituted or replaced, lost again in the vast marshlands of South Sudan, and finally homogenised downstream from Ethiopia and Sudan to the Mediterranean Sea.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12293
2018-06-08
2020-07-06
Loading full text...

Full text loading...

References

  1. Abdelsalam, M. G., Abdel‐Rahman, E. S. M., El‐Faki, E. F. M., Al‐Hur, B., El‐Bashier, F. R. M., Stern, R. J., & Thurmond, A. K. (2003). Neoproterozoic deformation in the northeastern part of the Saharan Metacraton, northern Sudan. Precambrian Research, 123, 203–221. https://doi.org/10.1016/S0301-9268(03)00068-8
    [Google Scholar]
  2. Abdelsalam, M. G., Liégeois, J. P., & Stern, R. J. (2002). The Saharan Metacraton. Review. Journal of African Earth Sciences, 34, 119–136. https://doi.org/10.1016/S0899-5362(02)00013-1
    [Google Scholar]
  3. Adamson, D., McEvedy, R., & Williams, M. A. J. (1993). Tectonic inheritance in the Nile basin and adjacent areas. Israel Journal of Earth Sciences, 41, 75–85.
    [Google Scholar]
  4. Appel, P., Schenk, V., & Schumann, A. (2005). P‐T path and metamorphic ages of pelitic schists at Murchison Falls, NW Uganda: Evidence for a Pan‐African tectonometamorphic event in the Congo Craton. European Journal of Mineralogy, 17, 655–664. https://doi.org/10.1127/0935-1221/2005/0017-0655
    [Google Scholar]
  5. Asga‐Unesco
    Asga‐Unesco . (1963). Geological map of Africa, sheet N.3, scale 1:5,000,000. Paris, France: Association of African Geological Surveys, United Nations Educational, Scientific and Cultural Organization.
    [Google Scholar]
  6. Bennett, V. C., & DePaolo, D. J. (1987). Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geological Society of America Bulletin, 99, 674–685. https://doi.org/10.1130/0016-7606(1987)99<674:PCHOTW>2.0.CO;2
    [Google Scholar]
  7. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea‐level change: A review and look forward. Sedimentology, 47, 2–48. https://doi.org/10.1046/j.1365-3091.2000.00008.x
    [Google Scholar]
  8. Buursink, J. (1971). Soils of central Sudan (p. 248). Utrecht, The Netherlands: Grafisch Bedrijf Schotanus & Jens.
    [Google Scholar]
  9. Castelltort, S., & van den Driessche, J. (2003). How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sedimentary Geology, 157, 3–13. https://doi.org/10.1016/S0037-0738(03)00066-6
    [Google Scholar]
  10. Champion, D. C. (2013). Neodymium depleted mantle model age map of Australia: Explanatory notes and user guide. Canberra: Geoscience Australia. https://doi.org/10.11636/Record.2013.044
    [Google Scholar]
  11. de Vivo, B., Giunta, G., Lima, A., Ramaglia, V. M., Orsi, G., Perrone, V., & Zuppetta, A. (1981). An application of moving average analysis to a regional geochemical reconnaissance on residual soils of southern Sudan. Rendiconti della Società Italiana di Mineralogia e Petrologia, 37, 387–406.
    [Google Scholar]
  12. DePaolo, D. J., Linn, A. M., & Schubert, G. (1991). The continental crustal age distribution: Methods of determining mantle separation ages from Sm‐Nd isotopic data and application to the southwestern United States. Journal of Geophysical Research: Solid Earth, 96(B2), 2071–2088. https://doi.org/10.1029/90JB02219
    [Google Scholar]
  13. DePaolo, D. J., & Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249–252. https://doi.org/10.1029/GL003i005p00249
    [Google Scholar]
  14. Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40, 695–707.
    [Google Scholar]
  15. Dickinson, W. R. (2008). Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth and Planetary Science Letters, 275, 80–92. https://doi.org/10.1016/j.epsl.2008.08.003
    [Google Scholar]
  16. Dickinson, W. R., Lawton, T. F., & Gehrels, G. E. (2009). Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona. Geology, 37, 503–506. https://doi.org/10.1130/G25646A.1
    [Google Scholar]
  17. Dou, L., Xiao, K., Cheng, D., Shi, B., & Li, Z. (2007). Petroleum geology of the Melut Basin and the Great Palogue Field, Sudan. Marine and Petroleum Geology, 24, 129–144. https://doi.org/10.1016/j.marpetgeo.2006.11.001
    [Google Scholar]
  18. El‐Attar, H. A., & Jackson, M. L. (1973). Montmorillonitic soils developed in Nile river sediments. Soil Sciences, 116, 191–201. https://doi.org/10.1097/00010694-197309000-00007
    [Google Scholar]
  19. Faccenna, C., Glišović, P., Forte, A., Becker, T. W., Garzanti, E., & Sembroni, A. (2018). Long‐lived river systems controlled by a mantle conveyor belt: The Nile. Nature Geoscience, in review
    [Google Scholar]
  20. Fernandez‐Alonso, M., Cutten, H., de Waele, B., Tack, L., Tahon, A., Baudet, D., & Barritt, S. D. (2012). The Mesoproterozoic Karagwe‐Ankole Belt (former NE Kibaran belt): The result of prolonged extensional intracratonic basin development punctuated by two short‐lived far‐field compressional events. Precambrian Research, 216–219, 63–86. https://doi.org/10.1016/j.precamres.2012.06.007
    [Google Scholar]
  21. Fielding, L., Najman, Y., Millar, I., Butterworth, P., Andò, S., Padoan, M., … Kneller, B. (2017). A detrital record of the Nile River and its catchment. Journal of the Geological Society London, 174, 301–317. https://doi.org/10.1144/jgs2016-075
    [Google Scholar]
  22. Fielding, L., Najman, Y., Millar, I., Butterworth, P., Garzanti, E., Vezzoli, G., … Kneller, B. (2018). The initiation and evolution of the River Nile. Earth and Planetary Science Letters, 489, 166–178. https://doi.org/10.1016/j.epsl.2018.02.031
    [Google Scholar]
  23. Folk, R. L. (1968). Petrology of sedimentary rocks (p. 182). Austin, TX: Hemphill Publishing Co.
    [Google Scholar]
  24. Gani, N. D., Abdelsalam, M. G., Gera, S., & Gani, M. R. (2009). Stratigraphic and structural evolution of the Blue Nile Basin, Northwestern Ethiopian Plateau. Geological Journal, 44, 30–56. https://doi.org/10.1002/gj.1127
    [Google Scholar]
  25. Garzanti, E. (2016). From static to dynamic provenance analysis ‐ Sedimentary petrology upgraded. Sedimentary Geology, 336, 3–13. https://doi.org/10.1016/j.sedgeo.2015.07.010
    [Google Scholar]
  26. Garzanti, E., Andò, S., France‐Lanord, C., Vezzoli, G., Galy, V., & Najman, Y. (2010). Mineralogical and chemical variability of fluvial sediments. 1. Bedload sand (Ganga‐Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299, 368–381. https://doi.org/10.1016/j.epsl.2010.09.017
    [Google Scholar]
  27. Garzanti, E., Andò, S., Padoan, M., Vezzoli, G., & el Kammar, A. (2015). The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 130, 9–56. https://doi.org/10.1016/j.quascirev.2015.07.011
    [Google Scholar]
  28. Garzanti, E., Andò, S., & Vezzoli, G. (2008). Settling‐equivalence of detrital minerals and grain‐size dependence of sediment composition. Earth and Planetary Science Letters, 273, 138–151. https://doi.org/10.1016/j.epsl.2008.06.020
    [Google Scholar]
  29. Garzanti, E., Andò, S., & Vezzoli, G. (2009). Grain‐size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277, 422–432. https://doi.org/10.1016/j.epsl.2008.11.007
    [Google Scholar]
  30. Garzanti, E., Andò, S., Vezzoli, G., Ali Abdel Megid, A., & El Kammar, A. (2006). Petrology of Nile River sands (Ethiopia and Sudan): Sediment budgets and erosion patterns. Earth and Planetary Science Letters, 252, 327–341. https://doi.org/10.1016/j.epsl.2006.10.001
    [Google Scholar]
  31. Garzanti, E., Padoan, M., Setti, M., Peruta, L., Najman, Y., & Villa, I. M. (2013). Weathering geochemistry and Sr‐Nd fingerprints of equatorial upper Nile and Congo muds. Geochemistry, Geophysics, Geosystems, 14, 292–316. https://doi.org/10.1002/ggge.20060
    [Google Scholar]
  32. Garzanti, E., Vermeesch, P., Andò, S., Vezzoli, G., Valagussa, M., Allen, K., … Al‐Juboury, I. A. (2013). Provenance and recycling of Arabian desert sand. Earth‐Science Reviews, 120, 1–19. https://doi.org/10.1016/j.earscirev.2013.01.005
    [Google Scholar]
  33. Garzanti, E., Vezzoli, G., Andò, S., Paparella, P., & Clift, P. D. (2005). Petrology of Indus River sands : A key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 229, 287–302. https://doi.org/10.1016/j.epsl.2004.11.008
    [Google Scholar]
  34. Goldstein, S. L., Arndt, N. T., & Stallard, R. F. (1997). The history of a continent from U‐Pb ages of zircons from Orinoco River sand and Sm‐Nd isotopes in Orinoco basin river sediments. Chemical Geology, 139, 271–286. https://doi.org/10.1016/S0009-2541(97)00039-9
    [Google Scholar]
  35. Goldstein, S. L., O'Nions, R. K., & Hamilton, P. J. (1984). A Sm‐Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70, 221–236. https://doi.org/10.1016/0012-821X(84)90007-4
    [Google Scholar]
  36. Griffin, W. L., Powell, W. J., Pearson, N. J., & O'Reilly, S. Y. (2008). GLITTER: Data reduction software for laser ablation ICP–MS. In P.Sylvester (Ed.), Laser ablation–ICP–MS in the earth sciences: Current practices and outstanding issues, Vol .40 (pp. 204–207). Mineralogical Association of Canada, Short Course.
    [Google Scholar]
  37. Hereher, M. E. (2014). Assessment of sand drift potential along the Nile Valley and Delta using climatic and satellite data. Applied Geography, 55, 39–47. https://doi.org/10.1016/j.apgeog.2014.09.004
    [Google Scholar]
  38. Hinderer, M. (2012). From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 280, 21–59. https://doi.org/10.1016/j.sedgeo.2012.03.009
    [Google Scholar]
  39. Johnson, P. R., Andresen, A., Collins, A. S., Fowler, A. R., Fritz, H., Ghebreab, W., … Stern, R. J. (2011). Late Cryogenian‐Ediacaran history of the Arabian‐Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences, 61, 167–232. https://doi.org/10.1016/j.jafrearsci.2011.07.003
    [Google Scholar]
  40. Klitzsch, E. H., & Squyres, C. H. (1990). Paleozoic and Mesozoic geological history of north eastern Africa based upon new interpretation of Nubian strata. American Association of Petroleum Geologists Bulletin, 74, 1203–1211.
    [Google Scholar]
  41. Lawrence, R. L., Cox, R., Mapes, R. W., & Coleman, D. S. (2011). Hydrodynamic fractionation of zircon age populations. Geological Society of America Bulletin, 123, 295–305. https://doi.org/10.1130/B30151.1
    [Google Scholar]
  42. Leeder, M. R. (2011). Tectonic sedimentology: Sediment systems deciphering global to local tectonics. Sedimentology, 58, 2–56. https://doi.org/10.1111/j.1365-3091.2010.01207.x
    [Google Scholar]
  43. Link, K., Koehn, D., Barth, M. G., Tiberindwa, J. V., Barifaijo, E., Aanyu, K., & Foley, S. F. (2010). Continuous cratonic crust between the Congo and Tanzania blocks in western Uganda. International Journal of Earth Sciences, 99, 1559–1573. https://doi.org/10.1007/s00531-010-0548-8
    [Google Scholar]
  44. Lombardini, E. (1865). Essai sur l’ hydrologie du Nil (p. 72). Paris/Milan, Italy: Bernardini.
    [Google Scholar]
  45. Malusà, M. G., Carter, A., Limoncelli, M., Villa, I. M., & Garzanti, E. (2013). Bias in detrital zircon geochronology and thermochronometry. Chemical Geology, 359, 90–107. https://doi.org/10.1016/j.chemgeo.2013.09.016
    [Google Scholar]
  46. Malusà, M. G., Resentini, A., & Garzanti, E. (2016). Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research, 31, 1–19. https://doi.org/10.1016/j.gr.2015.09.002
    [Google Scholar]
  47. Mange, M. A., & Morton, A. C. (2007). Geochemistry of heavy minerals. In M. A.Mange , & D. T.Wright (Eds.), Heavy minerals in use, Developments in Sedimentology, Vol. 58 (pp. 345–391). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/S0070-4571(07)58013-1
    [Google Scholar]
  48. McHargue, T. R., Heidrick, T. L., & Livingston, J. E. (1992). Tectonostratigraphic development of the interior Sudan rifts, Central Africa. Tectonophysics, 213, 187–202. https://doi.org/10.1016/0040-1951(92)90258-8
    [Google Scholar]
  49. Merla, G., Abbate, E., Azzaroli, A., Bruni, P., Canuti, P., Fazzuoli, M., … Tacconi, P. (1979). A geological map of Ethiopia and Somalia, 1:2,000,000 and comment. Florence, Italy: University of Florence.
    [Google Scholar]
  50. Moecher, D. P., & Samson, S. D. (2006). Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters, 247, 252–266. https://doi.org/10.1016/j.epsl.2006.04.035
    [Google Scholar]
  51. Mohamed, A. Y., Ashcroft, W. A., & Whiteman, A. J. (2001). Structural development and crustal stretching in the Muglad Basin, southern Sudan. Journal of African Earth Sciences, 32, 179–191. https://doi.org/10.1016/S0899-5362(01)90003-X
    [Google Scholar]
  52. Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., … Pan, B. (2015). Loess Plateau storage of Northeastern Tibetan Plateau‐derived Yellow River sediment. Nature Communications, 6, 1–8. https://doi.org/10.1038/ncomms9511
    [Google Scholar]
  53. Nyakairu, G. W., & Koeberl, C. (2001). Mineralogical and chemical composition and distribution of rare earth elements in clay‐rich sediments from central Uganda. Geochemical Journal, 35, 13–28. https://doi.org/10.2343/geochemj.35.13
    [Google Scholar]
  54. Padoan, M., Garzanti, E., Harlavan, Y., & Villa, I. M. (2011). Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochimica et Cosmochimica Acta, 75, 3627–3644. https://doi.org/10.1016/j.gca.2011.03.042
    [Google Scholar]
  55. Pik, R., Marty, B., Carignan, J., & Lavé, J. (2003). Stability of the Upper Nile drainage network (Ethiopia) deduced from (U/Th)/He thermochronometry: Implications for uplift and erosion of the Afar plume dome. Earth and Planetary Science Letters, 215, 73–88. https://doi.org/10.1016/S0012-821X(03)00457-6
    [Google Scholar]
  56. Rittner, M., Vermeesch, P., Carter, A., Bird, A., Stevens, T., Garzanti, E., … Lu, H. (2016). The provenance of Taklamakan desert sand. Earth and Planetary Science Letters, 437, 127–137. https://doi.org/10.1016/j.epsl.2015.12.036
    [Google Scholar]
  57. Rogers, N. W., James, D., Kelley, S. P., & de Mulder, M. (1998). The generation of potassic lavas from the eastern Virunga Province, Rwanda. Journal of Petrology, 39, 1223–1247. https://doi.org/10.1093/petroj/39.6.1223
    [Google Scholar]
  58. Rubey, W. W. (1933). The size‐distribution of heavy minerals within a water‐laid sandstone. Journal of Sedimentary Petrology, 3, 3–29.
    [Google Scholar]
  59. Salama, R. B. (1997). Rift basins of the Sudan. Sedimentary Basins of the World, 3, 105–149. https://doi.org/10.1016/S1874-5997(97)80009-3
    [Google Scholar]
  60. Schenk, V., Appel, P., Jons, N., Loose, D., Schumann, A., & Wegner, H. (2007). Metamorphic reworking of the Congo craton in Uganda. Geochimica et Cosmochimica Acta, 71, A887.
    [Google Scholar]
  61. Shukri, N. M. (1950). The mineralogy of some Nile sediments. Quarterly Journal of the Geological Society, 106, 466–467. https://doi.org/10.1144/GSL.JGS.1950.106.01-04.23
    [Google Scholar]
  62. Simmons, M. (2016). Detrital Geochronology of the Nile. MSci Independent Project GEOLM905, University College London, 81.
  63. Stanley, J. D., & Wingerath, J. G. (1996). Nile sediment dispersal altered by the Aswan High Dam: The kaolinite trace. Marine Geology, 133, 1–9. https://doi.org/10.1016/0025-3227(96)00019-9
    [Google Scholar]
  64. Sutcliffe, J. V., & Parks, Y. P. (1999). The hydrology of the Nile, Vol. 5 (p. 179). Wallingford: International Association of Hydrological Sciences, Special Publication.
    [Google Scholar]
  65. Tack, L., Wingate, M. T. D., de Waele, B., Meerte, J., Belousova, E., Griffin, B., … Fernandez‐Alonso, M. (2010). The 1375 Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 180, 63–84. https://doi.org/10.1016/j.precamres.2010.02.022
    [Google Scholar]
  66. Thomas, W. A., Becker, T. P., Samson, S. D., & Hamilton, M. A. (2004). Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic‐wedge sandstones. The Journal of Geology, 112, 23–37. https://doi.org/10.1086/379690
    [Google Scholar]
  67. Vermeersch, P. M., & van Neer, W. (2015). Nile behaviour and late Palaeolithic humans in upper Egypt during the Late Pleistocene. Quaternary Science Reviews, 130, 155–167. https://doi.org/10.1016/j.quascirev.2015.03.025
    [Google Scholar]
  68. Vermeesch, P., Avigad, D., & McWilliams, M. O. (2009). 500 m.y. of thermal history elucidated by multi‐method detrital thermochronology of North Gondwana Cambrian sandstone (Eilat area, Israel). Geological Society of America Bulletin, 121, 1204–1216. https://doi.org/10.1130/B26473.1
    [Google Scholar]
  69. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  70. Vermeesch, P., Rittner, M., Petrou, E., Omma, J., Mattinson, C., & Garzanti, E. (2017). High throughput petrochronology and sedimentary provenance analysis by automated phase mapping and LAICPMS. Geochemistry, Geophysics, Geosystems, 1–14, https://doi.org/10.1002/2017gc007109
    [Google Scholar]
  71. Vervoort, J. D., Patchett, P. J., Blichert‐Toft, J., & Albarède, F. (1999). Relationships between Lu‐Hf and Sm‐Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168, 79–99. https://doi.org/10.1016/S0012-821X(99)00047-3
    [Google Scholar]
  72. Vezzoli, G., Garzanti, E., Limonta, M., Andó, S., & Yang, S. (2016). Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk‐sample versus single‐mineral provenance budgets. Geomorphology, 261, 177–192. https://doi.org/10.1016/j.geomorph.2016.02.031
    [Google Scholar]
  73. von Eynatten, H., & Dunkl, I. (2012). Assessing the sediment factory: The role of single grain analysis. Earth‐Science Reviews, 115, 97–120. https://doi.org/10.1016/j.earscirev.2012.08.001
    [Google Scholar]
  74. von Eynatten, H., Gaupp, R., & Wijbrans, J. R. (1996). 40Ar/39Ar laser‐probe dating of detrital white micas from Cretaceous sedimentary rocks of the Eastern Alps: Evidence for Variscan high‐pressure metamorphism and implications for Alpine orogeny. Geology, 24, 691–694. https://doi.org/10.1130/0091-7613(1996)024<0691:AALPDO>2.3.CO;2
    [Google Scholar]
  75. Williams, M. A. J., & Adamson, D. (1982). A land between two Niles (p. 246). Rotterdam, The Netherlands: Balkema.
    [Google Scholar]
  76. Williams, M. A. J., Duller, G. A. T., Williams, F. M., Woodward, J. C., Macklin, M. G., el Tom, O. A. M., … Barrows, T. T. (2015). Causal links between Nile floods and eastern Mediterranean sapropel formation during the past 250 kyr confirmed by OSL and radiocarbon dating of Blue and White Nile sediments. Quaternary Science Reviews, 130, 89–108. https://doi.org/10.1016/j.quascirev.2015.05.024
    [Google Scholar]
  77. Wittman, H., Malusà, M. G., Resentini, A., Garzanti, E., & Niedermann, S. (2016). The cosmogenic record of mountain erosion transmitted across a foreland basin: Source‐to‐sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment. Earth and Planetary Science Letters, 452, 258–271. https://doi.org/10.1016/j.epsl.2016.07.017
    [Google Scholar]
  78. Woodward, J. C., Williams, M. A. J., Garzanti, E., Macklin, M. G., & Marriner, N. (2015). From source to sink: Exploring the Quaternary history of the Nile. Quaternary Science Reviews, 130, 230.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12293
Loading
/content/journals/10.1111/bre.12293
Loading

Data & Media loading...

Supplements

 

 

 

WORD

 

WORD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error