1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Intermontane basins are often the result of regionally variable uplift in tectonic settings. Wedge‐top basins, a type of intermontane basin, form along thrust faults within a fold and thrust belt, and provide an ideal environment to study the regional fluvial and surface response to local variations in rock uplift. This study simulates the formation and evolution of an intermontane basin using a landscape evolution model. The modelling results demonstrate that large trunk streams maintain connectivity during basin formation for two reasons: (1) their stream power is enhanced by the capture of smaller streams, enabling them to incise through the uplifting downstream region, and (2) they acquire increased sediment yield to completely infill the upstream accommodation space rather than forming an endorhic basin. During active deformation of the fold‐and‐thrust belt, both channel slope and erosion rates are reduced upstream of the intermontane basin and these changes propagate as a wave of low erosion into the uplands. For a uniform background uplift rate in a landscape previously at steady state, this reduced rate of erosion results in a net surface uplift upstream of the basin. Following the eventual breach of the basin's bounding structural barrier, a wave of high erosion propagates through the basin and increases the channel slope. This onset of increased erosion can be delayed by up to several million years relative to the onset of downstream uplift. Observed paleoerosion rates in paired wedge‐top and foreland basin sequences, and present‐day stream profiles in the Argentine Precordillera support our modelling results. Our results may be extrapolated to other foreland systems, and are potentially identifed using low‐temperature thermochronometers in addition to paleoerosion rates.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12295
2018-06-26
2020-07-10
Loading full text...

Full text loading...

References

  1. Adams, B. A., Whipple, K. X., Hodges, K. V., & Heimsath, A. M. (2016). In situ development of high‐elevation, low‐relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan. Journal of Geophysical Research: Earth Surface, 121(2), 294–319.
    [Google Scholar]
  2. Allmendinger, R. W., & Judge, P. A. (2014). The argentine Precordillera: A foreland thrust belt proximal to the subducted plate. Geosphere, 10(6), 1203–1218. https://doi.org/10.1130/GES01062.1
    [Google Scholar]
  3. Barnes, R., Lehman, C., & Mulla, D. (2014). Priority‐flood: An optimal depression‐filling and watershed‐labeling algorithm for digital elevation models. Computers & Geosciences, 62, 117–127. https://doi.org/10.1016/j.cageo.2013.04.024
    [Google Scholar]
  4. Beamud, E., Muñoz, J. A., Fitzgerald, P. G., Baldwin, S. L., Garcés, M., Cabrera, L., & Metcalf, J. R. (2011). Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South‐Central Pyrenees. Basin Research, 23(3), 309–331. https://doi.org/10.1111/j.1365-2117.2010.00492.x
    [Google Scholar]
  5. Bierman, P., & Steig, E. J. (1996). Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms, 21(2), 125–139. https://doi.org/10.1002/(ISSN)1096-9837
    [Google Scholar]
  6. Braun, J., & Willett, S. D. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology, 180, 170–179. https://doi.org/10.1016/j.geomorph.2012.10.008
    [Google Scholar]
  7. Cardozo, N., & Jordan, T. (2001). Causes of spatially variable tectonic subsidence in the Miocene Bermejo Foreland Basin, Argentina. Basin Research, 13(3), 335–357. https://doi.org/10.1046/j.0950-091x.2001.00154.x
    [Google Scholar]
  8. Chen, Y.‐W., Shyu, J. B. H., & Chang, C.‐P. (2015). Neotectonic characteristics along the eastern flank of the Central Range in the active Taiwan orogen inferred from fluvial channel morphology. Tectonics, 34, 2249–2270. https://doi.org/10.1002/2014TC003795
    [Google Scholar]
  9. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  10. DiBiase, R. A., Whipple, K. X., Heimsath, A. M., & Ouimet, W. B. (2010). Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth and Planetary Science Letters, 289(1), 134–144. https://doi.org/10.1016/j.epsl.2009.10.036
    [Google Scholar]
  11. Fitzgerald, P. G., Muñoz, J. A., Coney, P. J., & Baldwin, S. L. (1999). Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters, 173(3), 157–170. https://doi.org/10.1016/S0012-821X(99)00225-3
    [Google Scholar]
  12. Fosdick, J. C., Carrapa, B., & Ortíz, G. (2015). Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records. Earth and Planetary Science Letters, 432, 73–83. https://doi.org/10.1016/j.epsl.2015.09.041
    [Google Scholar]
  13. Gallen, S. F., Wegmann, K. W., & Bohnenstiehl, D. (2013). Miocene rejuvenation of topographic relief in the southern Appalachians. GSA Today, 23(2), 4–10. https://doi.org/10.1130/GSATG163A.1
    [Google Scholar]
  14. Garcia‐Castellanos, D. (2006). Long‐term evolution of tectonic lakes: climatic controls on the development of internally drained basins. Geological Society of America Special Papers, 398, 283–294.
    [Google Scholar]
  15. Garcia‐Castellanos, D., Vergés, J., Gaspar‐Escribano, J., & Cloetingh, S. (2003). Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro basin (NE Iberia). Journal of Geophysical Research: Solid Earth, 108(B7), 283–294.
    [Google Scholar]
  16. Hack, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland, U.S. Geological Survey Professional Paper 294‐B, pp. 45–97.
  17. Hilley, G. E., & Strecker, M. R. (2005). Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina. Geological Society of America Bulletin, 117(7–8), 887–901. https://doi.org/10.1130/B25602.1
    [Google Scholar]
  18. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole‐filled SRTM for the globe version 4. Available from the CGIAR‐CSI SRTM 90 m Database (http://srtm.csi.cgiar.org).
  19. Jordan, T. E., Allmendinger, R. W., Damanti, J. F., & Drake, R. E. (1993). Chronology of motion in a complete thrust belt: the Precordillera, 30‐31 S, Andes Mountains. The Journal of Geology, 101(2), 135–156. https://doi.org/10.1086/648213
    [Google Scholar]
  20. Jordan, T. E., Burns, W. M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S., & Mpodozis, C. (2001). Extension and basin formation in the southern Andes caused by increased convergence rate: A mid‐Cenozoic trigger for the Andes. Tectonics, 20(3), 308–324. https://doi.org/10.1029/1999TC001181
    [Google Scholar]
  21. Kirby, E., Whipple, K. X., Tang, W., & Chen, Z. (2003). Distribution of active rock uplift along the eastern margin of the Tibetan plateau: Inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research: Solid Earth, 108(B4), 1–24.
    [Google Scholar]
  22. Painter, C. S., Carrapa, B., DeCelles, P. G., Gehrels, G. E., & Thomson, S. N. (2014). Exhumation of the North American Cordillera revealed by multi‐dating of Upper Jurassic‐Upper Cretaceous foreland basin deposits. GSA Bulletin, 126(11–12), 1439–1464. https://doi.org/10.1130/B30999.1
    [Google Scholar]
  23. Paul, J. D., Roberts, G. G., & White, N. (2014). The African landscape through space and time. Tectonics, 33(6), 898–935. https://doi.org/10.1002/2013TC003479
    [Google Scholar]
  24. Perron, J. T., Kirchner, J. W., & Dietrich, W. E. (2009). Formation of evenly spaced ridges and valleys. Nature, 460(7254), 502. https://doi.org/10.1038/nature08174
    [Google Scholar]
  25. Riccio, S. J., Fitzgerald, P. G., Benowitz, J. A., & Roeske, S. M. (2014). The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier thrust fault region of the intracontinental strike‐slip Denali fault system. Tectonics, 33(11), 2195–2217. https://doi.org/10.1002/2014TC003646
    [Google Scholar]
  26. Royden, L., & Perron, J. T. (2013). Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research: Earth Surface, 118(2), 497–518.
    [Google Scholar]
  27. Ruetenik, G. A., Moucha, R., & Hoke, G. D. (2016). Landscape response to changes in dynamic topography. Terra Nova, 28(4), 289–296. https://doi.org/10.1111/ter.12220
    [Google Scholar]
  28. Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 112(8), 1250–1263.
    [Google Scholar]
  29. Suriano, J., Mardonez, D., Mahoney, J. B., Mescua, J. F., Giambiagi, L. B., Kimbrough, D., & Lossada, A. (2017). Uplift sequence of the Andes at 30°S: Insights from sedimentology and U/Pb dating of synorogenic deposits. Journal of South American Earth Sciences, 75, 11–34. https://doi.org/10.1016/j.jsames.2017.01.004
    [Google Scholar]
  30. Tucker, G., Lancaster, S., Gasparini, N., & Bras, R. (2001). The channel‐hillslope integrated landscape development model (CHILD). In R. S.Harmon (Ed.), Landscape erosion and evolution modeling (pp. 349–388). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-0575-4
    [Google Scholar]
  31. Tucker, G. E., & Slingerland, R. (1996). Predicting sediment flux from fold and thrust belts. Basin Research, 8(3), 329–349. https://doi.org/10.1046/j.1365-2117.1996.00238.x
    [Google Scholar]
  32. van der Beek, P., Robert, X., Mugnier, J. L., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late Miocene–recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Research, 18(4), 413–434. https://doi.org/10.1111/j.1365-2117.2006.00305.x
    [Google Scholar]
  33. Val, P., Hoke, G. D., Fosdick, J. C., & Wittmann, H. (2016). Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10 be paleo‐erosion rates in the argentine Precordillera. Earth and Planetary Science Letters, 450, 173–185. https://doi.org/10.1016/j.epsl.2016.06.015
    [Google Scholar]
  34. Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661–17674. https://doi.org/10.1029/1999JB900120
    [Google Scholar]
  35. Willenbring, J. K., Gasparini, N. M., Crosby, B. T., & Brocard, G. (2013). What does a mean mean? the temporal evolution of detrital cosmogenic denudation rates in a transient landscape. Geology, 41(12), 1215–1218. https://doi.org/10.1130/G34746.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12295
Loading
/content/journals/10.1111/bre.12295
Loading

Data & Media loading...

Supplements

 

PDF

 

MOVIE
  • Article Type: Research Article
Keyword(s): intermontane basin , landscape evolution , tectonic geomorphology and wedge‐top basins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error