1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The Late Triassic outcrops on southern Edgeøya, East Svalbard, allow a multiscale study of syn‐sedimentary listric growth faults located in the prodelta region of a regional prograding system. At least three hierarchical orders of growth faults have been recognized, each showing different deformation mechanisms, styles and stratigraphic locations of the associated detachment interval. The faults, characterized by mutually influencing deformation envelopes over space‐time, generally show SW‐ to SE‐dipping directions, indicating a counter‐regional trend with respect to the inferred W‐NW directed progradation of the associated delta system. The down‐dip movement is accommodated by polyphase deformation, with the different fault architectural elements recording a time‐dependent transition from fluidal‐hydroplastic to ductile‐brittle deformation, which is also conceptually scale‐dependent, from the smaller‐ (3rd order) to the larger‐scale (1st order) end‐member faults respectively. A shift from distributed strain to strain localization towards the fault cores is observed at the meso to microscale (<1 mm), and in the variation in petrophysical parameters of the litho‐structural facies across and along the fault envelope, with bulk porosity, density, pore size and microcrack intensity varying accordingly to deformation and reworking intensity of inherited structural fabrics. The second‐ and third‐order listric fault nucleation points appear to be located above blind fault tip‐related monoclines involving cemented organic shales. Close to planar, through‐going, first‐order faults cut across this boundary, eventually connecting with other favourable lower‐hierarchy fault to create seismic‐scale fault zones similar to those imaged in the nearby offshore areas. The inferred large‐scale driving mechanisms for the first‐order faults are related to the combined effect of tectonic reactivation of deeper Palaeozoic structures in a far field stress regime due to the Uralide orogeny, and differential compaction associated with increased sand sedimentary input in a fine‐grained, water‐saturated, low‐accommodation, prodeltaic depositional environment. In synergy to this large‐scale picture, small‐scale causative factors favouring second‐ and third‐order faulting seem to be related to mechanical‐rheological instabilities related to localized shallow diagenesis and liquidization fronts.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12296
2018-05-25
2020-05-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/5/bre12296.html?itemId=/content/journals/10.1111/bre.12296&mimeType=html&fmt=ahah

References

  1. Allen, J. R. L. (1982). Sedimentary structures: Their character and physical basis, Vol. 657. Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  2. Anell, I., Braathen, A., & Olaussen, S. (2014). Regional constraints of the Sørkapp Basin: A Carboniferous relic or a Cretaceous depression?Marine and Petroleum Geology, 54, 123–138. https://doi.org/10.1016/j.marpetgeo.2014.02.023
    [Google Scholar]
  3. Anell, I., Braathen, A., Olaussen, S., & Osmundsen, P. T. (2013). Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic. First Break, 31(6), 67–76.
    [Google Scholar]
  4. Anell, I., Faleide, J. I., & Braathen, A. (2016). Regional tectonosedimentary development of the highs and basins of the northwestern Barents Shelf. Norwegian Journal of Geology, 96, 27–41.
    [Google Scholar]
  5. Armstrong, C., Mohrig, D., Hess, T., George, T., & Straub, K. M. (2014). Influence of growth faults on coastal fluvial systems: Examples from the late Miocene to Recent Mississippi River Delta. Sedimentary Geology, 301, 120–132. https://doi.org/10.1016/j.sedgeo.2013.06.010
    [Google Scholar]
  6. Back, S., Jing, T. H., Thang, T. X., & Morley, C. K. (2005). Stratigraphic development of synkinematic deposits in a large growth‐fault system, onshore Brunei Darussalam. Journal of the Geological Society London, 162, 243–258. https://doi.org/10.1144/0016-764903-006
    [Google Scholar]
  7. Back, S., & Morley, C. (2016). Growth faults above shale – Seismic‐scale outcrop analogues from the Makran foreland, SW Pakistan. Marine and Petroleum Geology, 70, 144–162. https://doi.org/10.1016/j.marpetgeo.2015.11.008
    [Google Scholar]
  8. Bally, A. W., Bernoulli, D., Davis, G. A., & Montadert, L. (1981). Listric normal faults. Oceanologica Acta, 4, 87–101.
    [Google Scholar]
  9. Balsamo, F., Bezerra, F. H., Vieira, M., & Storti, F. (2013). Structural control on the formation of iron oxide concretions and Liesegang bands in faulted, poorly lithified Cenozoic sandstones of the Paraiba basin, Brazil. Geological Society of America Bulletin, 125, 913–931. https://doi.org/10.1130/B30686.1
    [Google Scholar]
  10. Bense, V. F., & Person, M. A. (2006). Faults as conduit‐barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research, 42, W05421.
    [Google Scholar]
  11. Bhattacharya, J. P., & Davies, R. K. (2001). Growth faults at the prodelta to delta‐front transition, Cretaceous Ferron sandstone, Utah. Marine and Petroleum Geology, 18, 525–534. https://doi.org/10.1016/S0264-8172(01)00015-0
    [Google Scholar]
  12. Bolton, A. J., Maltman, A. J., & Fisher, Q. (2000). Anisotropic permeability and bimodal pore‐size distributions of fine‐grained marine sediments. Marine and Petroleum Geology, 17, 657–672. https://doi.org/10.1016/S0264-8172(00)00019-2
    [Google Scholar]
  13. Bouroullec, R., Cartwright, J. A., Johnson, H. D., Lansigu, C., Quémener, J.‐M., & Savanier, D. (2004). Syndepositional faulting in the Grès d'Annot Formation, SE France: High‐resolution kinematic analysis and stratigraphic response to growth faulting. Geological Society, London, Special Publications, 221, 241–265. https://doi.org/10.1144/gsl.sp.2004.221.01.13
    [Google Scholar]
  14. Braathen, A., Bergh, S. G., & Maher, H. D. (1997). Thrust kinematics in the central part of the Tertiary transpressional fold‐thrust belt in Spitsbergen. NGU Bulletin, 433, 32–33.
    [Google Scholar]
  15. Braathen, A., Maher, H. D., Haabet, T. E., Kristensen, S. E., Tørudbakken, B. O., & Worsley, D. (1999). Caledonian thrusting on Bjornoya: Implications for Palaeozoic and Mesozoic tectonism of the western Barents Shelf. Norsk Geologisk Tidsskrift, 79(1), 57–68. https://doi.org/10.1080/002919699433915
    [Google Scholar]
  16. Braathen, A., Midtkandal, I., Mulrooney, M. J., Appleyard, T. R., Haile, B. G., & Yperen, A. E. (2017). Growth‐faults from delta collapse – structural and sedimentological investigation of the Last Chance delta, Ferron Sandstone, Utah. Basin Research, 1–20. https://doi.org/10.1111/bre.12271
    [Google Scholar]
  17. Braathen, A., Osmundsen, P. T., & Gabrielsen, R. H. (2004). Dynamic development of fault rocks in a crustal‐scale detachment: An example from western Norway. Tectonics, 23, 1–27.
    [Google Scholar]
  18. Braathen, A., Osmundsen, P. T., Hauso, H., Semshaug, S., Fredman, N., & Buckley, S. J. (2013). Fault‐induced deformation in a poorly consolidated, siliciclastic growth basin: A study from the Devonian in Norway. Tectonophysics, 586, 112–129. https://doi.org/10.1016/j.tecto.2012.11.008
    [Google Scholar]
  19. Braathen, A., Tveranger, J., Fossen, H., Skar, T., Cardozo, N., Semshaug, S. L., … Sverdrup, E. (2009). Fault facies as concept and its applications to sandstone reservoirs. American Association for Petroleum Geologists Bulletin, 93, 891–917. https://doi.org/10.1306/03230908116
    [Google Scholar]
  20. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028. https://doi.org/10.1130/0091-7613(1996)024&lt;1025:FZAAPS&gt;2.3.CO;2
    [Google Scholar]
  21. Callot, P., Odonne, F., Debroas, E.‐J., Maillard, A., Dhont, D., Basile, C., & Hoareau, G. (2009). Three‐dimensional architecture of submarine slide surfaces and associated soft‐sediment deformation in the Lutetian Sobrarbe deltaic complex (Ainsa, Spanish Pyrenees). Sedimentology, 56, 1226–1249. https://doi.org/10.1111/j.1365-3091.2008.01030.x
    [Google Scholar]
  22. Cavailhes, T., Sizun, J.‐P., Labaume, P., Chauvet, A., Buatier, M., Soliva, R., … Gout, C. (2013). Influence of fault rock foliation on fault zone permeability: The case of deeply buried arkosic sandstones (Grès d'Annot, southeastern France). AAPG Bulletin, 97/9, 1521–1543. https://doi.org/10.1306/03071312127
    [Google Scholar]
  23. Cohen, H. A., & McClay, K. R. (1996). Sedimentation and shale tectonics of the nortwestern Niger Delta front. Marine and Petroleum Geology, 13, 313–328. https://doi.org/10.1016/0264-8172(95)00067-4
    [Google Scholar]
  24. Corfu, F., Andersen, T. B., & Gasser, D. (2014). The Scandinavian Caledonides: Main features, conceptual advances, and critical questions. In: F.Corfu , T. B.Andersen & D.Gasser (Eds.), New perspectives on the caledonides of Scandinavia and related areas (pp. 9–43). London: Geological Society, Special Publications, 390.
    [Google Scholar]
  25. Dallmann, W. K., Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., … Worsley, D. (1999) Lithostratigraphic Lexicon of Svalbard: Review and recommendations for nomenclature use, 318 pp. Tromsø, Norway: Norsk Polarinstitutt.
    [Google Scholar]
  26. Damuth, J. E. (1994). Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Marine and Petroleum Geology, 11, 320–346. https://doi.org/10.1016/0264-8172(94)90053-1
    [Google Scholar]
  27. Edwards, M. B. (1976). Growth faults in upper Triassic deltaic sediments, Svalbard. AAPG Bulletin, 60, 341–355.
    [Google Scholar]
  28. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., … Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91.
    [Google Scholar]
  29. Fleming, E. J., Flowerdew, M. J., Smyth, H. R., Scott, R. A., Morton, A. C., Omma, J. E., … Whitehouse, M. J. (2016). Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Marine and Petroleum Geology, 78, 516–535. https://doi.org/10.1016/j.marpetgeo.2016.10.005
    [Google Scholar]
  30. Fossen, H. (2010). Deformation bands formed during soft‐ sediment deformation: Observations from SE Utah. Marine and Petroleum Geology, 27, 215–222. https://doi.org/10.1016/j.marpetgeo.2009.06.005
    [Google Scholar]
  31. Fossen, H., Schulz, R. A., Shipton, Z. K., & Mair, K. (2007). Deformation Bands in Sandstone – a Review. The Geological Society of London, 164, 755–769. https://doi.org/10.1144/0016-76492006-036
    [Google Scholar]
  32. Gabrielsen, R. H., Sokoutis, D., Willingshofer, D., & Faleide, J. I. (2016). Fault linkage across weak layers during extension: An experimental approach with reference to the Hoop Fault Complex of the SW Barents Sea. Petroleum Geoscience, 22, 123–135. https://doi.org/10.1144/petgeo2015-029
    [Google Scholar]
  33. Gagliano, M. S. (2005). Effects of geological faults on levee failures in South Louisiana. In: Testimony of Sherwood Gagliano. Ph.D. U.S. Senate Committee on Environment and Public Works, Senator James M. Inhofe, Chairman, Washington, D.C., pp. 1–28.
  34. Haile, B. G., Klausen, T. G., Czarniecka, U., Xi, K., Jahren, J., & Hellevang, H. (2018). How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, SvalbardMarine and Petroleum Geology, 92, 519–546. https://doi.org/10.1016/j.marpetgeo.2017.11.019
    [Google Scholar]
  35. Hancock, P. L., & Bevan, T. G. (1987). Brittle modes of foreland extension . In P.Coward , J. F.Dewey & P. L.Hancock (Eds.), Continental extensional tectonics (pp. 127–137). London: Geological Society, Special Publications, 28. https://doi.org/10.1144/GSL.SP.1987.028.01.10
    [Google Scholar]
  36. Harland, W. B. (1997). Proto‐basement in Svalbard. Polar Research, 16, 123–147. https://doi.org/10.3402/polar.v16i2.6631
    [Google Scholar]
  37. Heynekamp, M. R., Goodwin, L. B., Mozley, P. S., & Haneberg, W. C. (1999). Controls on fault‐zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: Implications for fault‐zone permeability and fluid flow. In W. C.Haneberg , P. S.Mozley , J.Casey Moore & L. B.Goodwin (Eds.), Faults and subsurface fluid flow in the shallow crust, Vol. 113 (pp. 27–51). Washington, DC: AGU Geophysical Monograph. American Geophysical Union. https://doi.org/10.1029/GM113
    [Google Scholar]
  38. Hurum, J. H., Roberts, A. J., Nakrem, H. A., Stenløkk, J. A., & Mørk, A. (2014). The first recovered ichthyosaur from the Middle Triassic of Edgeøya, Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 97–110.
    [Google Scholar]
  39. Imber, J., Childs, C., Nell, P. A. R., Walsh, J. J., Hodgetts, D., & Flint, S. (2003). Hanging wall fault kinematics and footwall collapse in listric growth fault systems. Journal of Structural Geology, 25(2), 197–208. https://doi.org/10.1016/S0191-8141(02)00034-2
    [Google Scholar]
  40. King, R. C., Backé, G., Morley, C. K., Hillis, R. R., & Tingay, M. R. P. (2010). Balancing deformation in NW Borneo: Quantifying plate‐scale vs. gravitational tectonics in a delta and deepwater fold‐thrust belt system. Marine and Petroleum Geology, 27(1), 238–246. https://doi.org/10.1016/j.marpetgeo.2009.07.008
    [Google Scholar]
  41. Klausen, T., & Mørk, A. (2014). The upper Triassic paralic deposits of the De Geerdalen formation on hopen: Outcrop analog to the subsurface snadd formation in the Barents Sea. AAPG Bulletin, 98, 1911–1941. https://doi.org/10.1306/02191413064
    [Google Scholar]
  42. Klausen, T. G., Müller, R., Slama, J., & Helland‐Hansen, W. (2016). Evidence for Late Triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of northern Pangea. Lithosphere, 9(1), 14–28.
    [Google Scholar]
  43. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2014). Spatial and temporal changes in geometries of fluvial channel bodies from the Triassic Snadd Formation of offshore Norway. Journal of Sedimentary Research, 84, 567–585. https://doi.org/10.2110/jsr.2014.47
    [Google Scholar]
  44. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the middle to late Triassic snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  45. Krajewski, K. P. (2011). Phosphatic microbialites in the Triassic phosphogenic facies of Svalbard. In V. C.Tewari & J.Seckbach (Eds.), Stromatolites: Interaction of microbes with sediments. Cellular origin, life in extreme habitats and astrobiology, vol. 18 (pp. 187–222). Springer. https://doi.org/10.1007/978-94-007-0397-1_9
    [Google Scholar]
  46. Krajewski, K. P. (2013). Organic matter–apatite–pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: Relevance to the formation of petroleum source rocks in the NW Barents Sea shelf. Marine and Petroleum Geology, 45, 69–105. https://doi.org/10.1016/j.marpetgeo.2013.04.016
    [Google Scholar]
  47. León Y León, C. A. (1998). New perspectives in mercury porosimetry. Advances in Colloid and Interface Science, 76–77, 341–372. https://doi.org/10.1016/S0001-8686(98)00052-9
    [Google Scholar]
  48. Lohr, T., Krawczyk, C., Oncken, O., & Tanner, D. (2008). Evolution of a fault surface from 3D attribute analysis and displacement measurements. Journal of Structural Geology, 30(6), 690–700. https://doi.org/10.1016/j.jsg.2008.02.009
    [Google Scholar]
  49. Loveless, S., Bense, V., & Turner, J. (2011). Fault deformation processes and permeability architecture within recent rift sediments, central Greece. Journal of Structural Geology, 33, 1554–1568.
    [Google Scholar]
  50. Lyberis, N., & Manby, G. (1999). Continental collision and lateral escape deformation in the lower and upper crust: An example from Caledonide Svalbard. Tectonics, 18(1), 40–63. https://doi.org/10.1029/1998TC900013
    [Google Scholar]
  51. Maestro, A., Barnolas, A., Somoza, L., Lowrie, A., & Lawton, T. (2002). Geometry and structure associated to gas‐charged sediments and recent growth faults in the Ebro Delta (Spain). Marine Geology, 186, 351–368. https://doi.org/10.1016/S0025-3227(02)00212-8
    [Google Scholar]
  52. Maher, H. D. (2001). Manifestations of the cretaceous high arctic large igneous province in Svalbard. The Journal of Geology, 109(1), 91–104. https://doi.org/10.1086/317960
    [Google Scholar]
  53. Maher, H. D., Ogata, K., & Braathen, A. (2017). Cone‐in‐cone and beef mineralization associated with Triassic growth basin faulting and shallow shale diagenesis, Edgeøya, Svalbard. Geological Magazine, 154(2), 201–216. https://doi.org/10.1017/S0016756815000886
    [Google Scholar]
  54. Mandl, G., & Crans, W. (1981). Gravitational Gliding in Deltas. In K. R.McClay & N. J.Price (Eds.), Thrust and nappe tectonics (pp. 41–54). London: Geological Society, Special Publications, 9.
    [Google Scholar]
  55. Marello, L., J. Ebbing, J., & Gernigon, L. (2013). Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophysical Journal International, 193/2, 557–584. https://doi.org/10.1093/gji/ggt018
    [Google Scholar]
  56. McClay, K. R., Dooley, T., & Lewis, G. (1998). Analog modelling of progradational delta systems. Geology, 26(9), 771–774. https://doi.org/10.1130/0091-7613(1998)026&lt;0771:AMOPDS&gt;2.3.CO;2
    [Google Scholar]
  57. McClay, K. R., & Ellis, K. R. (1987). Geometries of extensional fault systems developed in model experiments. Geology, 15, 341–344. https://doi.org/10.1130/0091-7613(1987)15&lt;341:GOEFSD&gt;2.0.CO;2
    [Google Scholar]
  58. Meng, Q., Hooker, J., & Cartwright, J. (2017). Early overpressuring in organic‐rich shales during burial: Evidence from fibrous calcite veins in the Lower Jurassic Shales‐with‐Beef Member in the Wessex Basin, UK. Journal of the Geological Society, 174, 869–882. https://doi.org/10.1144/jgs2016-146
    [Google Scholar]
  59. Minakov, A., Faleide, J. I., Glebovsky, V. Y., & Mjelde, R. (2012). Structure and evolution of the northern Barents‐Kara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data. Geophysical Journal International, 188, 79–102. https://doi.org/10.1111/j.1365-246X.2011.05258.x
    [Google Scholar]
  60. Mitterer, R. M. (2010). Methanogenesis and sulfate reduction in marine sediments: A new model. Earth and Planetary Science Letters, 295, 358–366. https://doi.org/10.1016/j.epsl.2010.04.009
    [Google Scholar]
  61. Mørk, A., Dallman, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., … Worsley, D. (1999). Mesozoic lithostratigraphy. In W. K.Dallman (Ed.), Lithostratigraphic lexicon of Svalbard. Upper Palaeozoic to Quaternary bedrock. Review and recommendations for nomenclature use (pp. 127–214). Tromsø, Norway: Norsk Polarinstitutt.
    [Google Scholar]
  62. Mozley, P. S., & Goodwin, L. B. (1995). Patterns of cementation along a Cenozoic normal fault: A record of paleoflow orientations. Geology, 23, 539–542. https://doi.org/10.1130/0091-7613(1995)023&lt;0539:POCAAC&gt;2.3.CO;2
    [Google Scholar]
  63. Nejbert, K., Krajewski, K. P., Dubinska, E., & Pecskay, Z. (2011). Dolerites of Svalbard, north‐west Barents Sea Shelf: Age, tectonic setting and significance for geotectonic interpretation of the High‐Arctic Large Igneous Province. Polar Research, 30(7306), 1–24.
    [Google Scholar]
  64. Nemec, W., Steel, R. J., Gjelberg, J., Collinson, J. D., Prestholm, E., Øxnevad, I. E., & Worsley, D. (1988). Exhumed rotational slides and scar infill features in a Cretaceous delta front, eastern Spitsbergen. Polar Research, 6, 105–112. https://doi.org/10.3402/polar.v6i1.6850
    [Google Scholar]
  65. Nøttvedt, A., Cecchi, M., Gjelberg, J. C., Kristensen, S. E., Lønøy, A., Rasmussen, A., … van Veen, P. M. (1992). Svalbard‐Barents Sea correlation: A short review. In T.Vorren , E.Bergsager , Ø. A.Dahl‐Stamnes , E.Holter , E.Johansen , B.Lie & T. B.Lund (Eds.), Arctic geology and petroleum potential (pp. 15–17). Amsterdam, the Netherlands: Elsevier, Norwegian Petroleum Society, Special Publication 2.
    [Google Scholar]
  66. Onderdonk, N., & Midtkandal, I. (2010). Mechanisms of collapse of the Cretaceous Helvetiafjellet Formation at Kvalvagen, Eeastern Spitsbergen. Marine and Petroleum Geology, 27, 2118–2140. https://doi.org/10.1016/j.marpetgeo.2010.09.004
    [Google Scholar]
  67. Osmundsen, P. T., Braathen, A., Rød, R. S., & Hynne, I. B. (2014). Styles of normal faulting and fault‐controlled sedimentation in the Triassic deposits of Eastern Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 61–69.
    [Google Scholar]
  68. Panpichityota, N., Morley, C. K., & Ghosh, J. (2018). Link between growth faulting and initiation of a mass transport deposit in the northern Taranaki Basin, New Zealand. Basin Research, 30(2), 237–248. https://doi.org/10.1111/bre.12251
    [Google Scholar]
  69. Pochat, S., Castelltort, S., vanden Driessche, J., Besnard, K., & Gumiaux, C. (2004). A simple method of determing sand / shale ratios from seismic analysis of growth faults: An example from Upper Oligocene to Lower Miocene Niger Delta deposits. American Association of Petroleum Geologists Bulletin, 88, 1357–1367. https://doi.org/10.1306/04290403117
    [Google Scholar]
  70. Pochat, S., & van den Driesse, J. (2007). Impact of synsedimentary metre‐scale normal fault scarps on sediment gravity flow dynamics: An example from the Grès d'Annot Formation, SE France. Sedimentary Geology, 202, 796–820. https://doi.org/10.1016/j.sedgeo.2007.09.005
    [Google Scholar]
  71. Rawling, G., & Goodwin, L. (2003). Cataclasis and particulate flow in faulted, poorly lithified sediments. Journal of Structural Geology, 25, 317–331. https://doi.org/10.1016/S0191-8141(02)00041-X
    [Google Scholar]
  72. Rawling, G., & Goodwin, L. (2006). Structural record of the mechanical evolution of mixed zones in faulted poorly lithified sediments, Rio Grande rift, New Mexico, USA. Journal of Structural Geology, 28, 1623–1639. https://doi.org/10.1016/j.jsg.2006.06.008
    [Google Scholar]
  73. Rider, M. H. (1978). Growth faults in Carboniferous of Western Ireland. AAPG Bulletin, 62, 2191–2213.
    [Google Scholar]
  74. Rittersbacher, A., Howell, J., & Buckley, S. J. (2014). Analysis of fluvial architecture in the Blackhawk formation, Wasatch plateau, Utah, U.S.A., using large 3D photo‐ realistic models. Journal of Sedimentary Research, 84, 72–87. https://doi.org/10.2110/jsr.2014.12
    [Google Scholar]
  75. Rød, R. S., Hynne, I. B., & Mørk, A. (2014). Depositional environment of the Upper Triassic De Geerdalen Formation–an EW Transect from Edgeøya to Central Spitsbergen, Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 21–40. Stavanger 2014, ISSN Online 1894‐7670, ISBN 978‐82‐7257‐117‐6.
    [Google Scholar]
  76. Rouby, D., Raillard, S., Guillocheau, F., Bouroullec, R., & Nalpas, T. (2002). Kinematics of a growth fault/raft system on the West African margin using 3‐D restoration. Journal of Structural Geology, 24(4), 783–796. https://doi.org/10.1016/S0191-8141(01)00108-0
    [Google Scholar]
  77. Rutter, E. (1986). On the nomenclature of mode of failure transitions in rocks. Tectonophysics, 122, 381–387. https://doi.org/10.1016/0040-1951(86)90153-8
    [Google Scholar]
  78. Sapin, F., Ringenbach, J.‐C., Rives, T., & Pubellier, M. (2012). Counter‐regional normal faults in shale‐ dominated deltas: Origin, mechanism and evolution. Marine and Petroleum Geology, 37, 121–128. https://doi.org/10.1016/j.marpetgeo.2012.05.001
    [Google Scholar]
  79. Scott, R. A., Howard, J. P., Guo, L., Schekoldin, R., & Pease, V. (2011). Offset and curvature of the Novaya Zemlya fold‐and‐thrust belt, Arctic Russia. Geological Society, London, Petroleum Geology Conference Series, 7, 645–657. https://doi.org/10.1144/0070645
    [Google Scholar]
  80. Senger, K., Tveranger, J., Ogata, K., Braathen, A., & Planke, S. (2014). Late Mesozoic magmatism in Svalbard: A review. Earth Science Reviews, 139, 123–144. https://doi.org/10.1016/j.earscirev.2014.09.002
    [Google Scholar]
  81. Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191–213. https://doi.org/10.1144/gsjgs.133.3.0191
    [Google Scholar]
  82. Smyrak‐Sikora, A., Osmundsen, P. T., Braathen, A., Ogata, K., Anell, I., Husteli, B., … Olaussen, S. (2017). Sedimentary architecture of siliciclastic, syntectonic graben and half‐graben fill in Kvalpynten, Edgeøya, Svalbard. Norsk Geologisk Vinterkonferanse. January 2017.
  83. Steel, R., Gjelberg, J., Nøttvedt, A., Helland‐Hansen, W., Kleinspehn, K. L., & Rye Larsen, M. (1985). The Tertiary strike slip basins and orogenic belt of Spitsbergen. In K. T.Biddle & N.Christie‐Blick (Eds.), Strike‐slip deformation, basin formation, and sedimentation (pp. 339–359). Society of Economic Paleontologists and Mineralogists, Special Publication 37.
    [Google Scholar]
  84. Torabi, A., Fossen, H., & Braathen, A. (2013). Insight into petrophysical properties of deformed sandstone reservoirs. American Association of Petroleum Geologists Bulletin, 97, 619–637. https://doi.org/10.1306/10031212040
    [Google Scholar]
  85. Tugarova, M. A., & Fedyaevsky, A. G. (2014). Calcareous microbialites in the Upper Triassic succession of Eastern Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 137–152.
    [Google Scholar]
  86. Vigran, O. S., Mangerud, G., Mørk, A., Worsley, D., & Hochuli, P. A. (2014). Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Geological Survey of Norway Special Publications, 14, 270.
    [Google Scholar]
  87. Washburn, E. W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 7, 115–116. https://doi.org/10.1073/pnas.7.4.115
    [Google Scholar]
  88. Wignall, P. B., & Best, J. L. (2004). Sedimentology and kinematics of a large, retrogressive growth‐fault system in Upper Carboniferous deltaic sediments, western Ireland. Sedimentology, 51, 1343–1358. https://doi.org/10.1111/j.1365-3091.2004.00673.x
    [Google Scholar]
  89. Yeager, K. M., Brunner, C. A., Kulp, M. A., Fischer, D., Feagin, R. A., Schindler, K. J., … Bera, G. (2012). Significance of active growth faulting on marsh accretion processes in the lower Pearl River, Louisiana. Geomorphology, 153, 127–143. https://doi.org/10.1016/j.geomorph.2012.02.018
    [Google Scholar]
  90. Zecchin, M., Massari, F., Mellere, D., & Prosser, G. (2003). Architectural styles of prograding wedges in a tectonically active setting, Crotone Basin, Southern Italy. Journal of the Geological Society, London, 160, 863–880. https://doi.org/10.1144/0016-764902-099
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12296
Loading
/content/journals/10.1111/bre.12296
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error