1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

The Late Cenozoic is typically considered a time of widespread episodic tectonic uplift along the West Greenland continental margin (36–2 Ma), similar to other margins across the North Atlantic, such as Norway, East Greenland and the UK. The present study re‐examines and remodels onshore thermochronological data from central West Greenland and the Cretaceous Nuussuaq Basin, utilising a Bayesian modelling approach and new concepts related to radiation damage within apatite. These new thermal histories indicate that slow‐protracted cooling has occurred across the southern extent of the margin during the Mesozoic and Cenozoic, whereas those from within the Nuussuaq Basin display reheating through the Late Cretaceous/Palaeogene and cooling to present. Results suggest that no significant Late Cenozoic uplift has occurred along the southern margin, while cooling in the Nuussuaq Basin is consistent with events outlined in the basin's stratigraphy and implies uplift during volcanism and an isostatic response to the unroofing of the lithosphere has elevated the modern topography. These results imply significant tectonism in the region ceased by ~45 Ma, yet have wider implications regarding how low temperature thermochronology data are treated and our understanding of the postrift evolution of passive margins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12301
2018-06-19
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/6/bre12301.html?itemId=/content/journals/10.1111/bre.12301&mimeType=html&fmt=ahah

References

  1. Abdelmalak, M. M., Geoffroy, L., Angelier, J., Bonin, B., Callot, J. P., Gélard, J. P., & Aubourg, C. (2012). Stress fields acting during lithosphere breakup above a melting mantle: A case example in West Greenland. Tectonophysics, 581, 132–143. https://doi.org/10.1016/j.tecto.2011.11.020
    [Google Scholar]
  2. Alsulami, S., Paton, D. A., & Cornwell, D. G. (2015). Tectonic variation and structural evolution of the West Greenland continental margin. AAPG Bulletin, 99(9), 1689–1711. https://doi.org/10.1306/03021514023
    [Google Scholar]
  3. Anell, I., Thybo, H., & Artemieva, I. (2009). Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics, 474(1), 78–105. https://doi.org/10.1016/j.tecto.2009.04.006
    [Google Scholar]
  4. Bernard, T., Steer, P., Gallagher, K., Szulc, A., Whitham, A., & Johnson, C. (2016). Evidence for Eocene‐Oligocene glaciation in the landscape of the East Greenland margin. Geology, 44(11), 895–898. https://doi.org/10.1130/G38248.1
    [Google Scholar]
  5. Bonow, J. M., Japsen, P., & Nielsen, T. F. D. (2014). High‐level landscapes along the margin of southern East Greenland—A record of tectonic uplift and incision after breakup in the NE Atlantic.
  6. Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., & Fitzgerald, P. (2013). Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U–Th)/He thermochronometer. Geochimica et Cosmochimica Acta, 122, 478–497. https://doi.org/10.1016/j.gca.2013.05.041
    [Google Scholar]
  7. Brown, R., & Green, P. (1991). Discussion on thermal and tectonic history of the East Midlands shelf (onshore UK) and surrounding regions assessed by apatite fission track analysis, J. Geol. Soc. London, Vol. 146, 1989, pp. 755‐773. Journal of the Geological Society, 148, 785–787.
    [Google Scholar]
  8. Campbell, I. H. (2007). Testing the plume theory. Chemical Geology, 241(3), 153–176. https://doi.org/10.1016/j.chemgeo.2007.01.024
    [Google Scholar]
  9. Chalmers, J. A. (2000). Offshore evidence for Neogene uplift in central West Greenland. Global and Planetary Change, 24(3), 311–318. https://doi.org/10.1016/S0921-8181(00)00015-1
    [Google Scholar]
  10. Chalmers, J. A., Green, P., Japsen, P., & Rasmussen, E. S. (2010). The Scandinavian mountains have not persisted since the Caledonian orogeny. A comment on Nielsen et al. (2009a). Journal of Geodynamics, 50(2), 94–101.https://doi.org/10.1016/j.jog.2010.02.001
    [Google Scholar]
  11. Chalmers, J., Pulvertaft, T., Marcussen, C., & Pedersen, A. (1999). New insight into the structure of the Nuussuaq Basin, central West Greenland. Marine and Petroleum Geology, 16(3), 197–224. https://doi.org/10.1016/S0264-8172(98)00077-4
    [Google Scholar]
  12. Cloetingh, S., Gradstein, F., Kooi, H., Grant, A., & Kaminski, M. (1990). Plate reorganization: a cause of rapid late Neogene subsidence and sedimentation around the North Atlantic?Journal of the Geological Society, 147(3), 495–506. https://doi.org/10.1144/gsjgs.147.3.0495
    [Google Scholar]
  13. Cogné, N., Gallagher, K., Cobbold, P. R., Riccomini, C., & Gautheron, C. (2012). Post‐breakup tectonics in southeast Brazil from thermochronological data and combined inverse‐forward thermal history modelling. Journal of Geophysical Research, 117, B11413, https://doi.org/10.1029/2012JB009340
    [Google Scholar]
  14. Dalhoff, F., Chalmers, J. A., Gregersen, U., Nøhr‐Hansen, H., Rasmussen, J. A., & Sheldon, E. (2003). Mapping and facies analysis of Paleocene–Mid‐Eocene seismic sequences, offshore southern West Greenland. Marine and Petroleum Geology, 20(9), 935–986. https://doi.org/10.1016/j.marpetgeo.2003.09.004
    [Google Scholar]
  15. Dam, G., & Nøhr‐Hansen, H. (2001). Mantle plumes and sequence stratigraphy; late Maastrichtian–early Paleocene of West Greenland. Bulletin of the Geological Society of Denmark, 48, 189–207.
    [Google Scholar]
  16. Dam, G., Pedersen, G. K., Sønderholm, M., Midtgaard, H. H., Larsen, L. M., Nøhr‐Hansen, H., & Pedersen, A. K. (2009). Lithostratigraphy of the Cretaceous‐Paleocene Nuussuaq Group, Nuussuaq Basin, West Greenland. Geological Survey of Denmark and Greenland Bulletin, 19, 171.
    [Google Scholar]
  17. Djimbi, D. M., Gautheron, C., Roques, J., Tassan‐Got, L., Gerin, C., & Simoni, E. (2015). Impact of apatite chemical composition on (U‐Th)/He thermochronometry: An atomistic point of view. Geochimica et Cosmochimica Acta, 167, 162–176. https://doi.org/10.1016/j.gca.2015.06.017
    [Google Scholar]
  18. Donelick, R. A., O'Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission‐track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49–94. https://doi.org/10.2138/rmg.2005.58.3
    [Google Scholar]
  19. Egholm, D. L., Jansen, J. D., Brædstrup, C. F., Pedersen, V. K., Andersen, J. L., Ugelvig, S. V., … Knudsen, M. F. (2017). Formation of plateau landscapes on glaciated continental margins. Nature Geoscience, 10(8), 592–597. https://doi.org/10.1038/ngeo2980
    [Google Scholar]
  20. Eidvin, T., Riis, F., & Rasmussen, E. S. (2014). Oligocene to Lower Pliocene deposits of the Norwegian continental shelf, Norwegian Sea, Svalbard, Denmark and their relation to the uplift of Fennoscandia: A synthesis. Marine and Petroleum Geology, 56, 184–221. https://doi.org/10.1016/j.marpetgeo.2014.04.006
    [Google Scholar]
  21. Eldrett, J. S., Greenwood, D. R., Harding, I. C., & Huber, M. (2009). Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459(7249), 969. https://doi.org/10.1038/nature08069
    [Google Scholar]
  22. Eyles, N. (1996). Passive margin uplift around the North Atlantic region and its role in Northern Hemisphere late Cenozoic glaciation. Geology, 24(2), 103–106. https://doi.org/10.1130/0091-7613(1996)024<0103:PMUATN>2.3.CO;2
    [Google Scholar]
  23. Farley, K. A., Wolf, R. A., & Silver, L. T. (1996). The effects of long alpha‐stopping distances on (U▫ Th)/He ages. Geochimica et cosmochimica acta, 60(21), 4223–4229. https://doi.org/10.1016/S0016-7037(96)00193-7
    [Google Scholar]
  24. Fitzgerald, P., Baldwin, S. L., Webb, L., & O'Sullivan, P. B. (2006). Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology, 225(1), 91–120. https://doi.org/10.1016/j.chemgeo.2005.09.001
    [Google Scholar]
  25. Flowers, R. M., & Kelley, S. A. (2011). Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission‐track datasets: an example from the US midcontinent. Geochimica et Cosmochimica Acta, 75(18), 5169–5186. https://doi.org/10.1016/j.gca.2011.06.016
    [Google Scholar]
  26. Flowers, R. M., Ketcham, R. A., Shuster, D. L., & Farley, K. A. (2009). Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8), 2347–2365. https://doi.org/10.1016/j.gca.2009.01.015
    [Google Scholar]
  27. Gallagher, K. (2012). Transdimensional inverse thermal history modelling for quantitative thermochronology. Journal of Geophysical Research, 117, B02408. https://doi.org/10.1029/2011JB008825
    [Google Scholar]
  28. Gallagher, K., & Brown, R. (1997). The onshore record of passive margin evolution. Journal of the Geological Society, 154(3), 451–457. https://doi.org/10.1144/gsjgs.154.3.0451
    [Google Scholar]
  29. Gautheron, C., Barbarand, J., Ketcham, R. A., Tassan‐Got, L., van der Beek, P., Pagel, M., … Fialin, M. (2013). Chemical influence on α‐recoil damage annealing in apatite: Implications for (U–Th)/He dating. Chemical Geology, 351, 257–267. https://doi.org/10.1016/j.chemgeo.2013.05.027
    [Google Scholar]
  30. Gautheron, C., Tassan‐Got, L., Barbarand, J., & Pagel, M. (2009). Effect of alpha‐damage annealing on apatite (U‐Th)/He thermochronology. Chemical Geology, 266(3–4), 157–170. https://doi.org/10.1016/j.chemgeo.2009.06.001
    [Google Scholar]
  31. Geoffroy, L., Callot, J., Scaillet, S., Skuce, A., Gélard, J., Ravilly, M., … Perrot, K. (2001). Southeast Baffin volcanic margin and the North American‐Greenland plate separation. Tectonics, 20(4), 566–584. https://doi.org/10.1029/2001TC900003
    [Google Scholar]
  32. Gerin, C., Gautheron, C., Oliviero, E., Bachelet, C., Djimbi, D. M., Seydoux‐Guillaume, A. M., … Garrido, F. (2017). Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales. Geochimica et Cosmochimica Acta, 197, 87–103. https://doi.org/10.1016/j.gca.2016.10.018
    [Google Scholar]
  33. Gołędowski, B., Nielsen, S. B., & Clausen, O. R. (2012). Patterns of Cenozoic sediment flux from western Scandinavia. Basin Research, 24(4), 377–400. https://doi.org/10.1111/j.1365-2117.2011.00530.x
    [Google Scholar]
  34. Green, P. F. (1989). Thermal and tectonic history of the East Midlands shelf (onshore UK) and surrounding regions assessed by apatite fission track analysis. Journal of the Geological Society, 146(5), 755–773. https://doi.org/10.1144/gsjgs.146.5.0755
    [Google Scholar]
  35. Green, P. F., Japsen, P., Chalmers, J. A., Bonow, J. M., & Duddy, I. R. (2018). Post‐breakup burial and exhumation of passive continental margins: Seven propositions to inform geodynamic models. Gondwana Research, 53, 58–81. https://doi.org/10.1016/j.gr.2017.03.007
    [Google Scholar]
  36. Green, P. F., Lidmar‐Bergström, K., Japsen, P., Bonow, J. M., & Chalmers, J. A. (2013). Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins. Geological Survey of Denmark & Greenland Bulletin, (30), 9–150.
    [Google Scholar]
  37. Green, P. F., Moore, M. E., Gibson, H. J., & O'Brien, C. O. (2004). Thermal history of thirty‐three samples from outcrops and boreholes in west Greenland, based on AFTA® . Geotrack Report, 891, 1–98.
    [Google Scholar]
  38. Green, P. F., Moore, M. E., O'Brien, C. O., & Crowhurst, P. V. (2002). Thermal history of four samples of basement from outcrops in west Greenland, based on AFTA® and apatite (U‐TH)/He dating. Geotrack Report, 850, 1–27.
    [Google Scholar]
  39. Green, P. F., Moore, M. E., O'Brien, C. O., & Crowhurst, P. V. (2003a). Thermal history of six samples from outcrops in west Greenland, based on AFTA® and apatite (U‐TH)/He dating. Geotrack Report, 858, 1–40.
    [Google Scholar]
  40. Green, P. F., Moore, M. E., O'Brien, C. O., & Crowhurst, P. V. (2003b). Thermal history of twenty samples from outcrops in west Greenland, based on AFTA® and apatite (U‐TH)/He dating. Geotrack Report, 861, 1–73.
    [Google Scholar]
  41. Green, P. F., Moore, M. E., O'Brien, C. O., & Crowhurst, P. V. (2003c). Thermal history reconstruction in the Ataa‐1, Gane‐1, Gant‐1, Gro‐3 and Umiivik‐1 boreholes, onshore West Greenland, based on AFTA1, Vitrinite Reflectance and Apatite (U–Th)/He dating. Geotrack Report, 883, 1–136.
    [Google Scholar]
  42. Gregersen, U., Hopper, J. R., & Knutz, P. C. (2013). Basin seismic stratigraphy and aspects of prospectivity in the NE Baffin Bay, Northwest Greenland. Marine and Petroleum Geology, 46, 1–18. https://doi.org/10.1016/j.marpetgeo.2013.05.013
    [Google Scholar]
  43. Guillaume, B., Gautheron, C., Simon‐Labric, T., Martinod, J., Roddaz, M., & Douville, E. (2013). Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth and Planetary Science Letters, 364, 157–167. https://doi.org/10.1016/j.epsl.2012.12.036
    [Google Scholar]
  44. Hansen, K. (1996). Thermotectonic evolution of a rifted continental margin: fission track evidence from the Kangerlussuaq area, SE Greenland. Terra Nova, 8(5), 458–469. https://doi.org/10.1111/j.1365-3121.1996.tb00771.x
    [Google Scholar]
  45. Hendriks, B. W., & Andriessen, P. A. (2002). Pattern and timing of the post‐Caledonian denudation of northern Scandinavia constrained by apatite fission‐track thermochronology. Geological Society, London, Special Publications, 196(1), 117–137. https://doi.org/10.1144/GSL.SP.2002.196.01.08
    [Google Scholar]
  46. Hendriks, B. W. H., & Redfield, T. F. (2005). Apatite fission track and (U‐Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite. Earth and Planetary Science Letters, 236(1–2), 443–458. https://doi.org/10.1016/j.epsl.2005.05.027
    [Google Scholar]
  47. Japsen, P., Bonow, J. M., Green, P. F., Chalmers, J. A., & Lidmar‐Bergström, K. (2006). Elevated, passive continental margins: Long‐term highs or Neogene uplifts? New evidence from West Greenland. Earth and Planetary Science Letters, 248(1), 330–339. https://doi.org/10.1016/j.epsl.2006.05.036
    [Google Scholar]
  48. Japsen, P., & Chalmers, J. A. (2000). Neogene uplift and tectonics around the North Atlantic: overview. Global and Planetary Change, 24(3–4), 165–173. https://doi.org/10.1016/S0921-8181(00)00006-0
    [Google Scholar]
  49. Japsen, P., Green, P., Bonow, J., Rasmussen, E., Chalmers, J., & Kjennerud, T. (2010). Episodic uplift and exhumation along North Atlantic passive margins: implications for hydrocarbon prospectivity, Geological Society, London, Petroleum Geology Conference series 2010. Geological Society of London, pp. 979‐1004.
  50. Japsen, P., Green, P. F., & Chalmers, J. A. (2005). Separation of Palaeogene and Neogene uplift on Nuussuaq, West Greenland. Journal of the Geological Society, 162(2), 299–314. https://doi.org/10.1144/0016-764904-038
    [Google Scholar]
  51. Johannessen, K. C., Kohlmann, F., Ksienzyk, A. K., Dunkl, I., & Jacobs, J. (2013). Tectonic evolution of the SW Norwegian passive margin based on low‐temperature thermochronology from the innermost Hardangerfjord area. Norwegian Journal of Geology/Norsk Geologisk Forening, 93, 243–260.
    [Google Scholar]
  52. Johnson, C., & Gallagher, K. (2000). A preliminary Mesozoic and Cenozoic denudation history of the North East Greenland onshore margin. Global and Planetary Change, 24(3), 261–274. https://doi.org/10.1016/S0921-8181(00)00012-6
    [Google Scholar]
  53. Kasanzu, C. H. (2017). Apatite fission track and (U‐Th)/He thermochronology from the Archean Tanzania Craton: Contributions to cooling histories of Tanzanian basement rocks. Geoscience Frontiers, 8(5), 999–1007. https://doi.org/10.1016/j.gsf.2016.09.007
    [Google Scholar]
  54. Kohn, B. P., Lorencak, M., Gleadow, A. J., Kohlmann, F., Raza, A., Osadetz, K. G., & Sorjonen‐Ward, P. (2009). A reappraisal of low‐temperature thermochronology of the eastern Fennoscandia Shield and radiation‐enhanced apatite fission‐track annealing. Geological Society, London, Special Publications, 324(1), 193–216. https://doi.org/10.1144/SP324.15
    [Google Scholar]
  55. Larsen, L. M., Pedersen, A. K., Tegner, C., Duncan, R. A., Hald, N., & Larsen, J. G. (2016). Age of Tertiary volcanic rocks on the West Greenland continental margin: volcanic evolution and event correlation to other parts of the North Atlantic Igneous Province. Geological Magazine, 153(3), 487–511. https://doi.org/10.1017/S0016756815000515
    [Google Scholar]
  56. Larson, S. Å., Cederbom, C. E., Tullborg, E. L., & Stiberg, J. P. (2006). Comment on “Apatite fission track and (U–Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite” by Hendriks and Redfield [Earth Planet. Sci. Lett. 236 (443–458)]. Earth and Planetary Science Letters, 248(1–2), 561–568. https://doi.org/10.1016/j.epsl.2006.06.018
    [Google Scholar]
  57. Leprêtre, R., Missenard, Y., Barbarand, J., Gautheron, C., Saddiqi, O., & Pinna‐Jamme, R. (2015). Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco. Journal of Geophysical Research: Solid Earth, 120(6), 4645–4666.
    [Google Scholar]
  58. Lidmar‐Bergström, K., Ollier, C., & Sulebak, J. (2000). Landforms and uplift history of southern Norway. Global and Planetary Change, 24(3), 211–231. https://doi.org/10.1016/S0921-8181(00)00009-6
    [Google Scholar]
  59. McGregor, E. D., Nielsen, S. B., & Stephenson, R. A. (2014). Basin evolution in the Davis Strait area (West Greenland and conjugate East Baffin/Labrador passive margins) from thermostratigraphic and subsidence modelling of well data: Implications for tectonic evolution and petroleum systems. Bulletin of Canadian Petroleum Geology, 62(4), 311–329. https://doi.org/10.2113/gscpgbull.62.4.311
    [Google Scholar]
  60. McGregor, E., Nielsen, S., Stephenson, R., Petersen, K., & Macdonald, D. (2013). Long‐term exhumation of a Palaeoproterozoic orogen and the role of pre‐existing heterogeneous thermal crustal properties: a fission‐track study of SE Baffin Island. Journal of the Geological Society, 170(6), 877–891. https://doi.org/10.1144/jgs2012-146
    [Google Scholar]
  61. Medvedev, S., & Hartz, E. H. (2015). Evolution of topography of post‐Devonian Scandinavia: Effects and rates of erosion. Geomorphology, 231, 229–245. https://doi.org/10.1016/j.geomorph.2014.12.010
    [Google Scholar]
  62. Medvedev, S., Hartz, E. H., & Podladchikov, Y. Y. (2008). Vertical motions of the fjord regions of central East Greenland: impact of glacial erosion, deposition, and isostasy. Geology, 36(7), 539–542. https://doi.org/10.1130/G24638A.1
    [Google Scholar]
  63. Medvedev, S., Souche, A., & Hartz, E. H. (2013). Influence of ice sheet and glacial erosion on passive margins of Greenland. Geomorphology, 193, 36–46. https://doi.org/10.1016/j.geomorph.2013.03.029
    [Google Scholar]
  64. Nielsen, S. B., Gallagher, K., Leighton, C., Balling, N., Svenningsen, L., Jacobsen, B. H., … Egholm, D. L. (2009). The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy–climate–erosion) hypothesis. Journal of Geodynamics, 47(2), 72–95. https://doi.org/10.1016/j.jog.2008.09.001
    [Google Scholar]
  65. Oakey, G. N., & Chalmers, J. A. (2012). A new model for the Paleogene motion of Greenland relative to North America: Plate reconstructions of the Davis Strait and Nares Strait regions between Canada and Greenland. Journal of Geophysical Research Solid Earth, 117, B10401.
    [Google Scholar]
  66. Peate, I. U., & Bryan, S. E. (2008). Re‐evaluating plume‐induced uplift in the Emeishan large igneous province. Nature Geoscience, 1(9), 625. https://doi.org/10.1038/ngeo281
    [Google Scholar]
  67. Pedersen, V. K., Nielsen, S. B., & Gallagher, K. (2012). The post‐orogenic evolution of the Northeast Greenland Caledonides constrained from apatite fission track analysis and inverse geodynamic modelling. Tectonophysics, 530, 318–330. https://doi.org/10.1016/j.tecto.2012.01.018
    [Google Scholar]
  68. Piasecki, S., Larsen, L. M., Pedersen, A. K., & Pedersen, G. K. (1992). Palynostratigraphy of the lower Tertiary volcanics and marine clastic sediments in the southern part of the West Greenland Basin: implications for the timing and duration of the volcanism. Rapport Gronlands Geologiske Under‐ sogelse, 154, 13–31.
    [Google Scholar]
  69. Redfield, T. (2010). On apatite fission track dating and the Tertiary evolution of West Greenland topography. Journal of the Geological Society, 167(2), 261–271. https://doi.org/10.1144/0016-76492009-036
    [Google Scholar]
  70. Redfield, T. F., Braathen, A., Gabrielsen, R. H., Osmundsen, P. T., Torsvik, T. H., & Andriessen, P. A. M. (2005). Late Mesozoic to early Cenozoic components of vertical separation across the Møre‐Trøndelag Fault Complex, Norway. Tectonophysics, 395(3–4), 233–249. https://doi.org/10.1016/j.tecto.2004.09.012
    [Google Scholar]
  71. Reiners, P. W., & Farley, K. A. (2001). Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3–4), 413–420. https://doi.org/10.1016/S0012-821X(01)00341-7
    [Google Scholar]
  72. Riis, F. (1996). Quantification of Cenozoic vertical movements of Scandinavia by correlation of morphological surfaces with offshore data. Global and Planetary Change, 12(1), 331–357. https://doi.org/10.1016/0921-8181(95)00027-5
    [Google Scholar]
  73. Rohrman, M., & van der Beek, P. (1996). Cenozoic postrift domal uplift of North Atlantic margins: an asthenospheric diapirism model. Geology, 24(10), 901–904. https://doi.org/10.1130/0091-7613(1996)024<0901:CPDUON>2.3.CO;2
    [Google Scholar]
  74. Rowberry, M. (2008). Constraining the altitudinal range of sub‐horizontaldenudation surfaces in Wales, UK, using the elevation relief ratio. Revista Geografica Academica, 2, 26–40.
    [Google Scholar]
  75. Shuster, D. L., Flowers, R. M., & Farley, K. A. (2006). The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249(3), 148–161. https://doi.org/10.1016/j.epsl.2006.07.028
    [Google Scholar]
  76. Spiegel, C., Kohn, B., Belton, D., Berner, Z., & Gleadow, A. (2009). Apatite (U–Th–Sm)/He thermochronology of rapidly cooled samples: the effect of He implantation. Earth and Planetary Science Letters, 285(1), 105–114. https://doi.org/10.1016/j.epsl.2009.05.045
    [Google Scholar]
  77. St‐Onge, M. R., van Gool, J. A., Garde, A. A., & Scott, D. J. (2009). Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre‐collisional upper plate accretionary history of the Trans‐Hudson orogen. Geological Society, London, Special Publications, 318(1), 193–235. https://doi.org/10.1144/SP318.7
    [Google Scholar]
  78. Strunk, A., Knudsen, M. F., Egholm, D. L., Jansen, J. D., Levy, L. B., Jacobsen, B. H., & Larsen, N. K. (2017). One million years of glaciation and denudation history in west Greenland. Nature communications, 8, 14199. https://doi.org/10.1038/ncomms14199
    [Google Scholar]
  79. Thiede, J., Jessen, C., Knutz, P., Kuijpers, A., Mikkelsen, N., Nørgaard‐Pedersen, N., & Spielhagen, R. F. (2011). Million years of Greenland Ice Sheet history recorded in ocean sediments. Polarforschung, 80(3), 141–149.
    [Google Scholar]
  80. Vermeesch, P., Seward, D., Latkoczy, C., Wipf, M., Günther, D., & Baur, H. (2007). α‐Emitting mineral inclusions in apatite, their effect on (U–Th)/He ages, and how to reduce it. Geochimica et Cosmochimica Acta, 71(7), 1737–1746. https://doi.org/10.1016/j.gca.2006.09.020
    [Google Scholar]
  81. Wildman, M., Brown, R., Watkins, R., Carter, A., Gleadow, A., & Summerfield, M. (2015). Post break‐up tectonic inversion across the southwestern cape of South Africa: New insights from apatite and zircon fission track thermochronometry. Tectonophysics, 654, 30–55. https://doi.org/10.1016/j.tecto.2015.04.012
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12301
Loading
/content/journals/10.1111/bre.12301
Loading

Data & Media loading...

Supplements

 

PDF
  • Article Type: Research Article
Keyword(s): modelling , passive margins , stratigraphy , tectonics and sedimentation and thermochronology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error