1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The Messinian Salinity Crisis (MSC) involved the progressive isolation of the Mediterranean Sea from the Atlantic between 5.97 and 5.33 Ma, and a sea‐level fall whose timing, modalities, and magnitude remain actively debated. At that time, the central Mediterranean was undergoing strong tectonic activity due to the rollback of the Adria slab and eastward migration of the Apenninic belt. The combined effects of the post‐evaporitic MSC sea‐level drop and morphostructural changes (due to the Intra‐Messinian phase) resulted in a regional unconformity, which shows erosive markers and conformable relationships with the Messinian and Mio–Pliocene boundary in the Po Plain and Northern Adriatic Foreland. Here, we produce a palaeotopographic reconstruction of the Po Plain‐Northern Adriatic region (PPNA) during the Messinian peak desiccation event based on such regional unconformity. We mapped this surface through wells and 2D seismic data form Eni's private dataset. The unconformity shows V‐shaped incisions matching the present‐day southern Alpine valleys and filled with Messinian post‐evaporitic and Pliocene deposits, suggesting that the modern drainage network is at least of late Messinian age. The Messinian unconformity has been restored to its original state through flexural‐backstripping numerical modelling. The resulting landscape suggests a maximum sea‐level drop of 800–900 m during the MSC peak, and is consistent with stratigraphic and sedimentologic data provided by previous works. The modelled shoreline separates the subaerially eroded land from an elongated basin composed by two . 400 and 1,000 m deep depocentres during the maximum sea‐level drop. These results suggest that the Mediterranean was split in at least three sub‐basins subject to independent base levels, fresh‐water budgets, and flexural responses during the maximum lowstand.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12302
2018-06-10
2020-08-05
Loading full text...

Full text loading...

References

  1. Allen, P. A., & Allen, J. R. (1990). Basin analysis: Principles & applications (p. 451). Oxford, UK: Blackwell Scientific Publications.
    [Google Scholar]
  2. Allen, H., jackson, C. A.‐L., & Fraser, A. J. (2016). Gravity‐driven deformation of a youthful saline giant: The interplay between gliding and spreading in the Messinian basin of the Eastern Mediterranean. Petroleum Geoscience, 22(4), 340. https://doi.org/10.1144/petgeo2016-034
    [Google Scholar]
  3. Artoni, A., Bernini, M., Papani, G., Rizzini, F., Barbacini, G., Rossi, M., … Ghielmi, M. (2010). Mass‐transport deposits in confined wedge‐top basins: Surficial processes shaping the Messinian orogenic wedge of Northern Apennine of Italy. Italian Journal of Geosciences, 129(1), 101–118.
    [Google Scholar]
  4. Artoni, A., Rizzini, F., Roveri, M., Gennari, R., Manzi, V., Papani, G., … Rossi, M. (2007). Tectonic and climatic controls on sedimentation in late Miocene cortemaggiore wedge‐top basin (Northwestern Apennines, Italy). In O.Lacombe , J.Lavé , F.Roure & J.Vergés (Eds.), Thrust belts and foreland basins. From fold kinematics to hydrocarbon systems. Frontiers in Earth Sciences Series (pp. 431–456). Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-540-69426-7
    [Google Scholar]
  5. Bache, F., Olivet, J. L., Gorini, C., Rabineau, M., Baztan, J., Aslanian, D., & Suc, J. P. (2009). Messinian erosional and salinity crises: View from the Provence Basin (Gulf of Lions, Western Mediterranean). Earth and Planetary Science Letters, 286, 139–157. https://doi.org/10.1016/j.epsl.2009.06.021
    [Google Scholar]
  6. Bache, F., Popescu, S.‐M., Gorini, C., Suc, J.‐P., Clauzon, G., Olivet, J.‐L., … Cakir, Z. (2012). A two steps process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Research, 24, 125–153. https://doi.org/10.1111/j.1365-2117.2011.00521.x
    [Google Scholar]
  7. Barber, P. M. (1981). Messinian subaerial erosion of the Proto‐Nile delta. Marine Geology, 44, 253–272. https://doi.org/10.1016/0025-3227(81)90053-0
    [Google Scholar]
  8. Barbieri, C., Bertotti, G., Di Giulio, A., Fantoni, R., & Zoetemeijer, R. (2004). Flexural response of the Venetian) foreland to the Southalpine tectonics along the TRANSALP profile. Terra Nova, 16, 273–280. https://doi.org/10.1111/j.1365-3121.2004.00561.x
    [Google Scholar]
  9. Beicher, R. J. (2000). Physics for scientists and engineers (5th ed., p. 1288). Orlando, FL: Saunders College.
    [Google Scholar]
  10. Bell, R. E., Jackson, C. A.‐L., Elliot, G. M., Gawthorpe, R. L., Sharp, I. R., & Michelsen, L. (2014). Insights into the development of major rift‐related unconformities from geologically constrained subsidence modelling: Halten Terrace, offshore mid Norway. Basin Research, 26, 203–224. https://doi.org/10.1111/bre.12049
    [Google Scholar]
  11. Bertoni, C., & Cartwright, J. A. (2006). Controls on basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sedimentary Geology, 188, 93–114. https://doi.org/10.1016/j.sedgeo.2006.03.019
    [Google Scholar]
  12. Bigi, S., Calamita, F., Cello, G., Centamore, E., Deiana, G., Paltrinieri, W., & Ridolfi, M. (1995). Evoluzione messiniano‐pliocenica del sistema catena‐avanfossa nell'area marchigiano‐abruzzese esterna. Studi Geologici Camerti, 1, 29–35.
    [Google Scholar]
  13. Bigi, G., Cosentino, D., Parotto, M., Sartori, R., & Scandone, P. (1992). Structural model of Italy. Scale 1:500,000. Quaderni Ricerca Scientifica, 3, 114.
    [Google Scholar]
  14. Bini, A., Cita, M. B., & Gaetani, M. (1978). Southern Alpine lakes – Hypotesys of an erosional origin related to the Messinian entrenchment. Marine Geology, 27, 271–288. https://doi.org/10.1016/0025-3227(78)90035-X
    [Google Scholar]
  15. Blanc, P. L. (2000). Of sills and straits: A quantitative assessment of the Messinian Salinity Crisis. Deep Sea Research Part I: Oceanographic Research Papers, 47–8, 1429–1460. https://doi.org/10.1016/S0967-0637(99)00113-2
    [Google Scholar]
  16. Blanc, P. L. (2006). Improved modelling of the Messinian Salinity Crisis and conceptual implication. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 349–372. https://doi.org/10.1016/j.palaeo.2006.03.033
    [Google Scholar]
  17. Blanc‐Valleron, M. M., Pierre, C., Caulet, J. P., Caruso, A., Rouchy, J. M., Cespuglio, G., … di Stefano, E. (2002). Sedimentary, stable isotope and micropaleontological records of paleoceanographic change in the Messinian Tripoli Formation (Sicily, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 255–286. https://doi.org/10.1016/S0031-0182(02)00302-4
    [Google Scholar]
  18. Bresciani, I., & Perotti, C. R. (2014). An active deformation structure in the Po Plain (N Italy): The Romanengo anticline. Tectonics, 33, 2059–2076. https://doi.org/10.1002/2013TC003422
    [Google Scholar]
  19. Butler, W. H. R., Lickorish, W. H., Grasso, M., & Pedley, H. M. (1995). Tectonics and sequence stratigraphy in Messinian basins, Sicily: Constraints on the initiation and termination of the Mediterranean salinity crisis. GSA Bulletin, 107, 425–439. https://doi.org/10.1130/0016-7606(1995)107<0425:TASSIM>2.3.CO;2
    [Google Scholar]
  20. Cameselle, A., & Urgeles, R. (2016). Large‐scale margin collapse during Messinian early sea‐level drawdown: The SW Valencia trough, NW Mediterranean. Basin Research, 29, 576–595.
    [Google Scholar]
  21. Carminati, E., Lustrino, M., Cuffaro, M., & Doglioni, C. (2010) Tectonics, magmatism and geodynamics of Italy: What we know and what we imagine. In M.Beltrando , A.Peccerillo , M.Mattei , S.Conticelli & C.Doglioni (Eds) The Geology of Italy: tectonics and life along plate margins, Journal of the Virtual Explorer Electronic Edition, 36(9).
    [Google Scholar]
  22. Caruso, A., Pierre, C., Blanc‐Valleron, M. M., & Rouchy, J. M. (2015). Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur‐bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria. Palaeogeography, Palaeoclimatology, Palaeoecology, 429, 136–162. https://doi.org/10.1016/j.palaeo.2015.03.035
    [Google Scholar]
  23. Chumakov, I. S. (1973). Pliocene and Pleistocene deposits of the Nile valley in Nubia and upper Egypt. In W. B. F.Ryan & K. J.Hsu , et al. (Eds), Initial Reports of the Deep Sea Drilling Project, 13, 1242–1243. Washington, DC: US Govern. Print. Office
  24. CIESM
    CIESM (Antón, J., Çağatay, M. N., De Lange, G., Flecker, R., Gaullier, V., … Suc, J.‐P. (2008). Executive summary. In F.Briand (Ed.), The Messinian Salinity crisis from mega‐deposits to microbiology – A consensus report. CIESM Workshop Monographs, Monaco, 7–28.
  25. Cita, M. B., & Corselli, C. (1990). Messinian paleogeography and erosional surfaces in Italy: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 67–82. https://doi.org/10.1016/0031-0182(90)90099-S
    [Google Scholar]
  26. Clauzon, G. (1982). Le canyon messinien du Rhoˆne: Une preuve de ́cisive du ‘‘dessicated deep basin model’’ (Hsu ̈, Cita et Ryan, 1973). Bulletin de la Societe Geologique de France, 24, 231–246.
    [Google Scholar]
  27. Clauzon, G., Suc, J. P., Gautier, F., Berger, A., & Loutre, M. (1996). Alternate interpretation of the Messinian salinity crisis: Controversy resolved?Geology, 24, 363–366. https://doi.org/10.1130/0091-7613(1996)024<0363:AIOTMS>2.3.CO;2
    [Google Scholar]
  28. Clauzon, G., Suc, J. P., Popescu, S. M., Marunteanu, M., Rubino, J. L., Marinescu, F., & Melinte, M. C. (2005). Influence of Mediterranean sea‐level changes on the Dacic Basin (Eastern Paratethys) during the late Neogene: The Mediterranean Lago Mare facies deciphered. Basin Research, 17, 437–462. https://doi.org/10.1111/j.1365-2117.2005.00269.x
    [Google Scholar]
  29. Cosentino, D., Buchwaldt, R., Sampalmieri, G., Iadanza, A., Cipollari, P., Schildgen, T. F., … Bowring, S. A. (2013). Refining the Mediterranean ‘‘Messinian gap’’ with high‐precision U‐Pb zircon geochronology, central and northern Italy. Geology, 41, 323–326. https://doi.org/10.1130/G33820.1
    [Google Scholar]
  30. de Alteriis, G. (1995). Different foreland basins in Italy: Examples from the central and southern Adriatic Sea. Tectonophysics, 252, 349–373. https://doi.org/10.1016/0040-1951(95)00155-7
    [Google Scholar]
  31. del Ben, A., Geletti, R., & Mocnik, A. (2010). Relationship between recent tectonics and inherited Mesozoic structures of the central‐southern Adria plate. Bollettino di Geofisica Teorica e Applicata, 51, 99–115.
    [Google Scholar]
  32. Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., … Violanti, D. (2011). The record of the Messinian salinity crisis in the Tertiary Piedmont basin (NW Italy): The Alba section revisited. Paleogeography, Palaeoclimatology, Palaeoecology, 30, 238–255. https://doi.org/10.1016/j.palaeo.2011.07.017
    [Google Scholar]
  33. de Donatis, M. (2001). Three‐dimensional visualization of the Neogene structures of an external sector of the Northern Apennine, Italy. AAPG Bulletin, 85–3, 419–431.
    [Google Scholar]
  34. Donda, F., Civile, D., Forlin, E., Volpi, V., Zecchin, M., Gordini, E., … de Santis, L. (2013). The northernmost Adriatic Sea: A potential location for CO2 geological storage?Marine and Petroleum Geology, 42, 148–159. https://doi.org/10.1016/j.marpetgeo.2012.10.006
    [Google Scholar]
  35. Ebbing, J., Braitenberg, C., & Gotze, H. J. (2001). Forward and inverse modelling of gravity revealing insight into crust structures of the Eastern Alps. Tectonophysics, 337, 191–208. https://doi.org/10.1016/S0040-1951(01)00119-6
    [Google Scholar]
  36. Fantoni, R., Bersezio, R., & Forcella, F. (2004). Alpine structure and deformation chronology at the Southern Alps‐Po Plain border in Lombardy. Bollettino della Società geologica italiana, 123, 463–476.
    [Google Scholar]
  37. Fantoni, R., & Franciosi, R. (2010). Mesozoic extension and Cenozoic compression in Po Plain and Adriatic forelandIn F. P.–Sassi (Ed.), Nature and geodynamics of the lithosphere in Northern Adriatic. Rend. Fis. Acc. Lincei., 21, 181–196.
    [Google Scholar]
  38. Fantoni, R., Massari, F., Minervini, M., Rogledi, S., & Rossi, M. (2001). Il messiniano del margine Sudalpino‐Padano: Relazioni tra contesto strutturale e stratigrafico‐deposizionale. Geological Insubria, 6, 95–108.
    [Google Scholar]
  39. Finckh, P. G. (1978). Are southern Alpine lakes former Messinian Canyons? Geophysical evidence for preglacial erosion in southern Alpine lakes. Marine Geology, 27, 289–302. https://doi.org/10.1016/0025-3227(78)90036-1
    [Google Scholar]
  40. Garcia‐Castellanos, D. (2002). Interplay between lithospheric flexure and river transport in foreland basins. Basin Research, 14(2), 89–104. https://doi.org/10.1046/j.1365-2117.2002.00174.x
    [Google Scholar]
  41. Garcia‐Castellanos, D., Vergés, J., Gaspar‐Escribano, J., & Cloetingh, S. (2003). Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research, 108, 2347.
    [Google Scholar]
  42. Gargani, J. (2004). Modelling of the erosion in the Rhone Valley during the Messinian crisis (France). Quaternary International, 121, 13–22. https://doi.org/10.1016/j.quaint.2004.01.020
    [Google Scholar]
  43. Gargani, J., & Rigollet, C. (2007). Mediterranean Sea‐level variations during the Messinian salinity crisis. Geophysical Research Letters, 34, L10405. https://doi.org/10.1029/2007GL029885
    [Google Scholar]
  44. Gennari, R., Manzi, V., Angeletti, L., Bertini, A., Biffi, U., Ceregato, A., … Roveri, M. (2013). A shallow water record of the onset of the Messinian salinity crisis in the Adriatic foredeep (Legnagnone section, northern Apennines). Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 145–164. https://doi.org/10.1016/j.palaeo.2013.05.015
    [Google Scholar]
  45. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., & Rossi, M. (2010). Sedimentary and tectonic evolution in the eastern Po Plain and northern Adriatic Sea area from Messinian to Middle Pleistocene (Italy). In F. P.Sassi (Ed.), Nature and Geodynamics of the Lithostere in Northern Adriatic. Rend. Fis. Acc. Lincei, 21 (Suppl. 1), pp. 131–166. http://dx.doi.org/10.1007/s12210-010-0101-5.
    [Google Scholar]
  46. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., & Rossi, M. (2013). Late Miocene‐Middle Pleistocene sequences in the Po Plain – Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology, 42, 50–81. https://doi.org/10.1016/j.marpetgeo.2012.11.007
    [Google Scholar]
  47. Gorini, C., Montadert, L., & Rabineau, M. (2015). New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean. Marine and Petroleum Geology, 66, 278–294. https://doi.org/10.1016/j.marpetgeo.2015.01.009
    [Google Scholar]
  48. Govers, R., Meijer, P., & Krijgsman, W. (2009). Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics, 463, 109–129. https://doi.org/10.1016/j.tecto.2008.09.026
    [Google Scholar]
  49. Hsü, K. J., Cita, M. B., & Ryan, W. B. F. (1973). Origin of the Mediterranean evaporites. In W. B. F.Ryan & K. J.Hsü (Eds), Initial Reports of the Deep Sea Drilling Project, 13, 1203–1231.
  50. Hsü, K. J., Montadert, L., Bernoulli, D., Cita, M. B., Erickson, A., Garrison, R. E., … Wright, R. (1977). History of the Mediterranean Salinity Crisis. Nature, 267, 399–403. https://doi.org/10.1038/267399a0
    [Google Scholar]
  51. ISPRA
    ISPRA (2015). Modello geologico 3D e geopotenziali della Pianura Padana centrale (Progetto GeoMol). Rapporti ISPRA, 234/2015, pp. 104 e Appendice.
  52. Jolivet, L., Augier, R., Robin, C., Suc, J. P., & Rouchy, J. M. (2006). Lithospheric‐scale geodynamic context of the Messinian salinity crisis. Sedimentary Geology, 188–189, 9–33. https://doi.org/10.1016/j.sedgeo.2006.02.004
    [Google Scholar]
  53. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., & Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655. https://doi.org/10.1038/23231
    [Google Scholar]
  54. Krijgsman, W., & Meijer, P. T. (2008). Depositional environments of the Mediterranean “Lower Evaporites” of the Messinian salinity crisis: Constraints from quantitative analyses. Marine Geology, 253, 73–81. https://doi.org/10.1016/j.margeo.2008.04.010
    [Google Scholar]
  55. Kroon, I. (2002). Strength of the Adriatic lithosphere: inference from tectonic modelling. Ph.D. thesis. Vrije University, Amsterdam, The Netherlands, p. 105.
  56. Kruse, S., & Royden, L. (1994). Bending and unbending of an elastic lithosphere: The Cenozoic history of the Apennine and Dynaride foredeep basins. Tectonics, 13(2), 278–302. https://doi.org/10.1029/93TC01935
    [Google Scholar]
  57. Livio, F. A., Berlusconi, A., Michetti, A. M., Sileo, G., Zerboni, A., Trombino, L., … Rogledi, S. (2009). Active fault‐related folding in the epicentral area of the December 25, 1222 (Io=IX MCS) Brescia earthquake (Northern Italy): Seismotectonic implications. Tectonophysics, 476, 320–335. https://doi.org/10.1016/j.tecto.2009.03.019
    [Google Scholar]
  58. Lofi, J., Déverchère, J., Gaullier, V., Gillet, H., Guennoc, P., Gorini, C., … Thinon, I. (2011). Seismic atlas of the Messinian salinity crisis markers in the offshore Mediterranean domain, CCGM. Mémoires. Société Géologique de France, 179, 72.
    [Google Scholar]
  59. Lofi, J., Gorini, C., Berné, S., Clauzon, G., dos Reis, A. T., Ryan, W. B. F., … Steckler, M. S. (2005). Erosional processes and paleo‐environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Marine Geology, 217, 1–30. https://doi.org/10.1016/j.margeo.2005.02.014
    [Google Scholar]
  60. Lofi, J., Sage, F., Déverchère, J., Loncke, L., Maillard, A., Gaullier, V., … Gorini, C. (2011). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi‐site seismic analysis. Bulletin de la Société géologique de France, 182, 163–180. https://doi.org/10.2113/gssgfbull.182.2.163
    [Google Scholar]
  61. Loget, N., Davy, P., & Van Den Driessche, J. (2006). Mesoscale fluvial erosion parameters deduced from modelling the Mediterranean sea‐level drop during the Messinian (late Miocene). Journal of Geophysical Research, 111, F03005.
    [Google Scholar]
  62. Loget, N., Van Den Driessche, J., & Davy, P. (2005). How did the Messi‐ nian salinity crisis end?Terra Nova, 17, 414–419. https://doi.org/10.1111/j.1365-3121.2005.00627.x
    [Google Scholar]
  63. Lymer, G., Lofi, J., Gaullier, V., Maillard, A., Thinnon, I., Sage, F., … Vendeville, B. C. (2018). The Western Tyrrhenian Sea revised: New evidence for a rifted basin during the Messinian Salinity Crisis. Marine Geology, 398, 1–21. https://doi.org/10.1016/j.margeo.2017.12.009
    [Google Scholar]
  64. Maesano, F. E., D'Ambrogi, C., Burrato, P., & Toscani, G. (2015). Slip‐rates of blind thrust in slow deforming areas: Examples from the Po Plain (Italy). Tectonophysics, 643, 8–25. https://doi.org/10.1016/j.tecto.2014.12.007
    [Google Scholar]
  65. Maillard, A., & Mauffret, A. (2006). Relationship between erosion surfaces and Late Miocene Salinity Crisis deposits in the Valencia Basin (northwestern Mediterranean): Evidence for an early sea‐level fall. Terra Nova, 18, 321–329.
    [Google Scholar]
  66. Mantovani, E., Viti, M., Babbucci, D., Tamburelli, C., Cenni, N., Baglione, M., & D'Intinosante, V. (2014). Generation of Back‐Arc Basins as Side Effect of Shortening Processes: Example from the Central Mediterranean. International Journal of Geosciences, 5, 1062–1079. https://doi.org/10.4236/ijg.2014.510091
    [Google Scholar]
  67. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., & Sierro, F. J. (2013). Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 315–322. https://doi.org/10.1111/ter.12038
    [Google Scholar]
  68. Manzi, V., Lugli, S., Ricci Lucchi, F., & Roveri, M. (2005). Deep‐water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): Did the Mediterranean ever dry out?. Sedimentology, 52, 875–902. https://doi.org/10.1111/j.1365-3091.2005.00722.x
    [Google Scholar]
  69. Matano, F., Critelli, S., Barone, M., Muto, F., & di Nocera, S. (2014). Stratigraphic and provenance evolution of the Southern Apennines foreland basin system during the Middle Miocene to Pliocene (Irpinia‐Sannio successions, Italy). Marine and Petroleum Geology, 57, 652–670. https://doi.org/10.1016/j.marpetgeo.2014.07.012
    [Google Scholar]
  70. Meijer, P. T., & Krijgsman, W. (2005). A quantitative analysis of the desiccation and re‐filling of the Mediterranean during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 240, 510–520. https://doi.org/10.1016/j.epsl.2005.09.029
    [Google Scholar]
  71. Meijer, P. T., Slingerland, R., & Wortel, M. J. R. (2004). Tectonic control on past circulation of the Mediterranean Sea: A model study of the Late Miocene. Paleoceanography, 19, PA1026.
    [Google Scholar]
  72. Micallef, A., Camerlenghi, A., Garcia‐Castellanos, D., Cunarro Otero, D., Gutscher, M. A., Barreca, G., … Urlaub, M. (2018). Evidence of Zanclean megaflood in the eastern Mediterranean Basin. Scientific Reports, 8, 1078. https://doi.org/10.1038/s41598-018-19446-3
    [Google Scholar]
  73. Miller, K. G., Kominz, M. A., Browing, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  74. Molinari, I., Argnani, A., Morelli, A., & Basini, P. (2015). Development and testing of a 3D seismic velocity model of the Po Plain sedimentary basin, Italy. Bulletin of the Seismological Society of America, 105(2), 753–764. https://doi.org/10.1785/0120140204
    [Google Scholar]
  75. Moretti, I., & Royden, L. (1988). Deflection, gravity anomalies and tectonics of doubly subducted continental lithosphere: Adriatic and Ionian Seas. Tectonics, 7, 875–893. https://doi.org/10.1029/TC007i004p00875
    [Google Scholar]
  76. Mosca, P. (2006). Neogene basin evolution in the Western Po Plain (NW Italy): Insights from seismic interpretations, subsidence analysis and low (U‐Th)/He thermochronology. Ph.D. thesis., Vrije University, Amsterdam, The Netherlands, p. 167.
  77. Müller, D. W., & Mueller, P. A. (1991). Origin and age of the Mediterranean Messinian evaporates: Implications from Sr isotopes. Earth and Planetary Science Letters, 107, 1–12. https://doi.org/10.1016/0012-821X(91)90039-K
    [Google Scholar]
  78. Patacca, E., & Scandone, P. (2007). Geology of the Southern Apennines. Bollettino della Società Geologica Italiana, 7, 75–119.
    [Google Scholar]
  79. Pellen, R., Popescu, S. M., Suc, J. P., Melinte‐Dobrinescu, M. C., Rubino, J. L., Rabineau, M., … Aslanian, D. (2017). The Apennine foredeep (Italy) during the latest Messinian: Lago Mare reflects competing brackish and marine conditions based on calcareous nannofossils and dinoflagellate cysts. Geobios, 50, 237–257. https://doi.org/10.1016/j.geobios.2017.04.004
    [Google Scholar]
  80. Perotti, C. R. (1991). Osservazioni sull'assetto strutturale del versante padano dell'Appennino Nord‐Occidentale. Atti Ticinensi di Scienze della Terra, 34, 11–22.
    [Google Scholar]
  81. Pieri, M., & Groppi, G. (1981). Subsurface geological structure of the Po Plain (Italy). C.N.R. Progetto Finalizzato Geodinamica, 414, 1–13.
    [Google Scholar]
  82. Pikelj, K., Hernitz‐Kučenjak, M., Aščić, Š., & Juračić, M. (2015). Surface sediment around the Jabuka Islet and the Jabuka Shoal: Evidence of Miocene tectonics in the Central Adriatic Sea. Marine Geology, 359, 120–133. https://doi.org/10.1016/j.margeo.2014.11.003
    [Google Scholar]
  83. Rizzini, A., & Dondi, L. (1978). Erosional surface of Messinian age in the subsurface of the Lombardian Plain (Italy). Marine Geology, 27, 303–325. https://doi.org/10.1016/0025-3227(78)90037-3
    [Google Scholar]
  84. Rossi, M. (2017). Outcrop and seismic expression of stratigraphic patterns driven by accommodation and sediment supply turnarounds: Implications on the meaning and variability of unconformities in syn‐orogenic basins. Marine and Petroleum Geology, 87, 112–127. https://doi.org/10.1016/j.marpetgeo.2017.03.032
    [Google Scholar]
  85. Rossi, M., Minervini, M., & Ghielmi, M. (2018). Drowing unconformities on hinged clastic shelves. Geology, 46, 439–442, doi.org/10.1130/G40123.1 https://doi.org/10.1130/G40123.1
    [Google Scholar]
  86. Rossi, M., Minervini, M., Ghielmi, M., & Rogledi, S. (2015). Messinian and Pliocene erosional surfaces in the Po Plain‐Adriatic Basin: Insights from allostratigraphy and sequence stratigraphy in assessing play concepts related to accommodation and gateway turn arounds in tectonically active margins. Marine and Petroleum Geology, 66, 192–216. https://doi.org/10.1016/j.marpetgeo.2014.12.012
    [Google Scholar]
  87. Rossi, M., Rogledi, S., Barbacini, G., Casadei, D., Iaccarino, S., & Papani, G. (2002). Tectono‐stratigraphic architecture of Messinian piggyback basins of Northern Apennines: The Emilia folds in the Reggio‐Modena area and comparison with Lombardia and Romagna sectors. Bollettino della Società geologica italiana, 1, 437–447.
    [Google Scholar]
  88. Rouchy, J. M., & Caruso, A. (2006). The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sedimentary Geology, 188, 35–67. https://doi.org/10.1016/j.sedgeo.2006.02.005
    [Google Scholar]
  89. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  90. Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M., … Schreiber, B. C. (2016). The Messinian salinity crisis: Open problems and possible implications for Mediterranean petroleum systems. Petroleum Geoscience, 22, 283–290. https://doi.org/10.1144/petgeo2015-089
    [Google Scholar]
  91. Roveri, M., Manzi, V., Bergamasco, A., Falcieri, F. M., Gennari, R., Lugli, S., & Schreiber, C. (2014). Dense shelf water cascading and Messinian canyons: A new scenario for the Mediterranean salinity crisis. American Journal of Science, 34, 751–784. https://doi.org/10.2475/05.2014.03
    [Google Scholar]
  92. Royden, L. (1988). Flexural behaviour of the continental lithosphere in Italy: Constraints imposed by gravity and deflection data. Journal of Geophysical Research, 93(B7), 7747–7766. https://doi.org/10.1029/JB093iB07p07747
    [Google Scholar]
  93. Ryan, W. B. F. (1976). Quantitative evaluation of the depth of the western Mediterranean before, during and after the Late Miocene salinity crisis. Sedimentology, 23, 791–813. https://doi.org/10.1111/j.1365-3091.1976.tb00109.x
    [Google Scholar]
  94. Ryan, W. B. F. (2009). Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95–136. https://doi.org/10.1111/j.1365-3091.2008.01031.x
    [Google Scholar]
  95. Ryan, W. B. F., & Cita, M. B. (1978). The nature and distribution of Messinian Erosional Surfaces; indicators of a several‐kilo‐ meter‐deep Mediterranean in the Miocene. Marine Geology, 27, 193–230. https://doi.org/10.1016/0025-3227(78)90032-4
    [Google Scholar]
  96. Santantonio, M., Scrocca, D., & Lipparini, L. (2013). The Ombrina‐Rospo Plateau (Apulian Platform): Evolution of a Carbonate Platform and its Margins during the Jurassic and Cretaceous. Marine Petroleum Geology, 42, 4–29. https://doi.org/10.1016/j.marpetgeo.2012.11.008
    [Google Scholar]
  97. Schildgen, T. F., Cosentino, D., Frijia, G., Castorina, F., Dudas, F. Ö., Iadanza, A., … Strecker, M. R. (2014). Sea‐level and climate forcing of the Sr isotope composition of late Miocene Mediterranean marine basins. Geochemistry, Geophysics, Geosystems, 15, 2964–2983. https://doi.org/10.1002/2014GC005332
    [Google Scholar]
  98. Scisciani, V., & Calamita, F. (2009). Active intraplate deformation within Adria: Examples from the Adriatic region. Tectonophysics, 476, 57–72. https://doi.org/10.1016/j.tecto.2008.10.030
    [Google Scholar]
  99. Sclater, J. B., & Cristie, P. A. F. (1980). Continental stretching: An explanation of the post‐mid‐cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research, 85, 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  100. Scrocca, D. (2010). Southern Apennines: Structural setting and tectonic evolution: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni. Journal of the Virtual Explorer, 36, 13.
    [Google Scholar]
  101. Scrocca, D., Carminati, E., Doglioni, C., & Marcantoni, D. (2007). Slab retreat and active shortening along the central‐northern Apennines. In O.Lacombe , F.Roure , J.Lavé , & J.Vergés (Eds.), Thrust belts and foreland basins: SE‐25, frontiers in earth sciences (pp. 471–487). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-540-69426-7
    [Google Scholar]
  102. Selli, R. (1960). Il Messiniano Mayer‐Eymar, 1867, Proposta di un neostratotipo. Giornale di Geologia, 28, 1–33.
    [Google Scholar]
  103. Sierro, F. J., Hilgen, F. J., Krijgsman, W., & Flores, J. A. (2001). The Abas composite (SE Spain): A Messinian reference section for the Mediterranean and the APTS. Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 141–169. https://doi.org/10.1016/S0031-0182(00)00253-4
    [Google Scholar]
  104. Stampfli, G. M., & Hocker, C. F. (1989). Messinian paleorelief from a 3‐D seismic survey in the Tarraco concession area (Spanish Mediterranean‐Sea). Geologie en Mijnbouw, 68, 201–210.
    [Google Scholar]
  105. Sternai, P., Caricchi, L., Jolivet, L., Garcia‐Castellanos, D., Sheldrake, T., & Castelltort, S. (2017). Magmatic pulse driven by sea‐level changes associated with the Messinian Salinity Crisis. Nature Geoscience, 10, 783–787. https://doi.org/10.1038/ngeo3032
    [Google Scholar]
  106. Sternai, P., Herman, F., Champagnac, J. D., Fox, M., Salcher, B., & Willett, S. D. (2012). Pre‐glacial topography of the European Alps. Geology, 40, 1067–1070. https://doi.org/10.1130/G33540.1
    [Google Scholar]
  107. Thinon, I., Guennoc, P., Serrano, O., Maillard, A., Lasseur, E., & Réhault, J. P. (2016). Seismic markers of the Messinian Salinity Crisis in an intermediate‐depth basin: Data for understanding the Neogene evolution of the Corsica Basin (Northern Tyrrhenian Sea). Marine and Petroleum Geology., 77, 1274–1296. https://doi.org/10.1016/j.marpetgeo.2016.02.017
    [Google Scholar]
  108. Toscani, G., Bonini, L., Ahmad, M. I., Bucci, D. D., Di Giulio, A., Seno, S., & Galuppo, C. (2014). Opposite verging chains sharing the same foreland: Kinematics and interactions through analogue models (Central Po Plain, Italy). Tectonophysics, 633, 268–282. https://doi.org/10.1016/j.tecto.2014.07.019
    [Google Scholar]
  109. Toscani, G., Marchesini, A., Barbieri, C., Di Giulio, A., Fantoni, R., Mancin, N., & Zanferrari, A. (2016). The Friulian‐Venetian Basin I: Architecture and sediment flux into a shared foreland basin. Italian Journal of Geosciences, 135, 444–459. https://doi.org/10.3301/IJG.2015.35
    [Google Scholar]
  110. Turrini, C., Lacombe, O., & Roure, F. (2014). Present‐day 3D structural model of the Po Valley basin, Northern Italy. Marine and Petroleum Geology, 56, 266–289. https://doi.org/10.1016/j.marpetgeo.2014.02.006
    [Google Scholar]
  111. Turrini, C., Toscani, G., Lacombe, O., & Roure, F. (2016). Influence of structural inheritance on foreland‐foredeep system evolution: An example from the Po valley region (northern Italy). Marine and Petroleum Geology, 77, 376–398. https://doi.org/10.1016/j.marpetgeo.2016.06.022
    [Google Scholar]
  112. Urgeles, R., Camerlenghi, A., Garcia‐Castellanos, D., De Mol, B., Garcés, M., Vergés, J., … Hardman, M. (2011). New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research, 23, 123–145. https://doi.org/10.1111/j.1365-2117.2010.00477.x
    [Google Scholar]
  113. Vai, G. B. (2016). Over half a century of Messinian salinity crisis. Boletin Geologico y Minero, 127, 625–641.
    [Google Scholar]
  114. Velić, J., Malvić, T., Cvetković, M., & Velić, I. (2015). Stratigraphy and petroleum geology of the Croatian part of the Adriatic basin. Journal of Petroleum Geology, 38, 281–300.
    [Google Scholar]
  115. Zecchin, M., Donda, F., & Forlin, E. (2017). Genesis of the Northern Adriatic Sea (Northern Italy) since early Pliocene. Marine and Petroleum Geology, 79, 108–130. https://doi.org/10.1016/j.marpetgeo.2016.11.009
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12302
Loading
/content/journals/10.1111/bre.12302
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error