1887
Volume 31, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The geodynamic setting along the SW Gondwana margin during its early breakup (Triassic) remains poorly understood. Recent models calling for an uninterrupted subduction since Late Palaeozoic only slightly consider the geotectonic significance of coeval basins. The Domeyko Basin initiated as a rift basin during the Triassic being filled by sedimentary and volcanic deposits. Stratigraphic, sedimentological, and geochronological analyses are presented in order to determine the tectonostratigraphic evolution of this basin and to propose a tectonic model suitable for other SW Gondwana‐margin rift basins. The Domeyko Basin recorded two synrift stages. The Synrift I (~240–225 Ma) initiated the Sierra Exploradora sub‐basin, whereas the Synrift II (~217–200 Ma) reactivated this sub‐basin and originated small depocentres grouped in the Sierra de Varas sub‐basin. During the rift evolution, the sedimentary systems developed were largely controlled by the interplay between tectonics and volcanism through the accommodation/sediment supply ratio (A/S). High‐volcaniclastic depocentres record a net dominance of the syn‐eruptive period lacking rift‐climax sequences, whereas low‐volcaniclastic depocentres of the Sierra de Varas sub‐basin developed a complete rift cycle during the Synrift II stage. The architecture of the Domeyko Basin suggests a transtensional kinematic where N‐S master faults interacted with ~NW‐SE basement structures producing highly asymmetric releasing bends. We suggest that the early Domeyko Basin was a continental subduction‐related rift basin likely developed under an oblique convergence in a back‐arc setting. Subduction would have acted as a primary driving mechanism for the extension along the Gondwanan margin, unlike inland rift basins. Slab‐induced dynamic can strongly influence the tectonostratigraphic evolution of subduction‐related rift basins through controls in the localization and style of magmatism and faulting, settling the interplay between tectonics, volcanism, and sedimentation during the rifting.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12305
2018-08-13
2024-04-20
Loading full text...

Full text loading...

References

  1. Abels, A., & Bischoff, L. (1999). Clockwise block rotations in northern Chile: Indications for a large‐scale domino mechanism during the middle‐late Eocene. Geology, 27, 751–754. https://doi.org/10.1130/0091-7613(1999)027<0751:CBRINC>2.3.CO;2
    [Google Scholar]
  2. Alfaro, R. (2014). Estratigrafia de las rocas triásicas de la Formación Cerro Guanaco (Nueva Unidad) en la Cordillera de Domeyko, sector Sierra de Varas. Región de Antofagasta.(24° 48′–25° 00′ Lat. Sur). Memoria de título, Antofagasta (unpublished), pp. 95. Chile.
    [Google Scholar]
  3. Alonso‐Zarza, A. M., & Tanner, L. H. (2009). Carbonates in continental settings: facies, environments, and processes, Vol. 61. Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  4. Álvarez, P. (2003). Análisis litofacial de la Formación Las Bateas. In X Congreso Geológico Chileno. Concepción, Chile.
  5. Amilibia, A., Sàbat, F., McClay, K. R., Muñoz, J. A., Roca, E., & Chong, G. (2008). The role of inherited tectono‐sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko. Journal of Structural Geology, 30, 1520–1539. https://doi.org/10.1016/j.jsg.2008.08.005
    [Google Scholar]
  6. Ardill, J. (1996). Sequence stratigraphy of the Mesozoic Domeyko basin, northern Chile. University of Liverpool.
  7. Ardill, J., Flint, S., Chong, G., & Wilke, H. (1998). Sequence stratigraphy of the Mesozoic Domeyko Basin, northern Chile. Journal of the Geological Society of London, 155, 71–88. https://doi.org/10.1144/gsjgs.155.1.0071
    [Google Scholar]
  8. Astudillo, N., Ferrando, R., Montecino, D., Espinoza, F., Matthews, S., Cornejo, P., & Arévalo, C. (2017). Carta Augusta Victoria, Región de Antofagasta. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica 189. 1 mapa escala 1:100.000. Santiago, Chile.
    [Google Scholar]
  9. Barredo, S., Chemale, F., Marsicano, C., Ávila, J. N., Ottone, E. G., & Ramos, V. A. (2012). Tectono‐sequence stratigraphy and U‐Pb zircon ages of the Rincón Blanco Depocenter, northern Cuyo Rift. Argentina. Gondwana Res., 21, 624–636. https://doi.org/10.1016/j.gr.2011.05.016
    [Google Scholar]
  10. Bascuñán, S., Arriagada, C., Le Roux, J., & Deckart, K. (2015). Unraveling the Peruvian Phase of the Central Andes: stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30‐23°S), northern Chile. Basin Research, 28, 365–392.
    [Google Scholar]
  11. Basso, M., & Marinovic, N. (2003). Antecedentes geocronológicos de volcanismo triásico en la zona de los Estratos El Bordo, Antofagasta, Chile. In X Congreso Geológico Chileno. Concepción.
  12. Bell, C. M., & Suárez, M. (1991). Late Triassic fluvial and marine shelf succession, Quebrada Doña Inés Chica, Atacama region, northern Chile. J. South Am. Earth Sci., 4, 287–293. https://doi.org/10.1016/0895-9811(91)90002-3
    [Google Scholar]
  13. Belt, L. (2012). Active transtensional intracontinental basins: Walker Lane belt in the Western Great Basin. In C.Busby , & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent Advances, pp. 226–248. Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  14. Benson, L. V., & Thompson, R. S. (1987). Lake‐level variation in the Lahontan basin for the past 50,000 years. Quat. Res., 28, 69–85. https://doi.org/10.1016/0033-5894(87)90034-2
    [Google Scholar]
  15. Benvenuti, M. (2003). Facies analysis and tectonic significance of lacustrine fan‐deltaic successions in the Pliocene‐Pleistocene Mugello Basin, Central Italy. Sediment. Geol., 157, 197–234. https://doi.org/10.1016/S0037-0738(02)00234-8
    [Google Scholar]
  16. Blair, T. C., & McPherson, J. G. (1994). Alluvial Fans and their Natural Distinction from Rivers Based on Morphology, Hydraulic Processes, Sedimentary Processes, and Facies Assemblages. SEPM J. Sediment. Res., 64A, 450–489.
    [Google Scholar]
  17. Blair, T. C., & McPherson, J. G. (2009). Processes and Forms of Alluvial Fans. In A. J.Parsons , & A. D.Abrahams (Eds.), Geomorphology of Desert Environments, 2nd ed. (pp. 413–467). Netherlands: Springer. https://doi.org/10.1007/978-1-4020-5719-9
    [Google Scholar]
  18. Bonini, M., Sani, F., & Antonielli, B. (2012). Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics, 522, 55–88. https://doi.org/10.1016/j.tecto.2011.11.014
    [Google Scholar]
  19. Branney, M., & Kokelaar, P. (2002). Interpreting ignimbrite lithofacies. In Pyroclastic Density Currents and the Sedimentation of Ignimbrites (pp. 51–85). London: The Geological Society of London.
    [Google Scholar]
  20. Busby, C. (2012). Extensional and transtensional continental arc basins: case studies from the southwestern United States. In C.Busby & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent Advances (pp. 382–404). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  21. Busby, C. (2013). Birth of a plate boundary at ca. 12 Ma in the Ancestral Cascades arc, Walker Lane belt of California and Nevada. Geosphere, 9, 1147–1160. https://doi.org/10.1130/GES00928.1
    [Google Scholar]
  22. Busby, C., & Bassett, K. N. (2007). Volcanic facies architecture of an intra‐arc strike‐slip basin, Santa Rita Mountains, Southern Arizona. Bulletin of Volcanology, 70, 85–103. https://doi.org/10.1007/s00445-007-0122-9
    [Google Scholar]
  23. Busby‐Spera, C. J. (1988). Speculative tectonic model for the early Mesozoic arc of the southwest Cordilleran United States. Geology, 16, 1121–1125. https://doi.org/10.1130/0091-7613(1988)016<1121:STMFTE>2.3.CO;2
    [Google Scholar]
  24. Busby‐Spera, C. J., & White, J. D. L. (1987). Variation in peperite textures associated with differing host‐sediment properties. Bulletin of Volcanology, 49, 765–776. https://doi.org/10.1007/BF01079827
    [Google Scholar]
  25. Butler, R. W. H. (1989). The influence of pre‐existing basin structure on thrust system evolution in the Western Alps. Geol. Soc. London . Spec. Publ., 44, 105–122. https://doi.org/10.1144/GSL.SP.1989.044.01.07
    [Google Scholar]
  26. Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99–102. https://doi.org/10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2
    [Google Scholar]
  27. Cas, R., & Wright, J. V. (1988). Volcanic successions modern and ancient: A geological approach to processes, products and successions. London, UK: Chapman & Hal.
    [Google Scholar]
  28. Charrier, R. (1979). El Triásico en Chile y regiones adyacentes de Argentina: Una reconstrucción paleogeográfica y paleoclimática. Comun. Dep. Geol. Univ. Chile, 26, 1–47.
    [Google Scholar]
  29. Chong, G. (1973). Reconocimiento Geológico del Área Catalina, Sierra de Varas y estratigrafía del Jurásico del Profeta, Provincia de Antofagasta. Memoria de título, Universidad de Chile (unpublished), pp. 284.
    [Google Scholar]
  30. Chong, G. (1977). Contribution to the knowledge of the Domeyko range in the Andes of northern Chile. Geol. Rundschau, 66, 374–404.
    [Google Scholar]
  31. Chong, G., & Hilldebrandt, A. (1985). El Triásico PreAndino de Chile entre los 23°30′ y 26°00′ de lat. sur. In IV Congreso Geológico Chileno. Antofagasta, Chile.
  32. Christie‐Blick, N., & Biddle, K. (1985). Deformation and Basin Formation Along Strike‐Slip Faults. SEPM (Society Sediment . Geol. Spec. Publ., 37, 1–33.
    [Google Scholar]
  33. Coloma, F., Valin, X., Oliveros, V., Vásquez, P., Creixell, C., Salazar, E., … Vallejos, D. (2017). Geochemistry of Permian to Triassic igneous rocks from northern Chile (28o‐29o30′S): Implications on the dynamics of the proto‐Andean margin. Andean Geology, 44, 147–178. https://doi.org/10.5027/andgeoV44n2-a03
    [Google Scholar]
  34. Contreras, J. F. (2014). Estratigrafía de la Formación Sierra de Varas, Cordillera de Domeyko, Región de Antofagasta entre las coordenadas 7.273. 103–7.268. 892 m N; 481.320–482.290 m E, Memoria de título, Antofagasta (unpublished), pp. 105. Universidad Católica del Norte, Antofagasta, Chile.
  35. Contreras, J. P., Espinoza, M., Jorquera, R., Kraus, S., Ramírez, C., De la Cruz, R., … Martínez, P. (2013). Carta Cifuncho, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica 161, 1 mapa escala. 1:100.000. Santiago, Chile.
    [Google Scholar]
  36. Cornejo, P., & Mpodozis, C. (1996). Geología de la Región de Sierra Exploradora (Cordillera de Domeyko 25°–26°S). Servicio Nacional de Geología y Minería – CODELCO, Informe Registrado, IR‐96‐09, 1‐330, 9 mapas escala 1:50.000. Santiago.
    [Google Scholar]
  37. Cornejo, P., Mpodozis, M., Rivera, O., & Matthews, S. (2009). Carta Exploradora, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 119, 1–103. 1 mapa escala 1:100.000.Santiago, Chile.
    [Google Scholar]
  38. Cortés, J. (2012). Carta Sierra Mariposa, Región de Antofagasta. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica 119, 30. 1 mapa escala 1:100.000. Santiago, Chile.
  39. Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of fault array evolution for synrift depocentre development: Insights from a numerical fault growth model. Basin Research, 12, 241–261. https://doi.org/10.1046/j.1365-2117.2000.00126.x
    [Google Scholar]
  40. Cristallini, E., Tomezzoli, R. N., Pando, G., Gazzera, C., Martínez, J. M., Quiroga, J., … Zambrano, O. (2009). Controles precuyanos en la estructura de la cuenca neuquina. Rev. La Asoc. Geológica Argentina, 65, 248–264.
    [Google Scholar]
  41. D'Elia, L., Martí, J., Muravchik, M., Bilmes, A., & Franzese, J. R. (2016). Impact of volcanism on the sedimentary record of the Neuquén rift basin, Argentina: Towards a cause and effect model. Basin Research, 30, 311–335.
    [Google Scholar]
  42. D'Elia, L., Muravchik, M., Franzese, J. R., & López, L. (2012). Tectonostratigraphic analysis of the Late Triassic‐Early Jurassic syn‐rift sequence of the Neuquén Basin in the Sañicó depocentre, Neuquén Province. Argentina. Andean Geol., 39, 133–157.
    [Google Scholar]
  43. Derer, C. E., Schumacher, M. E., & Schäfer, A. (2005). The northern Upper Rhine Graben: basin geometry and early syn‐rift tectono‐sedimentary evolution. International Journal of Earth Sciences, 94, 640–656. https://doi.org/10.1007/s00531-005-0515-y
    [Google Scholar]
  44. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  45. Dorsey, R. J., & Umhoefer, P. J. (2012). Influence of Sediment Input and Plate‐Motion Obliquity on Basin Development Along an Active Oblique‐Divergent Plate Boundary: Gulf of California and Salton Trough. In C.Busby & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent Advances (pp. 209–225). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  46. Doyle, M. G. (2000). Clast shape and textural associations in peperite as a guide to hydromagmatic interactions: Upper Permian basaltic and basaltic andesite examples from Kiama. Australia. Aust. J. Earth Sci., 47, 167–177. https://doi.org/10.1046/j.1440-0952.2000.00773.x
    [Google Scholar]
  47. Ellis, S., Heise, W., Kissling, W., Villamor, P., & Schreurs, G. (2014). The effect of crustal melt on rift dynamics: Case study of the Taupo Volcanic Zone. New Zealand Journal of Geology and Geophysics, 57, 453–458.
    [Google Scholar]
  48. Escribano, J., Martínez, P., Domagala, J., Padel, M., Espinoza, M., Jorquera, R., … Calderón, M. (2013). Cartas Bahía Isla Blanca y Taltal. Escala 1:100.000. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 164‐165. 1–75. 1 mapa escala 1:100.000. Santiago.
    [Google Scholar]
  49. Espinoza, M., Contreras, J. P., Kraus, S., De la Cruz, R., Jorquera, R., Ramirez, C., & Naranjo, J. A. (2014). Carta Cerro del Pingo, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 169. 1 mapa escala 1:100.000. Santiago.
    [Google Scholar]
  50. Espinoza, M., Oliveros, V., & Celis, C. (2016). Geochronology, Geochemistry and Tectonics of Subduction‐Related Late Triassic Rift Basins in Northern Chile (24o‐26oS). American Geophysical Union, Fall General Assembly 2016 (pp. T51D–2975). San Francisco: United States.
    [Google Scholar]
  51. Espinoza, M., Oliveros, V., Vásquez, P., & Bechis, F. (2015). U‐Pb geochronology and kinematic preliminary analyses of Late Triassic‐Early Jurassic basins in northern Chile (24.5o‐26oS). In XIV Congreso Geológico Chileno, La Serena, Chile, pp. 840–843.
    [Google Scholar]
  52. Fink, J. H., & Anderson, S. W. (2000). Lava domes and coulees. In B. F.Houghton , S.McNutt , H.Rymer & J.Stix (Eds.), Encyclopedia of volcanoes (pp. 307–319). San Diego: Academic Press.
    [Google Scholar]
  53. Fisher, R. V., & Schmincke, H.‐U. (1984). Pyroclastic rocks and tectonic environment. In R. V.Fisher , & H.‐U.Schmincke (Eds.), Pyroclastic rocks (pp. 383–409). Berlin, Germany: Springer.
    [Google Scholar]
  54. Freundt, A., Wilson, C. J. N., & Carey, S. N. (2000). Ignimbrites and block‐and‐ash flow deposits. In H.Sigurdsson (Ed.), Encyclopedia of volcanoes (pp. 581–599). New York: Academic Press.
    [Google Scholar]
  55. Gawthorpe, R., & Leeder, M. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1046/j.1365-2117.2000.00121.x
    [Google Scholar]
  56. Gehrels, G. (2011). Detrital Zircon U‐Pb Geochronology: Current Methods and New Opportunities. In C. J.Busby & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent Advances (pp. 45–62). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  57. Giambiagi, L., Tunik, M., Barredo, S., Bechis, F., Ghiglione, M., Alvarez, P., & Drosina, M. (2009). Cinemática de apertura del sector norte de la cuenca neuquina. Rev. La Asoc. Geológica Argentina, 65, 278–292.
    [Google Scholar]
  58. Godoy, E., & Lara, L. (1998). Hojas Chañaral y Diego de Almagro, Región de Atacama. Servicio Nacional de Geologia y Minería, Mapas Geológicos No. 5‐6. 1 mapa escala 1:100.000, Santiago.
    [Google Scholar]
  59. González, J., Oliveros, V., Creixell, C., Velásquez, R., Vásquez, P., & Lucassen, F. (2018). The Triassic magmatism and its relation with the Pre‐Andean tectonic evolution: Geochemical and petrographic constrains from the High Andes of north central Chile (29o 30′–30o S). J. South Am. Earth Sci, 87, 95–112.
    [Google Scholar]
  60. González, R., Wilke, H. G., Menzies, A. H., Espinoza, F., Riquelme, R., & Herrera, C. (2015). Carta Sierra de Varas, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 178. 114 p, 1 mapa escala 1:100.000. Santiago.
    [Google Scholar]
  61. Gröschke, M., v. Hillebrandt, A., Prinz, P., Quinzio, L. A., & Wilke, H.‐G. (1988). Marine mesozoic paleogeography in Northern Chile between 21°–26°S. In H.Bahlburg , C.Breitkreuz & P.Giese (Eds.), The Southern Central Andes SE – 7 (Vol. 17, pp. 103–117). Berlin, Germany: Springer. https://doi.org/10.1007/BFb0045170
    [Google Scholar]
  62. Hadlari, T., Midwinter, D., Poulton, T. P., & Matthews, W. A. (2017). A Pangean rim of fire: Reviewing the Triassic of western Laurentia. Lithosphere, L643, 1.
    [Google Scholar]
  63. Henríquez, S, Becerra, J., & Arriagada, C.. (2014). Geología del área San Pedro de Atacama, Región de Antofagasta. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica 171. 111 p., 1 mapa escala 1:100.000. Santiago.
    [Google Scholar]
  64. Hochstaedter, A. G., Gill, J. B., & Morris, J. D. (1990). Volcanism in the Sumisu Rift, II. Subduction and non‐subduction related components. Earth and Planetary Science Letters, 100, 195–209. https://doi.org/10.1016/0012-821X(90)90185-Z
    [Google Scholar]
  65. Ingersoll, R. V. (2012). Tectonics of Sedimentary Basins, with Revised Nomenclature. In C.Busby & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent Advances (pp. 1–43). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  66. Jarrard, R. D. (1986). Relations among subduction parameters. Reviews of Geophysics, 24, 780–783.
    [Google Scholar]
  67. Jervey, M. T. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In C. K.Wilgus , H. W.Posamentier , C. K.Ross & G. G.St. C. Kendall (Eds.), Sea level changes: An integrated approach (pp. 47–69). Tulsa, OK: SEPM Special Publication 42.
    [Google Scholar]
  68. Johnson, T. C., Halfman, J. D., Rosendahl, B. R., & Lister, G. S. (1987). Climatic and tectonic effects on sedimentation in a rift‐valley lake: Evidence from high‐resolution seismic profiles, Lake Turkana. Kenya. Geol. Soc. Am. Bull., 98, 439–447. https://doi.org/10.1130/0016-7606(1987)98<439:CATEOS>2.0.CO;2
    [Google Scholar]
  69. Kamata, H., & Kodama, K. (1994). Tectonics of an arc‐arc junction: An example from Kyushu Island at the junction of the Southwest Japan Arc and the Ryukyu Arc. Tectonophysics, 233, 69–81. https://doi.org/10.1016/0040-1951(94)90220-8
    [Google Scholar]
  70. Kleiman, L. E., & Japas, M. S. (2009). The Choiyoi volcanic province at 34°S–36°S (San Rafael, Mendoza, Argentina): Implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics, 473, 283–299. https://doi.org/10.1016/j.tecto.2009.02.046
    [Google Scholar]
  71. Koster, E. H., & Steel, R. J. (1984). Sedimentology of gravels and conglomerates, Vol. 10. Calgary: Canadian Society of Petroleum Geologists.
    [Google Scholar]
  72. De Lamotte, D. F., Fourdan, B., Leleu, S., Leparmentier, F., & Clarens, P. (2015). Style of rifting and the stages of Pangea breakup. Tectonics, 34, 1009–1029.
    [Google Scholar]
  73. Lee, C.‐S., Shor, G. G., Bibee, L. D., Lu, R. S., & Hilde, T. W. C. (1980). Okinawa Trough: Origin of a back‐arc basin. Marine Geology, 35, 219–241. https://doi.org/10.1016/0025-3227(80)90032-8
    [Google Scholar]
  74. Lipman, P. W. (2000). Calderas. In H.Sigurdsson , B.Houghton , S.McNutt , H.Rymer & J.Stix (Eds.), Encyclopedia of Volcanoes (pp. 643–662). San Diego, CA: Academic Press.
    [Google Scholar]
  75. Llambı́as, E. J., Quenardelle, S., & Montenegro, T. (2003). The Choiyoi Group from central Argentina: A subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent. J. South Am. Earth Sci., 16, 243–257. https://doi.org/10.1016/S0895-9811(03)00070-1
    [Google Scholar]
  76. Ludwig, K. R. (2008). Isoplot 3.7: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication.
  77. Maksaev, V., Munizaga, F., & Tassinari, C. (2014). Timing of the magmatism of the paleo‐Pacific border of Gondwana: U‐Pb geochronology of late paleozoic to early mesozoic igneous rocks of the north Chilean Andes between 20° and 31°S. Andean Geology, 41, 447–506.
    [Google Scholar]
  78. Marinovic, N. (2007). Carta Oficina Domeyko, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geológica Básica, 105, 1–41. 1 mapa escala 1:100.000, Santiago.
    [Google Scholar]
  79. Marinovic, N., Smoje, I., Maksaev, V., Hervé, M., & Mpodozis, C. (1995). Hoja Aguas Blancas. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 70, 1–150. 1 mapa escala 1:250.000, Santiago.
    [Google Scholar]
  80. Martinsen, O. J., Ryseth, A. L. F., Helland‐Hansen, W., Flesche, H., Torkildsen, G., & Idil, S. (1999). Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs Uplift, SW Wyoming, USA. Sedimentology, 46, 235–263. https://doi.org/10.1046/j.1365-3091.1999.00208.x
    [Google Scholar]
  81. Martins‐Neto, M. A., & Catuneanu, O. (2010). Rift sequence stratigraphy. Marine and Petroleum Geology, 27, 247–253. https://doi.org/10.1016/j.marpetgeo.2009.08.001
    [Google Scholar]
  82. Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., & Miller, R. D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change, 146, 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002
    [Google Scholar]
  83. McCann, T., & Saintot, A. (2003). Tracing tectonic deformation using the sedimentary record: An overview. Geological Society of London. Special Publication, 208, 1–28. https://doi.org/10.1144/GSL.SP.2003.208.01.01
    [Google Scholar]
  84. McPherson, J. G., Shanmugam, G., & Moiola, R. J. (1987). Fan‐deltas and braid deltas : Varieties of coarse‐ grained deltas. Geological Society of America Bulletin, 99, 331–340. https://doi.org/10.1130/0016-7606(1987)99<331:FABDVO>2.0.CO;2
    [Google Scholar]
  85. McPhie, J., Doyle, M. G., & Allen, R. (1993). Volcanic textures: A guide to the interpretation of textures in volcanic rocks. Hobart: CODES‐University of Tasmania.
    [Google Scholar]
  86. Merle, O. (2011). A simple continental rift classification. Tectonophysics, 513, 88–95. https://doi.org/10.1016/j.tecto.2011.10.004
    [Google Scholar]
  87. Miall, A. D. (1978). Lithofacies types and vertical profile models in braided river deposits: A summary. Fluv. Sedimentol., 5, 597–600.
    [Google Scholar]
  88. Miall, A. D. (2006). The Geology of Fluvial Deposits. Berlin: Springer. https://doi.org/10.1007/978-3-662-03237-4
    [Google Scholar]
  89. Montecino, D. (2015). Nuevo esquema estratigráfico, condiciones de sedimentación y evolución de la cuenca triásica entre los 24°00′‐24°30′ S y 69°00′‐69°30′ W, Región de Antofagasta, Chile. Memoria de título, Universidad de Concepción (unpublished), pp. 177. Concepción.
    [Google Scholar]
  90. Mpodozis, C., & Cornejo, P. (1997). El rift triásico‐sinemuriano de Sierra Exploradora, Cordillera de Domeyko (25°–26°S): Asociaciones de facies y reconstrucción tectónica. In VIII Congreso Geólogico Chileno, Antofagasta, Chile. pp. 550–554.
    [Google Scholar]
  91. Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., … Cannon, J. (2016). Ocean basin evolution and global‐scale reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. Lett., 44, 107–138. https://doi.org/10.1146/annurev-earth-060115-012211
    [Google Scholar]
  92. Muñoz, N. (1989). Estudio geológico estratigráfico de las Hojas Baquedano y Pampa Unión, II Región de Antofagasta, Chile. Memoria de Título, Universidad de Chile (unpublished), Departamento de Geología, pp. 161. Santiago.
    [Google Scholar]
  93. Muñoz, J., Amilibia, A., Carrera, N., Mon, R., Chong, G., Roca, E., & Sàbat, F. (2005). A geological cross‐section of the Andean orogen at 25.5° LS. In VI International Symposium on Andean Geodynamics, Barcelona, España, pp. 536–539.
    [Google Scholar]
  94. Muravchik, M., D'Elia, L., Bilmes, A., & Franzese, J. R. (2011). Syn‐eruptive/inter‐eruptive relations in the syn‐rift deposits of the Precuyano Cycle, Sierra de Chacaico, Neuquén Basin. Argentina. Sediment. Geol., 238, 132–144. https://doi.org/10.1016/j.sedgeo.2011.04.008
    [Google Scholar]
  95. Muto, T., & Steel, R. J. (2000). The accommodation concept in sequence stratigraphy: Some dimensional problems and possible redefinition. Sediment. Geol., 130, 1–10. https://doi.org/10.1016/S0037-0738(99)00107-4
    [Google Scholar]
  96. Naranjo, J. A., & Puig, A. (1984). Hojas Taltal y Chañaral, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 62–63, 1–146. 1 mapa escala 1:250.000, Santiago.
    [Google Scholar]
  97. Navea, A., Wilke, H.‐G., & González, R. (2015). Naturaleza de la transgresión marina triásica superior en Sierra Áspera de Argomedo y Sierra de Varas, Región de. XIV Congreso Geológico Chileno (pp. 808–811). La Serena: Universidad de Chile.
    [Google Scholar]
  98. Nemec, W., & Steel, R. J. (1984). Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass‐flow deposits. Sedimentol. Gravels Conglomerates, 10, 1–31.
    [Google Scholar]
  99. Németh, K., & Martin, U. (2007). Practical Volcanology. Lecture notes for understanding volcanic rocks from field‐based studies. In Occasional Papers of the Geological Institute of Hungary (27, pp. 1–221). Budapest: Geological Institute of Hungary.
    [Google Scholar]
  100. Nichols, G. (2009). Sedimentology and stratigraphy. London, UK: John Wiley & Sons.
    [Google Scholar]
  101. Niemeyer, H., Berríos, H., & Ruiz Cruz, M. D. (2004). Temperaturas de formación en cataclasitas triásicas de la Cordillera Domeyko, Antofagasta. Chile. Rev. Geológica Chile, 31, 3–18.
    [Google Scholar]
  102. Nilsen, T. H., & Sylvester, A. G. (1998). Strike‐Slip Basins. In C.Busby & R.Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 425–456). Cambridge, UK: Willey.
    [Google Scholar]
  103. Oliveros, V., González, J., Espinoza Vargas, M., Vásquez, P., Rossel, P., Creixell, C., … Bastías, F. (2017). The early stages of the magmatic arc in the Southern Central Andes. In A.Folguera , E.Contreras‐Reyes , N.Heredia , A.Encinas , V.Oliveros , F.Dávila & G.Collo (Eds.), The Evolution of the Chilean‐Argentinean Andes (pp. 185–212). Cham, Switzerland: Springer.
    [Google Scholar]
  104. Padilla, H. (1988). Eventos intrusivos y deformaciones en la Cordillera de Domeyko a la latitud del Salar de Punta Negra. Antecedentes geocronológicos K‐Ar. In V Congreso Geológico Chileno, Santiago, Chile, pp. 229–243.
    [Google Scholar]
  105. Petrinovic, I. A., Riller, U., & Brod, J. A. (2005). The Negra Muerta Volcanic Complex, southern Central Andes: Geochemical characteristics and magmatic evolution of an episodically active volcanic centre. J. Volcanol. Geotherm. Res., 140, 295–320. https://doi.org/10.1016/j.jvolgeores.2004.09.002
    [Google Scholar]
  106. Philippon, M., & Corti, G. (2016). Obliquity along plate boundaries. Tectonophysics, 693, 171–182. https://doi.org/10.1016/j.tecto.2016.05.033
    [Google Scholar]
  107. Platt, N. H., & Wright, V. P. (1991). Lacustrine carbonates: Facies models, facies distributions and hydrocarbon aspects. Spec. Publ. Internatinal Assoc. Sedimentol., 13, 57–74.
    [Google Scholar]
  108. Polliand, M., Schaltegger, U., Frank, M., & Fontboté, L. (2005). Formation of intra‐arc volcanosedimentary basins in the western flank of the central Peruvian Andes during Late Cretaceous oblique subduction: Field evidence and constraints from U‐Pb ages and Hf isotopes. International Journal of Earth Sciences, 94, 231–242. https://doi.org/10.1007/s00531-005-0464-5
    [Google Scholar]
  109. Poma, S., Zappettini, E. O., Quenardelle, S., Santos, J. O., Koukharsky, M., Belousova, E., & McNaughton, N. (2014). Geochemistry, U‐Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina : Petrogenesis and geodynamic implications. Andean Geology, 41, 267–292.
    [Google Scholar]
  110. Prinz, P., Wilke, H.‐G., & von Hillebrandt, A. (1994). Sediment accumulation and subsidence history in the Mesozoic marginal basin of northern Chile. In K. J.Reutter , E.Scheuber , & P. J.Wigger (Eds.), Tectonics of the Southern Central Andes (pp. 219–232). Berlin: Springer‐Verlag. https://doi.org/10.1007/978-3-642-77353-2
    [Google Scholar]
  111. Prinz‐Grimm, P. (1995). Triassiche Korallen der südlichen Zentral‐Anden. Geologica et Palaeontologica, 29, 233–234.
    [Google Scholar]
  112. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geol. Soc. London . Spec. Publ., 71, 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  113. del Rey, A., Deckart, K., Arriagada, C., & Martínez, F. (2016). Resolving the paradigm of the late Paleozoic‐Triassic Chilean magmatism: Isotopic approach. Gondwana Research, 37, 172–181.
    [Google Scholar]
  114. Salfity, J. A. (1985). Lineamentos transversales al rumbo andino en el Noroeste Argentino. In IV Congreso Geologico Chileno, Antofagasta, Chile, Vol. 2, pp. 119–137.
  115. Sayit, K., Bedi, Y., Tekin, U. K., Göncüoglu, M. C., & Okuyucu, C. (2017). Middle Triassic Back‐arc Basalts from the Blocks in the Mersin Mélange, southern Turkey: Implications for the Geodynamic Evolution of the Northern Neotethys. Lithos, 268–271, 102–113. https://doi.org/10.1016/j.lithos.2016.10.032
    [Google Scholar]
  116. Schellart, W. P. (2005). Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge. Earth and Planetary Science Letters, 231, 197–219. https://doi.org/10.1016/j.epsl.2004.12.019
    [Google Scholar]
  117. Schlische, R. W. (1991). Half‐graben basin filling models: New constraints on continental extensional basin development. Basin Research, 3, 123–141. https://doi.org/10.1111/j.1365-2117.1991.tb00123.x
    [Google Scholar]
  118. Schlische, R. W., & Anders, M. H. (1996). Stratigraphic effects and tectonic implications of the growth of normal faults and extensional basins. Geological Society of America Special Paper, 303, 183–203.
    [Google Scholar]
  119. Scholz, C. A., Johnson, T. C., Cohen, A. S., King, J. W., Peck, J. A., Overpeck, J. T., … Pierson, J. (2007). East African megadroughts between 135 and 75 thousand years ago and bearing on early‐modern human origins. Proceedings of the National Academy of Sciences, 104, 16416–16421. https://doi.org/10.1073/pnas.0703874104
    [Google Scholar]
  120. Scholz, C. A., Rosendahl, B. R., & Scott, D. L. (1990). Development of coarse grained‐facies in lacustrine rift basins: Example from East Africa. Geology, 18, 140–144. https://doi.org/10.1130/0091-7613(1990)018<0140:DOCGFI>2.3.CO;2
    [Google Scholar]
  121. Selley, R. C. (2000). Applied sedimentology. San Diego, CA: Academic Press.
    [Google Scholar]
  122. Sengör, A. M. C., & Natal'in, B. A. (2001). Rifts of the world. In Special Paper 352: Mantle plumes: Their identification through time (Vol. 352, pp. 389–482). https://doi.org/10.1130/0-8137-2352-3
    [Google Scholar]
  123. Shanley, K. W., & McCabe, P. J. (1994). Perspectives on the sequence stratigraphy of continental strata. American Association of Petroleum Geologists Bulletin, 78, 544–568.
    [Google Scholar]
  124. Solari, M., Montecinos, D., Venegas, C., & Espinoza, F. (2015). Hallazgo de unidades volcánicas del Triásico Medio en la sierra de Imilac, Segunda Región de Antofagasta. In XIV Congreso Geológico Chileno, pp. 0–2.
  125. Stephenson, R. A., & Schellart, W. P. (2010). The Black Sea back‐arc basin: Insights to its origin from geodynamic models of modern analogues. Geol. Soc. London . Spec. Publ., 340, 11–21. https://doi.org/10.1144/SP340.2
    [Google Scholar]
  126. Stern, R. J., Lin, P. N., Morris, J. D., Jackson, M. C., Fryer, P., Bloomer, S. H., & Ito, E. (1990). Enriched back‐arc basin basalts from the northern Mariana Trough: Implications for the magmatic evolution of back‐arc basins. Earth and Planetary Science Letters, 100, 210–225. https://doi.org/10.1016/0012-821X(90)90186-2
    [Google Scholar]
  127. Stewart, A. L., & McPhie, J. (2003). Internal structure and emplacement of an Upper Pliocene dacite cryptodome, Milos Island. Greece. J. Volcanol. Geotherm. Res., 124, 129–148. https://doi.org/10.1016/S0377-0273(03)00074-X
    [Google Scholar]
  128. Stewart, A. L., & McPhie, J. (2006). Facies architecture and Late Pliocene – Pleistocene evolution of a felsic volcanic island, Milos. Greece. Bull. Volcanol., 68, 703–726. https://doi.org/10.1007/s00445-005-0045-2
    [Google Scholar]
  129. Suárez, M., & Bell, C. (1992). Triassic rift‐related sedimentary basins in northern Chile (24°‐29°S). J. South Am. Earth Sci., 6, 109–121. https://doi.org/10.1016/0895-9811(92)90001-F
    [Google Scholar]
  130. Suárez, M., & Bell, C. M. (1994). Braided Rivers, Lakes and Sabkhas of the Upper Triassic Cifuncho Formation, Atacama Region. Chile. J. South Am. Earth Sci., 7, 25–33. https://doi.org/10.1016/0895-9811(94)90031-0
    [Google Scholar]
  131. Suárez, M., & Bell, C. (2010). Sabkhas continentales y costeros en el Triásico Superior‐Cretácico Inferior de Atacama, Chile. Rev. Geológica Chile, 25–26, 145–153.
    [Google Scholar]
  132. Tomlinson, A. J., Cornejo, P., & Mpodozis, C. (1999). Hoja Potrerillos, Región de Atacama. Servicio Nacional de Geología y Minería (Chile), Mapas Geológicos, No. 14, 1 mapa escala 1:100.000, Santiago.
  133. Torsvik, T. H., & Cocks, L. R. M. (2013). Gondwana from top to base in space and time. Gondwana Research, 24, 999–1030. https://doi.org/10.1016/j.gr.2013.06.012
    [Google Scholar]
  134. Urzúa, F. (2009). Structural Evolution of La Escondida Copper District, Northern Chile. Hobart, TAS: University of Tasmania.
  135. Valenzuela, J. (2014). Estratigrafía y geología estructural de la región de Cerro La Ballena‐Portezuelo Azabache (Cordillera de Domeyko 23° 40′‐24° 00′S). MSc. Thesis, Universidad de Chile, pp. 147. Santiago de Chile.
  136. Venegas, C., Cervetto, M., Astudillo, N., Espinoza, F., Cornejo, P., Mpodozis, C., & Rivera, O. (2013). Carta Sierra Vaquillas Altas, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 159, 1‐87. 1 mapa escala 1:100.000. Santiago.
  137. Vicente, J. C. (2005). Dynamic paleogeography of the Jurassic Andean Basin: Pattern of transgression and localisation of main straits through the magmatic arc. Rev. La Asoc. Geológica Argentina, 60, 221–250.
    [Google Scholar]
  138. Villamor, P., Berryman, K. R., Ellis, S. M., Schreurs, G., Wallace, L. M., Leonard, G. S., … Ries, W. F. (2017). Rapid Evolution of Subduction‐Related Continental Intraarc Rifts: The Taupo Rift, New Zealand. Tectonics, 36, 2250–2272. https://doi.org/10.1002/2017TC004715
    [Google Scholar]
  139. Walker, R. G., & James, N. P. (1992). Facies models: Response to sea level change. Ontario, Canadá: Geological Association of Canada.
    [Google Scholar]
  140. White, J. D. L., & Houghton, B. F. (2006). Primary volcaniclastic rocks. Geology, 34, 677–680. https://doi.org/10.1130/G22346.1
    [Google Scholar]
  141. Withjack, M. O., Schlische, R. W., & Olsen, P. E. (2002). Rift‐basin structure and its influence on sedimentary systems. In R.Renaut & G. M.Ashley (Eds.), Sedimentation in continental Rifts (pp. 57–81). Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication 73, Tulsa. https://doi.org/10.2110/pec.02.73
    [Google Scholar]
  142. Wright, V. P., & Platt, N. H. (1995). Seasonal wetland carbonate sequences and dynamic catenas: A re‐appraisal of palustrine limestones. Sediment. Geol., 99, 65–71. https://doi.org/10.1016/0037-0738(95)00080-R
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12305
Loading
/content/journals/10.1111/bre.12305
Loading

Data & Media loading...

Supplements

 

WORD

 

WORD

 

 

 

WORD

 

WORD

 

WORD

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error