1887
Volume 31, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Central Eurasia underwent significant palaeoclimatic and palaeogeographic transformations during the middle to late Miocene. The open marine ecosystems of the Langhian and Serravallian seas progressively collapsed and were replaced in the Tortonian by large endorheic lakes. These lakes experienced major fluctuations in water level, directly reflecting the palaeoclimatic conditions of the region. An extreme lowstand of the Eastern Paratethys lake (−300 m) during the regional Khersonian stage reveals a period of intensely dry conditions in Central Eurasia causing a fragmentation of the Paratethys region. This period of “Great Drying” ended by a climate change towards more humid conditions at the base of the Maeotian stage, resulting in a large transgressive event that reconnected most of the Paratethyan basins. The absence of a robust time frame for the Khersonian–Maeotian interval hampers a direct correlation with the global records and complicates a thorough understanding of the underlying mechanisms. Here we present a new chronostratigraphic framework for the Khersonian and Maeotian deposits of the Dacian Basin of Romania, based on integrated magneto‐biostratigraphic studies on long and continuous sedimentary successions. We show the dry climate conditions in the Khersonian start at 8.6–8.4 Ma. The Khersonian/Maeotian transition is dated at 7.65–7.5 Ma, several million years younger than previous estimates. The Maeotian transgression occurs later (7.5–7.4 Ma) in more marginal and shallower basins, in agreement with the time transgressive character of the flooding. In addition, we date a sudden water level drop of the Eastern Paratethys lake, the Intra‐Maeotian Event (IME), at 6.9 Ma, and hypothesize that this corresponds to a reconnection phase with the Aegean basin of the Mediterranean. Finally, we discuss the potential mechanisms explaining the particularities of the Maeotian transgression and conclude that the low salinity and the seemingly “marine influxes” most likely correspond to episodes of intrabasinal mixing in a gradual and pulsating transgressive setting.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12307
2018-08-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/31/1/bre12307.html?itemId=/content/journals/10.1111/bre.12307&mimeType=html&fmt=ahah

References

  1. Andreescu, I. (1973). Precizari asupra limitelor etajului Meotian. Academia RSR, Studii şi Cercetătri de Geologie, Geofizică Geografie, Seria Geologie18/2, 541–558.
    [Google Scholar]
  2. Andreescu, I. (1975). Limitele si subdiviziunile Pontianului. Academia RSR, Studii şi Cercetări de Geologie, Geofizică Geografie, Seria Geologie20/2, 235–245. (Translated: Andreescu, 2009).
    [Google Scholar]
  3. Andreescu, I., & Papaianopol, I. (1970). Biostratigrafia depozitelor sarmatiene dintre vaile Milcov si Râmnicu Sărat. Academia RSR, Studii şi Cercetări de Geologie, Geofizică Geografie, Seria Geologie15/2, 499–512 (Translated: Andreescu and Ticleanu, 1976).
    [Google Scholar]
  4. Andrussov, N. I. (1890). Predvaritel'nyi otchet ob uchastfi v Chernomorskoi glubokomernoi ekspeditsii. Izv. Russ. Geogr. Obshchestva, 26, 398–409.
    [Google Scholar]
  5. Andrusov, N. I. (1885). Der Kalkstein von Kertsch und seine Fauna. In Verhandlungen der Russisch‐Kaiserlichen Mineralogischen Gesellschaft zu. Buchhandlung Eggen und C‐le: St. Petersburg, Russia.
    [Google Scholar]
  6. Andrussov, N. I. (1899). Die südrussischen Neogenablagerungen. 2. Sarmatische Stufe. Zapiski Sankt‐Peterburgskogo Mineralogicheskogo Obshchestva36 (1): 101–170.
    [Google Scholar]
  7. Báldi, T. (1980). The early history of the Paratethys. Földtani Közlöny, Bulletin of the Hungarian Geological Society, 110, 456–472.
    [Google Scholar]
  8. Böhme, M., Ilg, A., & Winklhofer, M. (2008). Late Miocene “washhouse” climate in Europe. Earth and Planetary Science Letters, 275, 393–401. https://doi.org/10.1016/j.epsl.2008.09.011
    [Google Scholar]
  9. Böhme, M., Spassov, N., Ebner, M., Geraads, D., Hristova, L., Kirscher, U., … Winklhofer, M. (2017). Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLoS ONE, 12(5), e0177347. https://doi.org/10.1371/journal.pone.0177347.
    [Google Scholar]
  10. Böhme, M., Winklhofer, M., & Ilg, A. (2011). Miocene precipitation in Europe: Temporal trends and spatial gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 212–218. https://doi.org/10.1016/j.palaeo.2010.09.028
    [Google Scholar]
  11. van der Boon, A., vanHinsbergen, D.J.J., Rezaeian, M., Gürer, D., Honarmand, M., Pastor‐Galán, D., … Langereis, C. G. (2018). Quantifying Arabia–Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction. Earth and Planetary Science Letters, 482, 454–469, (16 p.). https://doi.org/10.1016/j.epsl.2017.11.025
    [Google Scholar]
  12. ter Borgh, M. M., Stoica, M., Donselaar, M. E., Matenco, L., & Krijgsman, W. (2014). Miocene connectivity between the central and eastern Paratethys: Constraints from the western Dacian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology412, 45–67. https://doi.org/10.1016/j.palaeo.2014.07.016
    [Google Scholar]
  13. ter Borgh, M., Vasiliev, I., Stoica, M., Knežević, S., Matenco, L., Krijgsman, W., … Cloetingh, S. (2013). The isolation of the Pannonian basin (Central Paratethys): New constraints from magnetostratigraphy and biostratigraphy. Global and Planetary Change, 103(1), 99–118. https://doi.org/10.1016/j.gloplacha.2012.10.001
    [Google Scholar]
  14. Chang, L., Vasiliev, I., Van Baak, C. G. C., Krijgsman, W., Dekkers, M. J., & Roberts, A. P. (2014). Identification and environmental interpretation of diagenetic and biogenic greigitein sediments: A lesson from the Messinian Black Sea. Geochemistry, Geophysics, Geosystems, 15, 3612–3627. https://doi.org/10.1002/2014GC005411
    [Google Scholar]
  15. Dumitrescu
    Dumitrescu (1952). Studiul geologic al regiunii dintre Oituz și Coza. Bucuresti: An. Com. Geol XXIV.
    [Google Scholar]
  16. Eronen, J. T., Fortelius, M., Micheels, A., Portmann, F. T., Puolamäki, K., & Janis, C. M. (2012). Neogene aridification of the Northern Hemisphere. Geology, 40(9), 823–826. https://doi.org/10.1130/G33147.1
    [Google Scholar]
  17. Filippova, N. Y., & Trubikhin, V. M.. (2009). On the question of correlation of the Upper Miocene deposits of the Black Sea and Mediterranean basins, Aktual'nye problemy neogenovoi i chetvertichnoi stratigrafii i ikh obsuzhdenie na 33 Mezhdunarodnom geologicheskom kongresse (Topical Problems of Neogene and Quaternary Stratigraphy and Discussions at the 33 International Geological Congress), Gladenkov, Yu., Ed., Moscow: GEOS, pp. 142–152.
  18. Firoozfar, A., Bromhead, E. N., Dykes, A. P., & Neshaei, M. A. L. (2012). Southern Caspian Sea Coasts, Morphology, Sediment Characteristics, and Sea Level Change. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy Vol. 17, Article 12.
    [Google Scholar]
  19. Flecker, R., Krijgsman, W., Capella, W., deCastro Martíns, C., Dmitrieva, E., & Mayser, J. P., … Yousfi, M. Z. (2015). Evolution of the Late Miocene Mediterranean Atlantic gateways and their impact on regional and globalenvironmental change. Earth‐Science Reviews, 150, 365–392.
    [Google Scholar]
  20. Floroiu, A., Stoica, M., Vasiliev, I., & Krijgsman, W. (2011). Maeotian/Pontian ostracods in the Badislava — Topolog area (south Carpathian foredeep, Romania). Geo‐Eco‐Ma‐rina, 17, 177–184.
    [Google Scholar]
  21. Fongngern, R., Olariu, C., Steel, R. J., & Krézsek, C. (2016). Clinoform growth in a Miocene, Paratethyan deep lake basin: Thin topsets, irregular foresets and thick bottomsets. Basin Research, 28, 770–795. https://doi.org/10.1111/bre.12132
    [Google Scholar]
  22. Fongngern, R., Olariu, C., Steel, R., Mohrig, D., Krézsek, C., & Hess, T. (2017). Subsurface and outcrop characteristics of fluvial‐dominated deep lacustrine clinoforms. Basin Research, 65/5, 1447–1481. https://doi.org/10.1111/sed.12430
    [Google Scholar]
  23. Garcia‐Castellanos, D., Verges, J., Gaspar‐Escribano, J., & Cloetingh, S. (2003). Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research, 108(B7), 2347. https://doi.org/10.1029/2002JB002073
    [Google Scholar]
  24. Giovanoli, F. (1979). Die Remanente Magnetisierung von Seesedimenten, Mitteilungen aus dem Geologischen Institut der Eidg. Technischen Hochschule und der Universitaet Zuerich, Neue Folge Nr. 230, Geologischen Institut; ETH Zurich.
  25. Gozhyk, P., Semenenko, V., Andreeva‐Grigorovich, A., & Maslun, N. (2015). The correlation of the Neogene of Central and Eastern Paratethys segments of Ukraine with the International Stratigraphic Chart based on planktonic microfossils. Geologica Carpathica, 66(3), 235–244.
    [Google Scholar]
  26. Grasu, C., Catana, C., & Bobos, I. (1999). Molasa Carpatilor Orientali, Petrografie si sedimentogeneza, Editura Tehnica, Bucuresti, p. 227 (in Romanian).
  27. Grothe, A., Sangiorgi, F., Mulders, Y. R., Vasiliev, I., Reichart, G.‐J., Brinkhuis, H., … Krijgsman, W. (2014). Black sea desiccation during the Messinian Salinity Crisis: Fact or fiction?Geology, 42, 563–586. https://doi.org/10.1130/G35503.1
    [Google Scholar]
  28. Harzhauser, M., & Piller, W. E. (2004a). The Early Sarmatian – hidden seesaw changes. Courier Forschungsinstitut Senckenberg, 246, 89–112.
    [Google Scholar]
  29. Harzhauser, M., & Piller, W. E. (2004b). integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western central Paratethys. Stratigraphy, 1, 65–86.
    [Google Scholar]
  30. Harzhauser, M., Piller, W. E., & Steininger, F. F. (2002). Circum‐Mediterranean Oligo‐Miocene biogeographic evolution – the gastropods’ point of view. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(1), 103–133. https://doi.org/10.1016/S0031-0182(01)00464-3
    [Google Scholar]
  31. Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero‐Gill, R., & Kelly, C. S. (2016). Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience, 9, 843–847. https://doi.org/10.1038/NGEO2813
    [Google Scholar]
  32. Hilgen, F. J., Bice, J., Iaccarino, S., Krijgsman, W., Montanari, A., Raffi, I., … Zachariasse, W. J. (2005). The Global Stratotype Section and Point (GSSP) of the Tortonian Stage (UpperMiocene) at Monte dei Corvi. Episodes, 28, 6–17.
    [Google Scholar]
  33. Hilgen, F. J., Lourens, L. J., Van Dam, J. A., Beu, A. G., Boyes, A. F., Cooper, R. A., … Wilson, D. S. (2012). The Neogene period. The Geologic Time Scale, 2012(1–2), 923–978. https://doi.org/10.1016/B978-0-444-59425-9.00029-9
    [Google Scholar]
  34. Hohenegger, J., Rögl, F., Ćorić, S., Pervesler, P., Lirer, F., Roetzel, R., … Stingl, K. (2009). The Styrian Basin: A key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions. Austrian Journal of Earth Sciences, 102(1), 102–132.
    [Google Scholar]
  35. Hostetler, S.W. (1995). Hydrological and Thermal Response of Lakes to Climate: Description and Modeling. Berlin/Heidelberg, Germany: Springer; Volume 60, ISBN 3‐540‐57891‐9.
    [Google Scholar]
  36. Hsü, K. J., & Giovanoli, F. (1979). Messinian event in the Black Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 29(75–93), 10.
    [Google Scholar]
  37. Ionesi, L., Ionesi, B., Lungu, A., Roșca, V., & Ionesi, V. (2005). Sarmațianul mediu și superior de pe Platforma Moldovenească. București: Ed. Acad‐emiei Române; 558 p. Romanian.
  38. Ioniță, S. (1963). Zăcământul de mamifere de la Reghiu ‐ Vrancea și importanța lui stratigrafică. Carpathian ‐ Balkan Association 5th Congress, III/I, 199–210, București.
  39. Ivanov, D., Ashraf, A. R., & Mosbrugger, V. (2007). Late Oligocene and Miocene climate and vegetation in the Eastern Paratethys area (northeast Bulgaria), based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(3–4), 342–360. https://doi.org/10.1016/j.palaeo.2007.08.003
    [Google Scholar]
  40. Ivanov, D., & Koleva‐Rekalova, E. (1999). Palynological and sedimentological data about late Sarmatian paleoclimatic changes in the Forecarpathian and Euxinian basins (Northern Bulgaria). Acta Palaeobotanica (Suppl. 2), 307–313. (Translated: Ivanov et al., 2002).
    [Google Scholar]
  41. Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjevic‐Milutinovic, D., & Molchanoff, S. (2011). Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 262–275. https://doi.org/10.1016/j.palaeo.2010.07.006
    [Google Scholar]
  42. Jipa, D. C. (2009). The identity of a Paratethys basin. Dacian basin configuration ‐ outcome of the Carpathian foredeep along‐arc migration in Dacian Basin. In D. C. Jipa & C. Olariu, GeoEcoMar Spec. Publ., 3. Geoecomar, Bucharest.
  43. Jipa, D. C., & Olariu, C. (2009). Depositional architecture and sedimentary history of a Paratethys sea, in Dacian Basin. Eds. Jipa, D.C. and Olariu, C., GeoEcoMar Spec. Publ., 3. Geoecomar, Bucharest.
  44. Jipa, D. C., Stoica, M., Andreescu, I., Floroiu, A., & Maximov, G. (2011). Zanclean Gilbert‐type fan deltas in the Turnu Severin area (Dacian Basin, Romania), A critical analysis. Geo‐Eco‐Marina, 17, 123–133.
    [Google Scholar]
  45. Jolivet, L., Augier, R., Robin, C., Suc, J. P., & Rouchy, J. M. (2006). Lithospheric‐scale geodynamic context of the Messinian salinity crisis. Sedimentary Geology, 188, 9–33. https://doi.org/10.1016/j.sedgeo.2006.02.004
    [Google Scholar]
  46. Jones, R. W., & Simmons, M. D. (1997). A review of the stratigraphy of Eastern Paratethys (Oligocene– Holocene), with particular emphasis on the Black Sea. In A. G.Robinson (Ed.), Regional and petroleum geology of the Black Sea and surrounding region: AAPG Memoir (Vol. 68, pp. 39–52). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  47. Karlov, N. N. (1937). On the age and formation conditions of the Membranipora reefs of the Kerch Peninsula. Izvestiya Akademii Nauk Sssr, Seriya Geologicheskaya (Izvestiya of the Academy of sciences of the U.S.S.R.), 6, 1003–1036.
    [Google Scholar]
  48. Kirschvink, J. L. (1980). The least‐squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal, Royal Astronomical Society, 62(3), 699–718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x
    [Google Scholar]
  49. Kojumdgieva, E. (1983). Palaeogeographic environment during the desiccation of the Black Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 195–204. https://doi.org/10.1016/0031-0182(83)90011-1
    [Google Scholar]
  50. Koleva‐Rekalova, E. (1994). Sarmatian aragonite sediments in North‐Eastern Bulgaria – origin and diagenesis. Geologica Balcanica, 24, 47–64.
    [Google Scholar]
  51. Korotkevich, E. L. (1970). Late Neogene deer of the north Black Sea area (175 pp). Kiev: Naukova Dumka [in Russian].
    [Google Scholar]
  52. Kováč, M., Andreyeva‐Grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., … Studencka, B. (2007). Badenian evolution of the Central Paratethys Sea, Paleogeography, climate and eustatic sea‐level changes. Geologica Carpathica, 58(6), 579–606.
    [Google Scholar]
  53. Kováč, M., Márton, E., Oszczypko, N., Vojtko, R., Hók, J., Králiková, S., … Oszczypko‐Clowes, M. (2017). Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 155, 133–154. https://doi.org/10.1016/j.gloplacha.2017.07.004
    [Google Scholar]
  54. Krijgsman, W., Stoica, M., Vasiliev, I., & Popov, V. V. (2010). Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 290(1–2), 183–191. https://doi.org/10.1016/j.epsl.2009.12.020
    [Google Scholar]
  55. Kroonenberg, S. B., Badyukova, E. N., Storms, J. E. A., Ignatov, E. I., & Kasimov, N. S. (2000). A full sea‐level cycle in 65 years: Barrier dynamics along Caspian shores. Sedimentary Geology, 134, 257–274. https://doi.org/10.1016/S0037-0738(00)00048-8
    [Google Scholar]
  56. Kroonenberg, S. B., Rusakov, G. V., & Svitoch, A. A. (1997). The wandering of the Volga delta: A response to rapid Caspian sea‐level change. Sedimentary Geology, 107, 189–209. https://doi.org/10.1016/S0037-0738(96)00028-0
    [Google Scholar]
  57. Laskarev, V. (1924). Sur les equivalentes du Sarmatien supérieur en Serbie, Recueil de traveaux ofert a M. Jovan Cvijic par ses amis et collaborateurs: 73–85.
  58. Lukeneder, S., Zuschin, M., Harzhauser, M., & Mandic, O. (2011). Spatiotemporal signals and palaeoenvironments of endemic molluscan assemblages in the marine system of the Sarmatian Paratethys. Acta Palaeontologica Polonica, 56(4), 767–784. https://doi.org/10.4202/app.2010.0046
    [Google Scholar]
  59. Magyar, I., Geary, D. H., & Müller, P. (1999). Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 147(3–4), 151–167. https://doi.org/10.1016/S0031-0182(98)00155-2
    [Google Scholar]
  60. Magyar, I., Radivojević, D., Sztanó, O., Synak, R., Ujszászi, K., & Pócsik, M. (2013). Progradation of the paleo‐Danube shelf margin across the Pannonian Basin during the late Miocene and early Pliocene. Global and Planetary Change, 103, 168–173. https://doi.org/10.1016/j.gloplacha.2012.06.007
    [Google Scholar]
  61. Marinescu, F. (1978). Stratigrafia Neogenului superior din sectorul vestic al bazinului Dacic. (in Romanian with French abstract), Ed. Academiei R. S. R, Bucharest.
  62. Maţenco, L., Bertotti, G., Cloetingh, S., & Dinu, C. (2003). Subsidence analysis and tectonic evolution of the external Carpathian – Moesian Platform region during Neogene times. Sedimentary Geology, 156, 71–94. https://doi.org/10.1016/S0037-0738(02)00283-X
    [Google Scholar]
  63. Matoshko, A., Matoshko, A., Leeuw, A. De, & Stoica, M. (2016). Facies analysis of the Balta formation: Evidence for a large late Miocene fluvio‐deltaic system in the east Carpathian foreland. Sedimentary Geology, 343, 165–189. https://doi.org/10.1016/j.sedgeo.2016.08.004
    [Google Scholar]
  64. Moghadam, I. M. (2013). Stratigraphy of Neogen Deposits in Northern Iran. Middle‐East Journal of Scientific Research, 15(6), 846–852. https://doi.org/10.5829/idosi.mejsr.2013.15.6.2871
    [Google Scholar]
  65. Munteanu, I., Matenco, L., Dinu, C., & Cloetingh, S. (2012). Effects of large sea‐level variations in connected basins: The Dacian‐Black Sea system of the Eastern Paratethys. Basin Research, 24, 583–597. https://doi.org/10.1111/j.1365-2117.2012.00541.x
    [Google Scholar]
  66. Nevesskaya, L. A., Goncharova, I. A., Iljina, L. B., Paramonova, I. A., Popov, S. V., Babak, E. V., … Voronina, A. A. (1986). History of Neogene Mollusks of the Paratethys. Trudy Paleontol Inst Akad Nauk SSSR, 220, 1–208.
    [Google Scholar]
  67. Nevesskaya, L. A., Goncharova, I. A., Ilyina, L. B., Paramonova, N. P., & Khondkarian, S. O. (2002). The Neogene stratigraphic scale of the Eastern Paratethys. Stratigraphy and Geological Correlation, 11, 105–127.
    [Google Scholar]
  68. Palcu, D. V., Golovina, Larisa A., Vernyhorova, Y. V., Popov, S. V., & Krijgsman, W. (2017). Middle Miocene paleoenvironmental crises in Central Eurasia caused by changes in marine gateway configuration. Global and Planetary Change, 158, 57–71. https://doi.org/10.1016/j.gloplacha.2017.09.013
    [Google Scholar]
  69. Palcu, D. V., Tulbure, M., Bartol, M., Kouwenhoven, T. J., & Krijgsman, W. (2015). The Badenian‐Sarmatian Extinction Event in the Carpathian foredeep basin of Romania: Paleogeographic changes in the Paratethys domain. Global and Planetary Change, 133, 346–358. https://doi.org/10.1016/j.gloplacha.2015.08.014
    [Google Scholar]
  70. Pană, I. (1966). Studiul depozitelor Pliocene din regiunea cuprinsa intre valea Buzaului si valea Balaneasa. Studii tehnice si economice, Seria J‐Stratigrafie, nr.1: Bucharest. (in Romanian)
  71. Pană, I.. (1969). Congerii din grupa mytiliforme întâlnite în depozitele meoțiene de la curbura estică a Carpaților. Bul. soc. șt. geol.din R. S. România XI, 327–335. (in Romanian)
    [Google Scholar]
  72. Panaiotu, C. E., Vasiliev, I., Panaiotu, C. G., Krijgsman, W., & Langereis, C. G. (2007). Provenance analysis as a key to orogenic exhumation: A case study from the East Carpathians (Romania). Terra Nova, 19, 120–126. https://doi.org/10.1111/j.1365-3121.2006.00726.x
    [Google Scholar]
  73. Paulissen, W., Luthi, S. M., Grunert, P., Ćorić, S., & Harzhauser, M. (2011). Integrated high‐resolution stratigraphy of a Middle to late Miocene sedimentary sequence in the central part of the Vienna Basin. Geologica Carpathica, 62, 155–169. https://doi.org/10.2478/v10096-011-0013-z
    [Google Scholar]
  74. Pevzner, M. A., & Chikovani, A. A. (1978) Paleomagnetic study of the Upper Miocene and Lower Pliocene marine deposits on the Taman Peninsula. Izvestiya Akademii Nauk, Seriya Geologicheskaya no. 8, 61–66.
    [Google Scholar]
  75. Pevzner, M. A., Lungu, A. N., Vangengeim, E. A., & Basilyan, A. E. (1987). Position of the Vallesian Hipparion Fauna Localities of Moldova in the Magnetochronological Scale. Izvestiya Akademii Nauk Sssr, Seriya Geologicheskaya (Izvestiya Of The Academy Of Sciences Of The U.S.S.R.), 4, 50–59.
    [Google Scholar]
  76. Pevzner, M. A., & Vangengeim, E. A. (1993). Magnetochronological Age Assignment of Middle and Late Sarmatian Localities of the Eastern Paratethys. Newsletters on Stratigraphy, 29(2), 63–75. https://doi.org/10.1127/nos/29/1993/63
    [Google Scholar]
  77. Pilipenko, O. V., & Trubikhin, V. M. (2014). Petromagnetic and magnetostrstratigraphic investigations of the Upper Sarmatian reference section of Popov Kamen (Taman Peninsula). Vest. KRAUNTs. Nauk Zemle, 24(2), 85–94.
    [Google Scholar]
  78. Piller, W. E., Harzhauser, M., & Mandic, O.. (2007). Miocene Central Paratethys stratigraphy – current status and future directions. Stratigraphy4(2/3), 151–168.
    [Google Scholar]
  79. Popov, S. V., Antipov, M. P., Zastrozhnov, A. S., Kurina, E. E., & Pinchuk, T. N. (2010). Sea‐level fluctuations on the Northern Shelf of the Eastern Paratethys in the oligocene‐neogene. Stratigraphy and Geological Correlation, 18, 200–224. https://doi.org/10.1134/S0869593810020073
    [Google Scholar]
  80. Popov, S. V., Golovina, L. A., Jafarzadeh, M., & Goncharova, I. A. (2015). Eastern Paratethys Miocene deposits, mollusks and nannoplankton of the Northern Iran, Neogene of the Paratethyan Region, 6 workshop on Neogene of Central and SE Europe, 31 May – 3 June 2015 (pp. 71–72). Hungary: Orfu.
    [Google Scholar]
  81. Popov, S. V., & Nevesskaya, L. A. (2000). Brackish‐water molluscs of the Late Miocene and the history of the Aegean basin. Stratigraphy and Geological Correlation, 8(2), 97–107.
    [Google Scholar]
  82. Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., & Magyar, I. (2006). Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1–4), 91–106. https://doi.org/10.1016/j.palaeo.2006.03.020
    [Google Scholar]
  83. Popov, S. V.
    , Rögl, F. , Rozanov, A. Y. , Steininger, F. F. , Shcherba, I. G. , & Kovac, M. (Eds.) (2004). Lithological‐Paleogeographic maps of Paratethys. Frankfurt, Germany: Courer Forschungsinstitut Senckenberg. a. M., 250, 1–46. 10 maps.
  84. Popov, S. V., Rostovtseva, Yu. V., Fillippova, N. Yu., Golovina, L. A., Radionova, E. P., Goncharova, I. A., … Viskova, L. A. (2016). Paleontology and stratigraphy of the Middle – Upper Miocene of Taman Peninsula. Part 1.. Description of key‐sections and benthic fossil groups (Eds. Popov S.V., Golovina L.A.), Paleontological Journal supplement series, Vol. 50, No. 10, 168 p.
  85. Radionova, E. P., & Golovina, L. A. (2012). Upper Maeotian – Lower Pontian “Transitional Strata” in the Taman Penin sula: Stratigraphic position and paleogeographic interpretation. Geologica Carpathica, 62(1), 62–100.
    [Google Scholar]
  86. Radionova, E. P., Golovina, L. A., Filippova, N Yu, Trubikhin, V. M., Popov, S. V., Goncharova, I. A., … Pinchuk, T. N. (2012). Middle‐Upper Miocene stratigraphy of the Taman Peninsula, Eastern Paratethys. Central European Journal of Geosciences, 4(1), 188–204. https://doi.org/10.2478/s13533-011-0065-8
    [Google Scholar]
  87. Reichenbacher, B., Krijgsman, W., Lataster, Y., Pippèrr, M., Van Baak, C. G. C., Chang, L., … Bachtadse, V. (2013). A new magnetostratigraphic framework for the lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences, 106, 309–334. https://doi.org/10.1007/s00015-013-0142-8
    [Google Scholar]
  88. Rögl, F. (1998). Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums Wien99 A(A), 279–310.
    [Google Scholar]
  89. Rostovtseva, Yu V, & Rybkina, A. I. (2014). Cyclostratigraphy of Pontian Deposits of the Eastern Paratethys (Zheleznyi Rog Section, Taman Region). Moscow University Geology Bulletin, 69(4), 236–241. https://doi.org/10.3103/S014587521404010
    [Google Scholar]
  90. Rusu, A. (1988). Oligocene events in Transylvania (Romania) and the first separation of Paratethys, D.S. Institute of Geological Geofiz, 72–73, 207–223.
    [Google Scholar]
  91. Rybkina, A. I., Kern, A. N., & Rostovtseva, Yu V (2015). New evidence of the age of the lower Maeotian substage of the Eastern Paratethys based on astronomical cycles. Sedimentary Geology, 330, 122–131. https://doi.org/10.1016/j.sedgeo.2015.10.003
    [Google Scholar]
  92. Sant, K., Kirscher, U., Reichenbacher, B., Pippèrr, M., Jung, D., Doppler, G., & Krijgsman, W. (2017). Late Burdigalian sea retreat from the North Alpine Foreland Basin ‐ new magnetostratigraphic age constraints. Global and Planetary Change, 152, 38–50. https://doi.org/10.1016/j.gloplacha.2017.02.002
    [Google Scholar]
  93. Saulea, E., Popescu, I., & Sandulescu, M. (1969). Lithofacies Atlas, VI Neogene, Sheets 4–8 and 10–13. Institutul de Geologie si Geofizica.
    [Google Scholar]
  94. Schultz, H.‐M., Bechtel, A., & Sachsenhofer, R. F. (2005). The birth of the Paratethys during the Oligocene: From Tethys to an ancient Black Sea analogue. Global and Planetary Change, 49, 163–176. https://doi.org/10.1016/j.gloplacha.2005.07.001
    [Google Scholar]
  95. Semenenko, V. N., Andreeva‐Grigorovich, A. S., Maslun, N. V., & Lulieva, S. A. (2009). Direct correlation of the Neogene of the Eastern Paratethys to the International Oceeanic Scale on plankton microfossils. Geological Journal of the National Academy of Sciences of Ukraine, 4, 9–27. (in Russian).
    [Google Scholar]
  96. Sipahioglu, N. O., & Bati, Z. (2017). Messinian canyons in the Turkish western Black Sea. In M. D.Simmons , G. C.Tari & A. I.Okay (Eds.), Petroleum Geology of the Black Sea. Geological Society, London, Special Publications, 464.
  97. Snel, E., Mărunțeanu, M., Macaleț, R., Meulenkamp, J. E., & Van Vugt, N. (2006). Late Miocene to early Pliocene chronostratigraphic framework for the Dacic Basin, Romania. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 107–124. https://doi.org/10.1016/j.palaeo.2006.03.021
    [Google Scholar]
  98. Steininger, R.R., Berggren, W.A., Kent, D.V., Bernor, R.L., Sen, S., & Agusti, J. (1996). Circum Mediterranean Neogene (Miocene and Pliocene) Marine‐Continental Chronologic Correlations of European Mammal Units and Zones. In: R. L.Bernor , V.Fahlbusch & S.Rietschel (Eds.), Later Neogene European Biotic Evolution and Stratigraphic Correlation (pp. 7–46). New York, NY: Columbia University Press.
    [Google Scholar]
  99. Stekina, N. A. (1979). Istoria flori i rastitelnosti yuga Evropeiskoi chasti SSSR v pozdnem miocene‐rannem pliocene (p. 197). Kiev: Naukova Dumka.
    [Google Scholar]
  100. Stevanovic, P. M., & Ilyina, L. B. (1982). Maeotian stratigraphy of the eastern Serbia andadjacent regions based on mollusks. Serbian Academy of Sciences and Arts Bulletin, 82, 105–136.
    [Google Scholar]
  101. Stoica, M., Krijgsman, W., Fortuin, A., & Gliozzi, E. (2016). Paratethyan ostracods in the Spanish Lago‐Mare: More evidence for interbasinal exchange at high Mediterranean Sea level. Palaeogeography, Palaeoclimatology, Palaeoecology. 441, 854–870. https://doi.org/10.1016/j.palaeo.2015.10.034
    [Google Scholar]
  102. Stoica, M., Lazar, I., Krijgsman, W., Vasiliev, I., Jipa, D. C., & Floroiu, A. (2013). Palaeoenvironmental evolution of the east Carpathian foredeep during the late Miocene – early Pliocene (Dacian Basin; Romania). Global and Planetary Change, 103, 135–148. https://doi.org/10.1016/j.gloplacha.2012.04.004
    [Google Scholar]
  103. Stoica, M., Lazar, I., Vasiliev, I., & Krijgsman, W. (2007). Mollusc assemblages of the Pontian and Dacian deposits from the Topolog‐Arges area (southern Carpathian foredeep ‐Romania). Geobios, 40, 391–405. https://doi.org/10.1016/j.geobios.2006.11.004
    [Google Scholar]
  104. Stuchlik, L., Ivanov, D., & Palamarev, E. (1999). Middle and Late Miocene floristic changes inthe Northern and Southern parts of the Central Paratethys. Acta Palaeobotanica, Supplements, 2, 391–397.
    [Google Scholar]
  105. Suess, E. (1866). Untersuchungen über den Charakter der österreichischen Tertiärablagerungen. II. Über den Charakterder der brackischen Stufe oder der Cerithienschichten. Österreichische Akademie der Wissenschaften Math. ‐ Naturwiss Wien. Kl, 54, 218–357.
    [Google Scholar]
  106. Syabryaj, S., Utescher, T., Molchanoff, S., & Bruch, A. A. (2007). Vegetation and palaeoclimate in the Miocene of Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecol‐ogy, 253(1–2), 153–168. https://doi.org/10.1016/j.palaeo.2007.03.038
    [Google Scholar]
  107. Tărăpoancă, M., Bertotti, G., Mațenco, L., Dinu, C., & Cloetingh, S. A. P. L. (2003). Architecture of the Focșani depression: A 13 km deep basin in the Carpathians bend zone (Romania). Tectonics, 22, https://doi.org/10.1029/2002TC001486
    [Google Scholar]
  108. Tărăpoancă, M., Garcia‐Castellanos, D., Bertotti, G., Matenco, L., Cloetingh, S. A. P. L., & Dinu, C. (2004). Role of the 3‐D distributions of load and lithospheric strength in orogenic arcs: Polystage subsidence in the Carpathians foredeep. Earth and Planetary Science Letters, 221(1–4), 163–180. https://doi.org/10.1016/S0012-821X(04)00068-8
    [Google Scholar]
  109. Tari, G., Fallah, M., Kosia, W., Floodpage, J., Baur, J., Bati, Z., & Sipahioglu, N. O. (2015). Is the impact of the Messinian Salinity Crisis in the Black Sea comparable to that of the Mediterranean?Marine and Petroleum Geology, 66, 135–148. https://doi.org/10.1016/j.marpetgeo.2015.03.021
    [Google Scholar]
  110. Tesakov, A. S., Titov, V. V., Simakova, A. N., Frolov, P. D., Syromyatnikova, E. V., Kurshakov, S. V., … Palatov, D. M. (2017). Late Miocene (Early Turolian) vertebrate faunas and associated biotic record of the Northern Caucasus. Geology, palaeoenvironment, biochronology. – Fossil Imprint, 73(3‐4): 383–444.
    [Google Scholar]
  111. Tesakov, A. S., Titov, V. V., Syromyatnikova, E. V., Danilov, I. G., & Frolov, P. D. (2013). Biostratigrafi ya verkhne‐miotsenovykh otlozheniy (gaverdovskaya svita) doli‐ny r. Beloy (Severnyy Kavkaz) po faune nazemnykh pozvonochnykh i mollyuskov [Biostratigraphy of the Upper Miocene deposits (Gaverdovsky Formation) in the valley of the Belaya River (North Caucasus) based on the faunas of terrestrial vertebrates and mollusks]. – In: [Annual meeting of the paleontological section of the Moscow Society of Naturalists and the Moscow branch of the Paleontological Society. Book of abstracts]. Mos‐cow, pp. 72–73. (in Russian)
  112. Trubikhin, V. M. (1989). Paleomagnetic data for the Pontian. In: P. M.Stevanovic , L. A.Nevesskaja , F. L.Marinescu , A.Sokac & Á.Jámbor (Eds.), Chronostratigraphie und Neostratotypen. Neogen der Westlichen (“Zentrale”) Paratethys VIII, Pl1, Pontien, JAZU and SANU, Zagreb‐Beograd, pp. 76–79.
  113. Trubikhin, V. M., & Pilipenko, O. V. (2011). Rock magnetism and paleomagnetism of Maeotian deposits of the Popov Kamen Reference Section (Taman Peninsula). Fizika Zemli, 2011(3), 83–95.
    [Google Scholar]
  114. Tugolesov, D. A., Gorshkov, A. S., Meisner, L. B., Solov'ev, V. V., & Khakhalev, E. M. (1985). Tectonika mezo‐kaynozoyskich otlozhe‐niy Chernomorskoy vpadiny. Moskva (in Russian): Nedra.
    [Google Scholar]
  115. Van Baak, C. G. C., Krijgsman, W., Magyar, I., Sztanó, O., Golovina, L., Grothe, A., … Vasiliev, I. (2017). Paratethys response to the Messinian salinity crisis. Earth‐Science Reviews, 172, 193–223. https://doi.org/10.1016/j.earscirev.2017.07.015
    [Google Scholar]
  116. Van Baak, C. G. C., Vasiliev, I., Palcu, D. V., Dekkers, M. J., & Krijgsman, W. (2016). A Greigite‐based magnetostratigraphic time frame for the late Miocene to recent DSDP leg 42B cores from the Black Sea. Front Earth Science, 4(60).
    [Google Scholar]
  117. Van Baak, C. G. C., Grothe, A., Stoica, M., Aliyeva, E., Vasiliev, I. & Krijgsman, W. (2013). A magnetostratigraphic time frame for Plio‐Pleistocene transgressions in the South Caspian Basin. Azerbaijan. Global and Planetary Change, 103(1), 119–134. https://doi.org/10.1016/j.gloplacha.2012.05.004
    [Google Scholar]
  118. Vangengeim, E. A., Lungu, A. N., & Tesakov, A. S. (2006). Age of the Vallesian Lower Boundary (Continental Miocene of Europe). Stratigraphy and Geological Correlation, 14(6), 655–667. https://doi.org/10.1134/S0869593806060050
    [Google Scholar]
  119. Vangengeim, E. A., & Tesakov, A. S. (2008). Late Sarmatian Mammal Localities of the Eastern Paratethys: Stratigraphic Position, Magnetochronology, and Correlation with the European Continental Scale. Stratigraphy and Geological Correlation, 16(1), 95–107.
    [Google Scholar]
  120. Vasiliev, I., de Leeuw, A., Filipescu, S., Krijgsman, W., Kuiper, K., Stoica, M., & Briceag, A. (2010). The age of the Sarmatian‐Pannonian transition in the Transylvanian Basin (Central Paratethys). Palaeogeography, Palaeoclimatology, Palaeoecology, 297(1), 54–69. https://doi.org/10.1016/j.palaeo.2010.07.015
    [Google Scholar]
  121. Vasiliev, I., Dekkers, M. J., Krijgsman, W., Franke, C., Langereis, C. G., & Mullender, T. A. T. (2007). Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene‐Pliocene sedimentary rocks of the Carpathian foredeep (Romania). Geophysical Journal International, 171, 613–629. https://doi.org/10.1111/j.1365-246X.2007.03560.x
    [Google Scholar]
  122. Vasiliev, I., Iosifidi, A. G., Khramov, A. N., Krijgsman, W., Kuiper, K., Langereis, C. G., … Yudin, S. V. (2011). Magnetostratigraphy and radio‐isotope dating of upper Miocene‐lower Pliocene sedimentary successions of the Black Sea Basin (Taman Peninsula, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3–4), 163–175. https://doi.org/10.1016/j.palaeo.2011.06.022
    [Google Scholar]
  123. Vasiliev, I., Krijgsman, W., Langereis, C. G., Panaiotu, C. E., Matenco, L., & Bertotti, G. (2004). Towards an astrochronological framework for the eastern Paratethys Mio‐Pliocene sedimentary sequences of the Focsani basin (Romania). Earth and Planetary Science Letters, 227, 231–247. https://doi.org/10.1016/j.epsl.2004.09.012
    [Google Scholar]
  124. Vasiliev, I., Krijgsman, W., Stoica, M., & Langereis, C. G. (2005). Mio‐Pliocene magnetostratigraphy in the southern Carpathian foredeep and Mediterranean — Paratethys correlations. Terra Nova, 17, 376–384. https://doi.org/10.1111/j.1365-3121.2005.00624.x
    [Google Scholar]
  125. Vasiliev, I, Reichart, G‐J., Grothe, A., Sinninghe Damsté, J. S., Krijgsman, W., Sangiorgi, F., … vanRoij, L. (2015). Recurrent phases of drought in the upper Miocene of the Black Sea region. Palaeogeography, Palaeoclimatology, Palaeoecology, 423, 18–31. https://doi.org/10.1016/j.palaeo.2015.01.020
    [Google Scholar]
  126. Vasiliev, I., Franke, C., Meeldijk, J. D., Dekkers, M. J., Langereis, C., & Krijgsman, W. (2008). Putative greigite magnetofossils from the Pliocene epoch. Nature Geoscience, 11, 782–786. https://doi.org/10.1038/ngeo335
    [Google Scholar]
  127. Yapiyev, V., Sagintayev, Z., Inglezakis, V. J., Samarkhanov, K., & Verhoef, A. (2017). Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. Water, 9, 798. https://doi.org/10.3390/w9100798
    [Google Scholar]
  128. Zijderveld, J. D. A. (1967). AC Demagnetization of Rocks: Analysis of Results. In S. K.Runcorn , K. M.Creer & D. W.Collinson (Eds.), Methods in Palaeomagnetism (pp. 254–286). Amsterdam, Netherlands: Elsevier.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12307
Loading
/content/journals/10.1111/bre.12307
Loading

Data & Media loading...

Supplements

 

 

WORD

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error