1887
Volume 31, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Porcupine Basin is a Mesozoic failed rift located in the North Atlantic margin, SW of Ireland, in which a postrift phase of extensional faulting and reactivation of synrift faults occurred during the Mid–Late Eocene. Fault zones are known to act as either conduits or barriers for fluid flow and to contribute to overpressure. Yet, little is known about the distribution of fluids and their relation to the tectono‐stratigraphic architecture of the Porcupine Basin. One way to tackle this aspect is by assessing seismic () and petrophysical (e.g., porosity) properties of the basin stratigraphy. Here, we use for the first time in the Porcupine Basin 10‐km‐long‐streamer data to perform traveltime tomography of first arrivals and retrieve the 2D structure of the postrift sequence along a ~130‐km‐long EW profile across the northern Porcupine Basin. A new –density relationship is derived from the exploration wells tied to the seismic line to estimate density and bulk porosity of the Cenozoic postrift sequence from the tomographic result. The model covers the shallowest 4 km of the basin and reveals a steeper vertical velocity gradient in the centre of the basin than in the flanks. This variation together with a relatively thick Neogene and Quaternary sediment accumulation in the centre of the basin suggests higher overburden pressure and compaction compared to the margins, implying fluid flow towards the edges of the basin driven by differential compaction. The model also reveals two prominent subvertical low‐velocity bodies on the western margin of the basin. The tomographic model in combination with the time‐migrated seismic section shows that whereas the first anomaly spatially coincides with the western basin‐bounding fault, the second body occurs within the hangingwall of the fault, where no major faulting is observed. Porosity estimates suggest that this latter anomaly indicates pore overpressure of sandier Early–Mid Eocene units. Lithological well control together with fault displacement analysis suggests that the western basin‐bounding fault can act as a hydraulic barrier for fluids migrating from the centre of the basin towards its flanks, favouring fluid compartmentalization and overpressure of sandier units of its hangingwall.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12308
2018-07-25
2020-05-26
Loading full text...

Full text loading...

References

  1. Amante, C., & Eakins, B. W. (2009). ETOPO1 1 Arc‐Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC‐24. National Geophysical Data Centre, NOAA. https://doi.org/10.7289/v5c8276m
  2. Arnulf, A. F., Harding, A. J., Kent, G. M., Singh, S. C., & Crawford, W. C. (2014). Constraints on the shallow velocity structure of the Lucky Strike Volcano, Mid‐Atlantic Ridge, from downward continued multichannel streamer data. Journal of Geophysical Research: Solid Earth, 119(2), 1119–1144.
    [Google Scholar]
  3. Bailey, W., Shannon, P. M., Walsh, J. J., & Unnithan, V. (2003). The spatial distributions of faults and deep sea carbonate mounds in the Porcupine Basin, offshore Ireland. Marine and Petroleum Geology, 20(5), 509–522. https://doi.org/10.1016/S0264-8172(03)00079-5
    [Google Scholar]
  4. Begović, S., Meléndez, A., Ranero, C., & Sallarès, V. (2017) Joint refraction and reflection traveltime tomography of multichannel and wide‐angle seismic data. EGU General Assembly 2017, Vienna, Austria, Poster EGU2017‐17231
  5. Bolås, H. M. N., & Hermanrud, C. (2003). Hydrocarbon leakage processes and trap retention capacities offshore Norway. Petroleum Geoscience, 9(4), 321–332.
    [Google Scholar]
  6. Botter, C., Cardozo, N., Lecomte, I., Rotevatn, A., & Paton, G. (2017). The impact of faults and fluid flow on seismic images of a relay ramp over production time. Petroleum Geoscience, 23(1), 17–28. https://doi.org/10.1144/petgeo2016-027
    [Google Scholar]
  7. Canales, J. P., Tucholke, B. E., Xu, M., Collins, J. A., & DuBois, D. L. (2008). Seismic evidence for large‐scale compositional heterogeneity of oceanic core complexes. Geochemistry, Geophysics, Geosystems, 9(8).
    [Google Scholar]
  8. Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional and shear‐wave velocities in clastic silicate rocks. Geophysics, 50(2), 571–581.
    [Google Scholar]
  9. Childs, C., Manzocchi, T., Nell, P. A. R., Walsh, J. J., Strand, J. A., Heath, A. E., & Lygren, T. H. (2002). Geological implications of a large pressure difference across a small fault in the Viking Graben. Norwegian Petroleum Society Special Publications, 11, 187–201. https://doi.org/10.1016/S0928-8937(02)80015-7
    [Google Scholar]
  10. Childs, C., Walsh, J. J., Manzocchi, T., Strand, J., Nicol, A., Tomasso, M., … Aplin, A. C. (2007). Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand. Geological Society, London, Special Publications, 292(1), 235–258. https://doi.org/10.1144/SP292.14
    [Google Scholar]
  11. Croker, P. F., & Shannon, P. M. (1995). The petroleum geology of Ireland's offshore basins: Introduction. Geological Society, London, Special Publications, 93(1), 1–8. https://doi.org/10.1144/GSL.SP.1995.093.01.01
    [Google Scholar]
  12. Dix, C. H. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68–86. https://doi.org/10.1190/1.1438126
    [Google Scholar]
  13. Erickson, S. N., & Jarrard, R. D. (1998). Velocity‐porosity relationships for water‐saturated siliciclastic sediments. Journal of Geophysical Research: Solid Earth, 103(B12), 30385–30406. https://doi.org/10.1029/98JB02128
    [Google Scholar]
  14. Fossen, H. (2010). Structural geology. Cambridge, UK: University Press. https://doi.org/10.1017/CBO9780511777806
    [Google Scholar]
  15. Gardner, G., Gardner, L., & Gregory, A. (1974). Formation velocity and density — the diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–780. https://doi.org/10.1190/1.1440465
    [Google Scholar]
  16. Ghosal, D., Singh, S. C., & Martin, J. (2014). Shallow subsurface morphotectonics of the NW Sumatra subduction system using an integrated seismic imaging technique. Geophysical Journal International, 198(3), 1818–1831. https://doi.org/10.1093/gji/ggu182
    [Google Scholar]
  17. Gluyas, J., & Cade, C. A. (1997). Prediction of porosity in compacted sands. http://archives.datapages.com/data/specpubs/memoir69/data/a193/001/0019.htm
  18. Grant, N. T., Middleton, A. J., & Archer, S. (2014). Porosity trends in the Skagerrak Formation, Central Graben, United Kingdom Continental Shelf: The role of compaction and pore pressure history. AAPG bulletin, 98(6), 1111–1143. https://doi.org/10.1306/10211313002
    [Google Scholar]
  19. Haney, M. M., Snieder, R., Sheiman, J., & Losh, S. (2005). Geophysics: A moving fluid pulse in a fault zone. Nature, 437(7055), 46. https://doi.org/10.1038/437046a
    [Google Scholar]
  20. Henig, A. S., Blackman, D. K., Harding, A. J., Canales, J. P., & Kent, G. M. (2012). Downward continued multichannel seismic refraction analysis of Atlantis Massif oceanic core complex, 30° N, Mid‐Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 13(5).
    [Google Scholar]
  21. Hibert, C., Mangeney, A., Grandjean, G., Baillard, C., Rivet, D., Shapiro, N. M., … Crawford, W. (2014). Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano. Journal of Geophysical Research: Earth Surface, 119(5), 1082–1105. https://doi.org/10.1002/2013JF002970
    [Google Scholar]
  22. Hooper, E. C. D. (1991). Fluid migration along growth faults in compacting sediments. Journal of Petroleum Geology, 14(S1), 161–180. https://doi.org/10.1111/j.1747-5457.1991.tb00360.x
    [Google Scholar]
  23. Hovland, M., Croker, P. F., & Martin, M. (1994). Fault‐associated seabed mounds (carbonate knolls?) off western Ireland and north‐west Australia. Marine and Petroleum Geology, 11(2), 232–246. https://doi.org/10.1016/0264-8172(94)90099-X
    [Google Scholar]
  24. Jones, S. M., White, N., & Lovell, B. (2001). Cenozoic and Cretaceous transient uplift in the Porcupine Basin and its relationship to a mantle plume. Geological Society, London, Special Publications, 188(1), 345–360. https://doi.org/10.1144/GSL.SP.2001.188.01.20
    [Google Scholar]
  25. Korenaga, J., Holbrook, W. S., Kent, G. M., Kelemen, P. B., Detrick, R. S., Larsen, H. C., … Dahl‐Jensen, T. (2000). Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research – Solid Earth, 105, 21591–21614. https://doi.org/10.1029/2000JB900188
    [Google Scholar]
  26. Liu, G., & Roaldset, E. (1994). A new decompaction model and its application to the northern North Sea. First Break, 12(2), 81–89.
    [Google Scholar]
  27. Manzocchi, T., Childs, C., & Walsh, J. J. (2010). Faults and fault properties in hydrocarbon flow models. Geofluids, 10(1–2), 94–113.
    [Google Scholar]
  28. McDonnell, A., & Shannon, P. M. (2001). Comparative Tertiary stratigraphic evolution of the Porcupine and Rockall basins. Geological Society, London, Special Publications, 188(1), 323–344. https://doi.org/10.1144/GSL.SP.2001.188.01.19
    [Google Scholar]
  29. Meléndez, A., Korenaga, J., Sallarès, V., Miniussi, A., & Ranero, C. R. (2015). TOMO3D: 3‐D joint refraction and reflection traveltime tomography parallel code for active‐source seismic data—synthetic test. Geophysical Journal International, 203(1), 158–174. https://doi.org/10.1093/gji/ggv292
    [Google Scholar]
  30. Moore, J. G. (1992). A syn‐rift to post‐rift transition sequence in the Main Porcupine Basin, offshore western Ireland. Geological Society, London, Special Publications, 62(1), 333–349. https://doi.org/10.1144/GSL.SP.1992.062.01.26
    [Google Scholar]
  31. Moser, T. J. (1991). Shortest path calculation of seismic rays. Geophysics, 56(1), 59–67. https://doi.org/10.1190/1.1442958
    [Google Scholar]
  32. Moser, T. J., Eck, T., & Nolet, G. (1992). Hypocenter determination in strongly heterogeneous earth models using the shortest path method. Journal of Geophysical Research: Solid Earth, 97(B5), 6563–6572. https://doi.org/10.1029/91JB03176
    [Google Scholar]
  33. Naeth, J., Primio, R., Horsfield, B., Schaefer, R. G., Shannon, P. M., Bailey, W. R., & Henriet, J. P. (2005). Hydrocarbon seepage and carbonate mound formation: A basin modelling study from the Porcupine Basin (offshore Ireland). Journal of Petroleum Geology, 28(2), 147–166. https://doi.org/10.1111/j.1747-5457.2005.tb00077.x
    [Google Scholar]
  34. Naylor, D., & Shannon, P. M. (1982). The geology of offshore Ireland and west Britain. London: Graham & Trotman Limited. https://doi.org/10.1007/978-94-010-9358-3
    [Google Scholar]
  35. Naylor, D., & Shannon, P. M. (2011). Petroleum Geology of Ireland (p. 262). Scotland.: Dunedin Academic Press, Edinburgh.
    [Google Scholar]
  36. Nicholson, C., & Wesson, R. L. (1992). Triggered earthquakes and deep well activities. Pure and applied Geophysics, 139(3–4), 561–578. https://doi.org/10.1007/BF00879951
    [Google Scholar]
  37. O'Reilly, B. M., Hauser, F., Ravaut, C., Shannon, P. M., & Readman, P. W. (2006). Crustal thinning, mantle exhumation and serpentinization in the Porcupine Basin, offshore Ireland: Evidence from wide‐angle seismic data. Journal of the Geological Society, London, 163, 775–787. https://doi.org/10.1144/0016-76492005-079
    [Google Scholar]
  38. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG bulletin, 81(6), 1023–1041.
    [Google Scholar]
  39. Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM transactions on mathematical software, 8(1), 43–71. https://doi.org/10.1145/355984.355989
    [Google Scholar]
  40. Petroleum Affairs Division
    Petroleum Affairs Division (2006). Petroleum System Analysis of the Rockall and Porcupine Basins offshore Ireland, Digital Atlas. PAD Special Publication 3/06
  41. Prada, M., Watremez, L., Chen, C., O'Reilly, B. M., Minshull, T. A., Reston, T. J., … Gaw, V. (2017). Crustal strain‐dependent serpentinisation in the Porcupine Basin, offshore Ireland. Earth and Planetary Science Letters, 474, 148–159. https://doi.org/10.1016/j.epsl.2017.06.040
    [Google Scholar]
  42. Praeg, D., Stoker, M. S., Shannon, P. M., Ceramicola, S., Hjelstuen, B., Laberg, J. S., & Mathiesen, A. (2005). Episodic Cenozoic tectonism and the development of the NW European ‘passive’ continental margin. Marine and Petroleum Geology, 22(9), 1007–1030. https://doi.org/10.1016/j.marpetgeo.2005.03.014
    [Google Scholar]
  43. Reston, T. J., Gaw, V., Pennell, J., Klaeschen, D., Stubenrauch, A., & Walker, I. (2004). Extreme crustal thinning in the south Porcupine Basin and the nature of the Porcupine Median High: Implications for the formation of non‐volcanic rifted margins. Journal of the Geological Society, 161(5), 783–798. https://doi.org/10.1144/0016-764903-036
    [Google Scholar]
  44. Saqab, M. M., Child, C., Walsh, J. J., & Delogkos, E. (2016). Multiphase deformation history of the Porcupine Basin, offshore west Ireland. Atlantic Ireland Conference, 1–2 November, 2016, Abstract Volume, 116.
  45. Saragiotis, C. D., Hadjileontiadis, L. J., & Panas, S. M. (2002). PAI‐S/K: A robust automatic seismic P phase arrival identification scheme. IEEE Transactions on Geoscience and Remote Sensing, 40(6), 1395–1404. https://doi.org/10.1109/TGRS.2002.800438
    [Google Scholar]
  46. Shannon, P. M., Moore, J. G., Jacob, A. W. B., & Makris, J. (1993). Cretaceous and Tertiary basin development west of Ireland. In Geological Society, London, Petroleum Geology Conference series (Vol. 4, No. 1, pp. 1057–1066). Geological Society of London.
    [Google Scholar]
  47. Sibson, R. H. (2000). Fluid involvement in normal faulting. Journal of Geodynamics, 29(3), 469–499. https://doi.org/10.1016/S0264-3707(99)00042-3
    [Google Scholar]
  48. Stockwell, J. W. (1999). The CWP/SU: Seismic unix package. Computers & Geosciences, 25(4), 415–419. https://doi.org/10.1016/S0098-3004(98)00145-9
    [Google Scholar]
  49. Swarbrick, R. E., Osborne, M. J., & Yardley, G. S. (2002). Comparison of overpressure magnitude resulting from the main generating mechanisms. In Pressure regimes in sedimentary basins and their prediction. AAPG Memoir, 76, 1–12.
    [Google Scholar]
  50. Tate, M. P., & Dobson, M. R. (1988). Syn‐and post‐rift igneous activity in the Porcupine Seabight Basin and adjacent continental margin W of Ireland. Geological Society, London, Special Publications, 39, 309–334. https://doi.org/10.1144/GSL.SP.1988.039.01.28
    [Google Scholar]
  51. Tate, M. P., White, N., & Conroy, J.‐J. (1993). Lithospheric extension and magmatism in the Porcupine Basin west of Ireland. Journal of Geophysical Research – Solid Earth, 98, 13905–13923. https://doi.org/10.1029/93JB00890
    [Google Scholar]
  52. Tingay, M. R., Hillis, R. R., Swarbrick, R. E., Morley, C. K., & Damit, A. R. (2009). Origin of overpressure and pore‐pressure prediction in the Baram province, Brunei. Aapg Bulletin, 93(1), 51–74. https://doi.org/10.1306/08080808016
    [Google Scholar]
  53. Watremez, L., Prada, M., Minshull, T., O'Reilly, B., Chen, C., Reston, T., … Lebedev, S. (2016). Deep structure of the Porcupine Basin from wide‐angle seismic data. Geological Society, London, 8th Petroleum Geology Conference Proceedings. https://doi.org/10.1144/pgc8.26
  54. Wessel, P., & Smith, W. H. (1998). New, improved version of Generic Mapping Tools released. Eos, Transactions American Geophysical Union, 79, 579. https://doi.org/10.1029/98EO00426
    [Google Scholar]
  55. Worthington, R. P., & Walsh, J. J. (2016). Timing, growth and structure of a reactivated basin‐bounding fault. Geological Society, London, Special Publications, 439, SP439‐14.
  56. Wyllie, M. R., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21, 41–70. https://doi.org/10.1190/1.1438217
    [Google Scholar]
  57. Wyllie, M. R., Gregory, A. R., & Gardner, L. W. (1958). An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23, 459–493. https://doi.org/10.1190/1.1438493
    [Google Scholar]
  58. Zelt, C. A. (1998). Lateral velocity resolution from three‐dimensional seismic refraction data. Geophysical Journal International, 135(3), 1101–1112. https://doi.org/10.1046/j.1365-246X.1998.00695.x
    [Google Scholar]
  59. Zelt, C. A., & Forsyth, D. A. (1994). Modeling wide‐angle seismic data for crustal structure: Southeastern Grenville Province. Journal of Geophysical Research – Solid Earth, 99, 11687–11704. https://doi.org/10.1029/93JB02764
    [Google Scholar]
  60. Zelt, B. C., Taylor, B., Weiss, J. R., Goodliffe, A. M., Sachpazi, M., & Hirn, A. (2004). Streamer tomography velocity models for the Gulf of Corinth and Gulf of Itea, Greece. Geophysical Journal International, 159(1), 333–346. https://doi.org/10.1111/j.1365-246X.2004.02388.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12308
Loading
/content/journals/10.1111/bre.12308
Loading

Data & Media loading...

Supplements

 

WORD
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error