1887
Volume 31, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Karoo Basin covers much of South Africa and is an area of prospective shale gas exploration, with the Whitehill Formation the target shale unit. However, the sedimentary succession, including the Whitehill, has been intruded by a series of sills and dykes associated with the Karoo Large Igneous Province (~183 Ma), which are expected to have modified the thermal history of the basin dramatically. Here, we investigate a secondary effect of these intrusions: a series of hydrothermal vent complexes, or breccia pipes, focusing on using O, H, and C isotopes to constrain the origin and evolution of fluids produced during the intrusion of basaltic sills. A cluster of breccia pipes have been eroded down to the level of the Ecca Group at Luiperdskop on the western edge of the Karoo basin; a small isolated pipe of similar appearance crops out 13 km to the east. The Luiperdskop pipes are underlain by a Karoo dolerite sill that is assumed to provide the heat driving fluidization. The pipes consist of fine‐grained matrix and about 8% clasts, on average, of mostly sedimentary material; occasional large rafts of quartzite and dolerite are also present. The presence of clasts apparently from the Dwyka Group is consistent with the depth of formation of the pipes being at, or near, the base of the Karoo Supergroup, between 400 and 850 m below present surface. The presence of chlorite as the dominant hydrous mineral is consistent with an emplacement temperature between 300 and 350°C. The major and trace element, and O‐ and H‐isotope composition of the Tankwa breccias is homogenous, consistent with them being derived from the same source. The δ18O values (VSMOW) of the breccias are relatively uniform (7.1‰–8.7‰), and are similar to that of the country rock shale, and both are lower than expected for shale. The water content of the breccia is between 2.7 and 3.1 wt.% and the δD values range from −109‰ to −144‰. Calcite in vesicles has δ13C and δ18O (VSMOW) values of −4.2‰ and 24.0‰, respectively. The low δD value of the breccia rocks does not appear to be due to the presence of methane in the fluid. Instead, it is proposed that low δD and δ18O values are the result of the fluid being derived from the breakdown of clay minerals that formed and were deposited at a time of cold climate at ~290 Ma.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12311
2018-08-30
2020-05-26
Loading full text...

Full text loading...

References

  1. Aarnes, I., Svensen, H., Polteau, S., & Planke, S. (2011). Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chemical Geology, 281, 181–194. https://doi.org/10.1016/j.chemgeo.2010.12.007
    [Google Scholar]
  2. Backeberg, N. R., Reid, D. L., Trumbull, R. B., & Romer, R. L. (2011). Petrogenesis of the False Bay dykes swarm, Cape Peninsula, South Africa: Evidence for basement assimilation. South African Journal of Geology, 114, 335–763. https://doi.org/10.2113/gssajg.114.3-4.335
    [Google Scholar]
  3. Breit, G. N., & Wanty, R. B. (1991). Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chemical Geology, 91, 83–97. https://doi.org/10.1016/0009-2541(91)90083-4
    [Google Scholar]
  4. Cartwright, J., Huuse, M., & Aplin, A. (2007). Seal bypass systems. AAPG Bulletin, 91, 1141–1166. https://doi.org/10.1306/04090705181
    [Google Scholar]
  5. Catuneanu, O., Wopfner, H., Eriksson, P. G., Cairncross, B., Rubidge, B. S., Smith, R. M. H., & Hancox, P. J. (2005). The Karoo basins of south‐central Africa. Journal of African Earth Sciences, 43, 211–253. https://doi.org/10.1016/j.jafrearsci.2005.07.007
    [Google Scholar]
  6. Cave, L. C. (2002) Apophyllite weathering and the aqueous geochemistry of a Karoo breccia pipe. Unpublished thesis, University of Cape Town.
  7. Chere, N. (2010) Geology and the Geochemistry of breccia pipes in the Karoo Basin, South Africa, Unpublished Honours thesis, University of Cape Town, 38.
  8. Chevallier, L., & Woodford, A. (1999). Morpho‐tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. South African Journal of Geology, 102, 43–54.
    [Google Scholar]
  9. Cole, D. I. (1992). Evolution and development of the Karoo Basin. In M. J.De Wit , & I. G. D.Ransome (Eds.), Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (pp. 87–99). Rotterdam, The Netherlands: Balkema.
    [Google Scholar]
  10. Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703. https://doi.org/10.1126/science.133.3465.1702
    [Google Scholar]
  11. De Kock, M. O., Beukes, N. J., Götz, A. E., Cole, D., Robey, K., Birch, A., … Van Niekerk, H. S. (2016) Open file progress report on exploration of the Southern Karoo Basin through Cimera‐Karin borehole KZF‐1 in the Tankwa Karoo, Witzenberg (Ceres) District. Cimera Technical Report, University of Johannesburg. Retrieved from https://www.researchgate.net/publication/302597698
  12. Diamond, R. E. (1997) Stable isotopes of the thermal springs of the Cape Fold Belt. Unpublished MSc thesis, University of Cape Town.
  13. Diamond, R. E., & Harris, C. (2000). Oxygen and hydrogen isotope geochemistry of hot springs of the Western Cape, South Africa: Recharge at high altitude. Journal of African Earth Sciences, 31, 467–481. https://doi.org/10.1016/S0899-5362(00)80002-0
    [Google Scholar]
  14. Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J. S., & Duncan, A. R. (1997). The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research‐Solid Earth, 102(B8), 18127–18138. https://doi.org/10.1029/97JB00972
    [Google Scholar]
  15. Eales, H. V., Marsh, J. S., & Cox, K. G. (1984). The Karoo Igneous Province: An introduction. Special Publication of the Geological Society of South Africa, 13, 1–26.
    [Google Scholar]
  16. Eiler, J. M. (2001). Oxygen isotope variations of basaltic lavas and upper mantle rocks. Stable Isotope Geochemistry. In: Valley, J.W. & Cole, D. (eds), Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry, 43, 319–364. https://doi.org/10.2138/gsrmg.43.1.319
    [Google Scholar]
  17. Faure, K., & Cole, D. (1999). Geochemical evidence for lacustrine microbial blooms in the vast Permian Main Karoo, Parana′, Falkland Islands and Huab basins of southwestern Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 189–213. https://doi.org/10.1016/S0031-0182(99)00062-0
    [Google Scholar]
  18. Faure, K., Harris, C., & Willis, J. P. (1995). A profound meteoric water influence on genesis in the Permian Waterberg coalfield, South Africa: Evidence from stable isotopes. Journal of Sedimentary Research, 65(4a), 605–613.
    [Google Scholar]
  19. Galerne, C. Y., Galland, O., Neumann, E. R., & Planke, S. (2011). 3D relationships between sills and their feeders: Evidence from the Golden Valley Sill Complex (Karoo Basin) and experimental modelling. Journal of Volcanology and Geothermal Research, 202, 189–199. https://doi.org/10.1016/j.jvolgeores.2011.02.006
    [Google Scholar]
  20. Galerne, C. Y., Neumann, E. R., & Planke, S. (2008). Emplacement mechanisms of sill complexes: Information from the geochemical architecture of the Golden Valley Sill Complex, South Africa. Journal of Volcanology and Geothermal Research, 177, 425–440. https://doi.org/10.1016/j.jvolgeores.2008.06.004
    [Google Scholar]
  21. Graham, C. M., Viglino, J. A., & Harmon, R. S. (1987). Experimental study of hydrogen‐isotope exchange between aluminous chlorite and water and of hydrogen diffusion in chlorite. American Mineralogist, 72, 566–579.
    [Google Scholar]
  22. Grapes, R. H., Reid, D. L., & McPherson, J. G. (1974). Shallow dolerite intrusion and phreatic eruption in the Allan Hills region, Antarctica. New Zealand Journal of Geology and Geophysics, 17, 563–577. https://doi.org/10.1080/00288306.1973.10421581
    [Google Scholar]
  23. Harris, C., Compton, J. S., & Bevington, S. A. (1999). Oxygen and hydrogen isotope composition of kaolinite deposits, Cape Peninsula, South Africa: Low‐temperature, meteoric origin. Economic Geology, 94, 1353–1366. https://doi.org/10.2113/gsecongeo.94.8.1353
    [Google Scholar]
  24. Harris, C., le Roux, P. J., Cochrane, R., Martin, L., Duncan, A. R., Marsh, J. S., … Class, C. (2015). The oxygen isotope composition of Karoo and Etendeka picrites: High δ18O mantle or crustal contamination?Contributions to Mineralogy and Petrology, 170, 8. https://doi.org/10.1007/s00410-015-1164-1
    [Google Scholar]
  25. Herbert, C. T., & Compton, J. S. (2007). Depositional environments of the lower Permian Dwyka diamictite and Prince Albert shale inferred from the geochemistry of early diagenetic concretions, southwest Karoo Basin, South Africa. Sedimentary Geology, 194, 263–277. https://doi.org/10.1016/j.sedgeo.2006.06.008
    [Google Scholar]
  26. Huber, H., Koeberl, C., McDonald, I., & Reimold, W. U. (2001). Geochemistry and petrology of Witwatersrand and Dwyka diamictites from South Africa: Search for an extraterrestrial component. Geochimica et Cosmochimica Acta, 65, 2007–2016. https://doi.org/10.1016/S0016-7037(01)00569-5
    [Google Scholar]
  27. Jamtveit, B., Svensen, H., Podladchikov, Y. Y., & Planke, S. (2004). Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Physical geology of high‐level magmatic systems, Geological Society, London, Special Publication, 234, 233–241. https://doi.org/10.1144/GSL.SP.2004.234.01.15
    [Google Scholar]
  28. Johnson, M. R., van Vuuren, C. J., Hegenberger, W. F., Key, R., & Show, U. (1996). Stratigraphy of the Karoo Supergroup in southern Africa: An overview. Journal of African Earth Sciences, 23, 3–15. https://doi.org/10.1016/S0899-5362(96)00048-6
    [Google Scholar]
  29. Kramers, J. D., Andreoli, M. A., Atanasova, M., Belyanin, G. A., Block, D. L., Franklyn, C., … Pischedda, V. (2013). Unique chemistry of a diamond‐ bearing pebble from the Libyan Desert Glass strewnfield, SW Egypt: Evidence for a shocked comet fragment. Earth and Planetary Science Letters, 382, 21–31. https://doi.org/10.1016/j.epsl.2013.09.003
    [Google Scholar]
  30. Longstaffe, F. J., & Ayalon, A. (1987). Oxygen‐isotope studies of clastic diagenesis in the Lower Cretaceous Viking Formation, Alberta: Implications for the role of meteoric water. In Diagenesis of Sedimentary Sequences (ed. J. D. Marshall). Geological Society, London, Special Publication, 36, 277–296. https://doi.org/10.1144/GSL.SP.1987.036.01.20
    [Google Scholar]
  31. Longstaffe, F. J., & Ayalon, A. (1991). Mineralogical and O‐isotope studies of diagenesis and porewater evolution in continental sandstones, Cretaceous Belly River Group, Alberta, Canada. Applied Geochemistry, 6, 291–303. https://doi.org/10.1016/0883-2927(91)90006-B
    [Google Scholar]
  32. Luthi, S. M., Hodgson, D. M., Geel, C. R., Flint, S., Jan Willem Goedbloed, J. W., Drinkwater, N. J., & Johannessen, E. P. (2006). Contribution of research borehole data to modelling fine‐grained turbidite reservoir analogues, Permian Tanqua–Karoo basin‐floor fans (South Africa). Petroleum Geoscience, 12, 175–190. https://doi.org/10.1144/1354-079305-693
    [Google Scholar]
  33. Marsh, J. S., & Eales, H. V. (1984). The chemistry and petrogenesis of igneous rocks of the Karoo central area, southern Africa. Special Publication of the Geological Society of South Africa, 13, 27–68.
    [Google Scholar]
  34. Matsuhisa, Y., Goldsmith, J. R., & Clayton, R. N. (1979). Oxygen isotopic fractionation in the system quartz‐albite‐anothite‐water. Geochimica et Cosmochimica Acta, 43, 1131–1140. https://doi.org/10.1016/0016-7037(79)90099-1
    [Google Scholar]
  35. McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18, 849–857. https://doi.org/10.1063/1.1747785
    [Google Scholar]
  36. Neumann, E. R., Svensen, H., Galerne, C. Y., & Planke, S. (2011). Multistage evolution of dolerites of the Karoo Large Igneous Province, Central South Africa. Journal of Petrology, 52, 959–984. https://doi.org/10.1093/petrology/egr011
    [Google Scholar]
  37. O'Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51, 5547–5558. https://doi.org/10.1063/1.1671982
    [Google Scholar]
  38. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). January. Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Geological Society, London, Petroleum Geology Conference Series, 6, 833–844. https://doi.org/10.1144/0060833
    [Google Scholar]
  39. Pourmand, A., Dauphas, N., & Ireland, T. J. (2012). A novel extraction chromatography and MC‐ICP‐MS technique for rapid analysis of REE, Sc and Y: Revising CI‐chondrite and Post‐Archean Australian Shale (PAAS) abundances. Chemical Geology, 291, 38–54. https://doi.org/10.1016/j.chemgeo.2011.08.011
    [Google Scholar]
  40. Rogers, J., & Smith, G. C. (2014) Geology of the Tankwa Karoo National Park. Unpublished South African National Parks guide to the Tankwa Karoo National Park.
  41. Sheppard, S. M. F., & Gilg, A. (1996). Stable isotope geochemistry of clay minerals. Clay Minerals, 31, 1–24. https://doi.org/10.1180/claymin.1996.031.1.01
    [Google Scholar]
  42. Smithard, T., Bordy, E. M., & Reid, D. (2015). The effect of dolerite intrusions on the hydrocarbon potential of the lower Permian Whitehill Formation (Karoo Supergroup) in South Africa and southern Namibia: A preliminary study. South African Journal of Geology, 118, 489–510. https://doi.org/10.2113/gssajg.118.4.489
    [Google Scholar]
  43. Stollhofen, H., Werner, M., Stanistreet, I. G., & Armstrong, R. A. (2008). Single‐zircon U‐Pb dating of Carboniferous‐Permian tuffs, Namibia, and the intercontinental deglaciation cycle framework, in Fielding, C.R., Frank, T.D., & Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Paper, 441, 83–96.
    [Google Scholar]
  44. Sun, S. S., & McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    [Google Scholar]
  45. Svensen, H., Bebout, G., Kronz, A., Li, L., Planke, S., Chevallier, L., & Jamtveit, B. (2008). Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa. Geochimica et Cosmochimica Acta, 72, 4929–4947. https://doi.org/10.1016/j.gca.2008.07.023
    [Google Scholar]
  46. Svensen, H., Jamtveit, B., Planke, S., & Chevallier, L. (2006). Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. Journal of the Geological Society, 163, 671–682. https://doi.org/10.1144/1144-764905-037
    [Google Scholar]
  47. Svensen, H., Planke, S., Chevallier, L., Malthe‐Sørenssen, A., Corfu, F., & Jamtveit, B. (2007). Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters, 256, 554–566. https://doi.org/10.1016/j.epsl.2007.02.013
    [Google Scholar]
  48. Svensen, H. H., Planke, S., Neumann, E. R., Aarnes, I., Marsh, J. S., Polteau, S., … Chevallier, L. (2018). Sub‐volcanic intrusions and the link to global climatic and environmental changes. Advances in Volcanology, Springer, Berlin, Heidelberg, 249–272.
    [Google Scholar]
  49. Tămaş, C., & Milési, J. P. (2002). Hydrovolcanic Breccia pipe structures ‐ general features and genetic criteria. I. Phreatomagmatic Breccias. Studia UBB Geologia, 47, 127–147.
    [Google Scholar]
  50. Taylor, H. P. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843–883. https://doi.org/10.2113/gsecongeo.69.6.843
    [Google Scholar]
  51. Vennemann, T. W., & O'Neil, J. R. (1993). A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chemical Geology, 103, 227–234. https://doi.org/10.1016/0009-2541(93)90303-Z
    [Google Scholar]
  52. Visser, J. N. J., & Loock, J. C. (1978). Water depth in the main Karoo Basin, South Africa, during Ecca (Permian) sedimentation. Transactions of the Geological Society of South Africa, 81, 185–191.
    [Google Scholar]
  53. Visser, H. N., & Theron, J. N. (1973) Clanwilliam 1:250 000 geological map sheet 3218, and explanatory notes. Geological Survey of South Africa, Government Printer.
  54. Wenner, D. B., & Taylor, H. P., Jr (1971). Temperatures of serpentinization of ultramafic rocks based on 18O/16O fractionation between coexisting serpentine and magnetite. Contributions to Mineralogy and Petrology, 32, 165–185. https://doi.org/10.1007/BF00643332
    [Google Scholar]
  55. Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314. https://doi.org/10.1016/S0009-2541(99)00092-3
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12311
Loading
/content/journals/10.1111/bre.12311
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error