1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Drainage networks link erosional landscapes and sedimentary basins in a source‐to‐sink system, controlling the spatial and temporal distribution of sediment flux at the outlets. Variations of accumulation rates in a sedimentary basin have been classically interpreted as changes in erosion rates driven by tectonics and/or climate. We studied the interactions between deformation, rainfall rate and the intrinsic dynamics of drainage basins in an experimental fold‐and‐thrust belt subjected to erosion and sedimentation under constant rainfall and shortening rates. The emergence of thrust sheets at the front of a prism may divert antecedent transverse channels (perpendicular to the structural grain) leading to the formation of longitudinal reaches, later uplifted and incorporated in the prism by the ongoing deformation. In the experiments, transverse incisions appear in the external slopes of the emerging thrust sheets. Headward erosion in these transverse channels results in divide migration and capture of the uplifted longitudinal channels located in the inner parts of the prism, leading to drainage network reorganization and modification of the sediment routing system. We show that the rate of drainage reorganization increases with the rainfall rate. It also increases in a nonlinear way with the rate of uplift. We explain this behaviour by an exponent > 1 on the slope variable in the framework of the stream power erosion model. Our results confirm the view that early longitudinal‐dominated networks are progressively replaced by transverse‐dominated rivers during mountain building. We show that drainage network dynamics modulate the distribution of sedimentary fluxes at the outlets of experimental wedges. We propose that under constant shortening and rainfall rates the drainage network reorganization can also modulate the composition and the spatial distribution of clastic fluxes in foreland basins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12321
2018-11-19
2024-04-19
Loading full text...

Full text loading...

References

  1. Allen, P. A. (2008). From landscapes into geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  2. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4, 231–235. https://doi.org/10.1038/ngeo1087
    [Google Scholar]
  3. Babault, J., Bonnet, S., Crave, A., & Van Den Driessche, J. (2005). Influence of Piedmont sedimentation on erosion dynamics of an uplifting landscape: An experimental approach. Geology, 33, 301–304. https://doi.org/310.1130/G21095.21091
    [Google Scholar]
  4. Babault, J., Teixell, A., Struth, L., Van Den Driessche, J., Arboleya, M. L., & Tesón, E. (2013). Shortening, structural relief and drainage evolution in inverted rifts: Insights from the Atlas Mountains, the Eastern Cordillera of Colombia and the Pyrenees. Geological Society, London, Special Publications, 377, 141–158. https://doi.org/10.1144/SP377.14
    [Google Scholar]
  5. Babault, J., Van Den Driessche, J., & Teixell, A. (2012). Longitudinal to transverse drainage network evolution in the High Atlas (Morocco): The role of Tectonics. Tectonics, 31, TC4020.
    [Google Scholar]
  6. Babault, J., Viaplana‐Muzas, M., Legrand, X., Van Den Driessche, J., González‐Quijano, M., & Mudd, S. M. (2018). Source‐to‐sink constraints on tectonic and sedimentary evolution of the Western Central Range and Cenderawasih Bay (Indonesia). Journal of Asian Earth Sciences, 156, 265–287. https://doi.org/10.1016/j.jseaes.2018.02.004
    [Google Scholar]
  7. Beaumont, C. (1981). Foreland basins. Geophysical Journal of the Royal Astronomical Society, 65, 291–329. https://doi.org/10.1111/j.1365-246X.1981.tb02715.x
    [Google Scholar]
  8. Bishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19, 449–473. https://doi.org/10.1177/030913339501900402
    [Google Scholar]
  9. Bonnet, S. (2009). Shrinking and splitting of drainage basins in Orogenic landscapes from the migration of the main drainage divide. Nature Geoscience, 2, 897. https://doi.org/10.1038/ngeo700
    [Google Scholar]
  10. Bonnet, S., & Crave, A. (2003). Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography. Geology, 31, 123–126.
    [Google Scholar]
  11. Bonnet, S., & Crave, A. (2006). Macroscale dynamics of experimental landscapes. Geological Society, London, Special Publications, 253, 327–339. https://doi.org/10.1144/GSL.SP.2006.253.01.17
    [Google Scholar]
  12. Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., & Duncan, C. (1996). Bedrock incision, rock uplift and threshold Hillslopes in the Northwestern Himalayas. Nature, 379, 505–510. https://doi.org/10.1038/379505a0
    [Google Scholar]
  13. Burbank, D. W., McLean, J. K., Bullen, M., Abdrakhmatov, K. Y., & Miller, M. M. (1999). Partitioning of intermontane basins by thrust‐related folding, Tien Shan, Kyrgyzstan. Basin Research, 11, 75–92. https://doi.org/10.1046/j.1365-2117.1999.00086.x
    [Google Scholar]
  14. Castelltort, S., Goren, L., Willett, S. D., Champagnac, J.‐D., Herman, F., & Braun, J. (2012). River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nature Geoscience, 5, 744–748. https://doi.org/10.1038/ngeo1582
    [Google Scholar]
  15. Charreau, J., Chen, Y., Gilder, S., Barrier, L., Dominguez, S., Augier, R., … Wang, Q. (2009). Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River Section (Northwest China). Tectonics, 28, TC2008.
    [Google Scholar]
  16. Crave, A., & Davy, P. (2001). A stochastic, “Precipiton” model for simulating erosion/sedimentation dynamics. Computers & Geosciences, 27, 815–827. https://doi.org/10.1016/S0098-3004(00)00167-9
    [Google Scholar]
  17. Dahlquist, M. P., West, A. J., & Li, G. (2018). Landslide‐driven drainage divide migration. Geology, 46, 403–406. https://doi.org/10.1130/G39916.1
    [Google Scholar]
  18. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  19. Forte, A. M., & Whipple, K. X. (2018). Criteria and tools for determining drainage divide stability. Earth and Planetary Science Letters, 493, 102–117. https://doi.org/10.1016/j.epsl.2018.04.026
    [Google Scholar]
  20. Fox, M., Goren, L., May, D. A., & Willett, S. D. (2014). Inversion of fluvial channels for Paleorock uplift rates in Taiwan. Journal of Geophysical Research: Earth Surface, 119, 1853–1875.
    [Google Scholar]
  21. Gallen, S. F. (2018). Lithologic controls on landscape dynamics and aquatic species evolution in Post‐Orogenic Mountains. Earth and Planetary Science Letters, 493, 150–160. https://doi.org/10.1016/j.epsl.2018.04.029
    [Google Scholar]
  22. Goren, L., Willett, S. D., Herman, F., & Braun, J. (2014). Coupled numerical–analytical approach to landscape evolution modeling. Earth Surface Processes and Landforms, 39, 522–545. https://doi.org/10.1002/esp.3514
    [Google Scholar]
  23. Graveleau, F., & Dominguez, S. (2008). Analogue modelling of the interaction between tectonics, erosion and sedimentation in foreland thrust belts. Comptes Rendus Geoscience, 340, 324–333. https://doi.org/10.1016/j.crte.2008.01.005
    [Google Scholar]
  24. Graveleau, F., Hurtrez, J. E., Dominguez, S., & Malavieille, J. (2011). A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics, 513, 68–87. https://doi.org/10.1016/j.tecto.2011.09.029
    [Google Scholar]
  25. Graveleau, F., Malavieille, J., & Dominguez, S. (2012). Experimental modelling of Orogenic wedges: A review. Tectonophysics, 538–540, 1–66. https://doi.org/10.1016/j.tecto.2012.01.027
    [Google Scholar]
  26. Graveleau, F., Strak, V., Dominguez, S., Malavieille, J., Chatton, M., Manighetti, I., & Petit, C. (2015). Experimental modelling of tectonics–erosion–sedimentation interactions in compressional, extensional, and strike‐slip settings. Geomorphology, 244, 146–168. https://doi.org/10.1016/j.geomorph.2015.02.011
    [Google Scholar]
  27. Guerit, L., Dominguez, S., Malavieille, J., & Castelltort, S. (2016). Deformation of an experimental drainage network in oblique collision. Tectonophysics, 693, 210–222. https://doi.org/10.1016/j.tecto.2016.04.016
    [Google Scholar]
  28. Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland Basin. Geology, 25, 11–14.
    [Google Scholar]
  29. Hallet, B., & Molnar, P. (2001). Distorted drainage basins as markers of crustal strain East of the Himalaya. Journal of Geophysical Research, 106, 13697–13709. https://doi.org/10.1029/2000JB900335
    [Google Scholar]
  30. Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  31. Horton, B. K., & DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland Basin system of the Central Andes, Southern Bolivia: Implications for drainage network evolution in fold‐thrust belts. Basin Research, 13, 43–63. https://doi.org/10.1046/j.1365-2117.2001.00137.x
    [Google Scholar]
  32. Hovius, N. (1996). Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8, 29–44. https://doi.org/10.1111/j.1365-2117.1996.tb00113.x
    [Google Scholar]
  33. Hovius, N., Stark, C. P., Tutton, M. A., & Abbott, L. D. (1998). Landslide‐driven drainage network evolution in a pre‐steady‐state mountain belt: Finisterre Mountains, Papua New Guinea. Geology, 26, 1071–1074.
    [Google Scholar]
  34. Howard, A. D. (1967). Drainage analysis in geologic interpretation: A summation. AAPG Bulletin, 51, 2246–2259.
    [Google Scholar]
  35. Howard, A. D., & Kerby, G. (1983). Channel changes in Badlands. Geological Society of America Bulletin, 94, 739–752.
    [Google Scholar]
  36. Jackson, J., Norris, R., Youngson, J., & Wojtal, S. F. (1996). The structural evolution of active fault and fold systems in Central Otago, New Zealand; evidence revealed by drainage patterns. Journal of Structural Geology, 18, 217–234. https://doi.org/10.1016/S0191-8141(96)80046-0
    [Google Scholar]
  37. Jordan, T. E., & Flemings, P. B. (1991). Large‐scale stratigraphic architecture, eustatic variation, and unsteady tectonism: A theoretical evaluation. Journal of Geophysical Research, 96, 6681–6699. https://doi.org/10.1029/90JB01399
    [Google Scholar]
  38. Keefer, D. K. (1994). The importance of earthquake‐induced landslides to long‐term slope erosion and slope‐failure hazards in seismically active regions. Geomorphology, 10, 265–284. https://doi.org/10.1016/0169-555X(94)90021-3
    [Google Scholar]
  39. Kendrick, R. D. (2000) Structure, Tectonics and Thermochronology of the Irian Jaya Fold Belt, Irian Jaya, Indonesia. PhD. Thesis, La Trobe University, Victoria, Australia.
  40. Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I., & Kázmér, M. (2002). Post‐collisional sediment budget history of the Alps: Tectonic versus climatic control. International Journal of Earth Sciences, 91, 818–837.
    [Google Scholar]
  41. Lague, D. (2014). The stream power river incision model: Evidence, theory and beyond. Earth Surface Processes and Landforms, 39, 38–61. https://doi.org/10.1002/esp.3462
    [Google Scholar]
  42. Lague, D., Crave, A., & Davy, P. (2003). Laboratory experiments simulating the geomorphic response to tectonic uplift. Journal of Geophysical Research, 108, ETG 3‐1–ETG 3‐20, 2008. https://doi.org/10.1029/2002JB001785
    [Google Scholar]
  43. Larsen, I. J., & Montgomery, D. R. (2012). Landslide erosion coupled to tectonics and river incision. Nature Geoscience, 5, 468–473. https://doi.org/10.1038/ngeo1479
    [Google Scholar]
  44. Lavé, J., & Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of Central Nepal. Journal of Geophysical Research‐Solid Earth, 105, 5735–5770. https://doi.org/10.1029/1999JB900292
    [Google Scholar]
  45. Leeder, M. (1997). Sedimentary basins: Tectonic recorders of sediment discharge from drainage catchments. Earth Surface Processes and Landforms, 22, 229–237. https://doi.org/10.1002/(ISSN)1096-9837
    [Google Scholar]
  46. Leeder, M. R., Harris, T., & Kirkby, M. J. (1998). Sediment supply and climate change: Implications for basin stratigraphy. Basin research, 10, 7–18. https://doi.org/10.1046/j.1365-2117.1998.00054.x
    [Google Scholar]
  47. Maher, E., Harvey, A. M., & France, D. (2007). The impact of a major quaternary river capture on the alluvial sediments of a Beheaded River System, the Rio Alias Se Spain. Geomorphology, 84, 344–356. https://doi.org/10.1016/j.geomorph.2005.07.034
    [Google Scholar]
  48. Malverti, L., Lajeunesse, E., & Métivier, F. (2008). Small is beautiful: Upscaling from microscale laminar to natural turbulent rivers. Journal of Geophysical Research: Earth Surface, 113, F04004.
    [Google Scholar]
  49. Meade, R. H. (1982). Sources, sinks, and storage of river sediment in the atlantic drainage of the United States. The Journal of Geology, 90, 235–252. https://doi.org/10.1086/628677
    [Google Scholar]
  50. Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?Nature, 346, 29–34. https://doi.org/10.1038/346029a0
    [Google Scholar]
  51. Molnar, P., & Houseman, G. A. (2004). The effects of buoyant crust on the gravitational instability of thickened mantle lithosphere at zones of intracontinental convergence. Geophysical Journal International, 158, 1134–1150. https://doi.org/10.1111/j.1365-246X.2004.02312.x
    [Google Scholar]
  52. Montgomery, D. R. (2001). Slope distributions, threshold hillslopes, and steady‐state topography. American Journal of Science, 301, 432–454. https://doi.org/10.2475/ajs.301.4-5.432
    [Google Scholar]
  53. Montgomery, D. R., & Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201, 481–489. https://doi.org/10.1016/S0012-821X(02)00725-2
    [Google Scholar]
  54. Niemann, J. D., & Hasbargen, L. E. (2005). A comparison of experimental and natural drainage basin morphology across a range of scales. Journal of Geophysical Research, 110, F04017.
    [Google Scholar]
  55. Pain, C. F., & Bowler, J. M. (1973). Denudation following the November 1970 earthquake at Madang, Papua New Guinea. Zeitschrift fuer Geomorphologie, 18, 92–104.
    [Google Scholar]
  56. Paola, C., Straub, K., Mohrig, D., & Reinhardt, L. (2009). The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth‐Science Reviews, 97, 1–43. https://doi.org/10.1016/j.earscirev.2009.05.003
    [Google Scholar]
  57. Pastor, A., Babault, J., Owen, L. A., Teixell, A., & Arboleya, M.‐L. (2015). Extracting dynamic topography from river profiles and cosmogenic nuclide geochronology in the Middle Atlas and the High Plateaus of Morocco. Tectonophysics, 663, 95–109. https://doi.org/10.1016/j.tecto.2015.06.007
    [Google Scholar]
  58. Peakall, J., Ashworth, P. J., & Best, J. L. (1996). Physical modelling in fluvial geomorphology: Principles, applications and unresolved issues. In B. L.Rhoads , & C. E.Thorn (Eds.), The scientific nature of geomorphology (pp. 221–253). Chichester: Wiley & Sons.
    [Google Scholar]
  59. Peizhen, Z., Molnar, P., & Downs, W. R. (2001). Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897. https://doi.org/10.1038/35073504
    [Google Scholar]
  60. Pelletier, J. D. (2004). Persistent drainage migration in a numerical landscape evolution model. Geophysical Research Letters, 31, L20501. https://doi.org/10.1029/2004GL020802
    [Google Scholar]
  61. Perron, J. T., Richardson, P. W., Ferrier, K. L., & Lapotre, M. (2012). The root of branching river networks. Nature, 492, 100–103. https://doi.org/10.1038/nature11672
    [Google Scholar]
  62. Price, R. A. (1973). Large scale gravitational flow of Supracrustal Rocks, Southern Canadian Rockies. In K. A.Dejong , & R.Scholten (Eds.), Gravity and tectonics (pp. 491–502). New York, NY: John Wiley and sons.
    [Google Scholar]
  63. Puigdefàbregas, C., & Souquet, P. (1986). Tectono‐sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics, 129, 173–204. https://doi.org/10.1016/0040-1951(86)90251-9
    [Google Scholar]
  64. Robbins, J. C. (2016). A probabilistic approach for assessing landslide‐triggering event rainfall in Papua New Guinea, using Trmm satellite precipitation estimates. Journal of Hydrology, 541, 296–309. https://doi.org/10.1016/j.jhydrol.2016.06.052
    [Google Scholar]
  65. Robbins, J. C., & Petterson, M. G. (2015). Landslide inventory development in a data sparse region: Spatial and temporal characteristics of landslides in Papua New Guinea. Natural Hazards and Earth System Sciences Discussion, 3, 4871–4917. https://doi.org/10.5194/nhessd-3-4871-2015
    [Google Scholar]
  66. Schumm, S. A., Mosley, M. P., & Weaver, W. E. (1987). Experimental fluvial geomorphology. New York, NY: John Wiley & Sons.
    [Google Scholar]
  67. Simonett, D. S. (1967). Landslide distribution and Earthquakes in the Bewani and Torricelli Mountains, New Guinea: A statistical analysis. In J. N.Jennings , & J. A.Mabbutt (Eds.), Landform Studies from Australia and New Guinea (pp. 64–84). Cambridge: Cambridge Univ. Press.
    [Google Scholar]
  68. Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2000). Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino Triple Junction Region, Northern California. Geological Society of America Bulletin, 112, 1250–1263.
    [Google Scholar]
  69. Strak, V., Dominguez, S., Petit, C., Meyer, B., & Loget, N. (2011). Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modelling. Tectonophysics, 513, 1–19. https://doi.org/10.1016/j.tecto.2011.10.005
    [Google Scholar]
  70. Talling, P. J., Stewart, M. D., Stark, C. P., Gupta, S., & Vincent, S. J. (1997). Regular spacing of drainage outlets from linear fault blocks. Basin Research, 9, 275–302. https://doi.org/10.1046/j.1365-2117.1997.00048.x
    [Google Scholar]
  71. Tomkin, J. H., & Braun, J. (1999). Simple models of drainage reorganisation on a tectonically active ridge system. New Zealand Journal of Geology and Geophysics, 42, 1–10. https://doi.org/10.1080/00288306.1999.9514827
    [Google Scholar]
  72. Tucker, G. E., & Slingerland, R. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research, 99, 12,229–212243. https://doi.org/10.1029/94JB00320
    [Google Scholar]
  73. Tucker, G. E., & Slingerland, R. (1996). Predicting sediment flux from fold and thrust belts. Basin research, 8, 329–349. https://doi.org/10.1046/j.1365-2117.1996.00238.x
    [Google Scholar]
  74. Ueda, K., Willett, S. D., Gerya, T., & Ruh, J. (2015). Geomorphological–thermo‐mechanical modeling: Application to Orogenic wedge dynamics. Tectonophysics, 659, 12–30. https://doi.org/10.1016/j.tecto.2015.08.001
    [Google Scholar]
  75. van der Beek, P., Champel, B., & Mugnier, J.‐L. (2002). Control of detachment dip on drainage development in regions of active fault‐propagation folding. Geology, 30, 471–474.
    [Google Scholar]
  76. Viaplana‐Muzas, M., Babault, J., Dominguez, S., Van Den Driessche, J., & Legrand, X. (2015). Drainage network evolution and patterns of sedimentation in an experimental wedge. Tectonophysics, 664, 109–124. https://doi.org/10.1016/j.tecto.2015.09.007
    [Google Scholar]
  77. Weiland, R. J., & Cloos, M. (1996). Pliocene‐pleistocene asymmetric unroofing of the Irian Fold Belt, Irian Jaya, Indonesia: Apatite fission‐track thermochronology. Geological Society of America Bulletin, 108, 1438–1449.
    [Google Scholar]
  78. Whipple, K. X. (2001). Fluvial landscape response time: How plausible is steady‐state denudation?American Journal of Science, 301, 313–325. https://doi.org/10.2475/ajs.301.4-5.313
    [Google Scholar]
  79. Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., & Ouimet, W. B. (2017). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122, 248–273.
    [Google Scholar]
  80. Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104, 17, 661–17617674. https://doi.org/10.1029/1999JB900120
    [Google Scholar]
  81. Whittaker, A. C., Attal, M., & Allen, P. A. (2010). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active Tectonics. Basin Research, 22, 809–828.
    [Google Scholar]
  82. Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., & Roberts, G. P. (2007). Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates. Geology, 35, 103–106. https://doi.org/10.1130/G23106A.1
    [Google Scholar]
  83. Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., & Chen, C.‐Y. (2014). Dynamic reorganization of river Basins. Science, 343, 12487650–12487659.
    [Google Scholar]
  84. Willett, S. D., Slingerland, R., & Hovius, N. (2001). Uplift, shortening, and steady state topography in active mountain belts. American Journal of Science, 301, 455–485. https://doi.org/10.2475/ajs.301.4-5.455
    [Google Scholar]
  85. Yang, R., Willett, S. D., & Goren, L. (2015). In situ low‐relief landscape formation as a result of river network disruption. Nature, 520, 526–529. https://doi.org/10.1038/nature14354
    [Google Scholar]
  86. Yanites, B. J., Becker, J. K., Madritsch, H., Schnellmann, M., & Ehlers, T. A. (2017). Lithologic effects on landscape response to base level changes: A modeling study in the context of the Eastern Jura Mountains, Switzerland. Journal of Geophysical Research: Earth Surface, 122, 2196–2222.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12321
Loading
/content/journals/10.1111/bre.12321
Loading

Data & Media loading...

Supplements

 

 

 

 

 

 

WORD

 

 

 

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error