1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The role of spatiotemporally varying tectonic forcing in the development of stratigraphic patterns along passive margins and continental rift basins has been recognized for decades, but the exact nature of the stratigraphic response is still debated. This study develops a coupled tectonic‐stratigraphic numerical model with a fixed absolute lake level and constant climate conditions to quantify the signatures of spatiotemporally varying tectonic forcing on the stratigraphic record. This model consists of a three‐dimensional rift basin with a range of geomorphic features and produces a number of well‐recognized stratigraphic patterns, which are commonly interpreted to be caused by lake‐/sea‐level or climate fluctuations. This study demonstrates that the shoreline and grain‐size front are decoupled through the adjustment of the depositional slope and sediment dispersal under spatiotemporally varying tectonic forcing, especially in underfilled basins. Under such a decoupled situation, the pathway of the migrating subsidence centre correlates with the pathway of the grain‐size front, a result of competition between spatiotemporally varying tectonic forcing and autogenic sediment transport. The model results also highlight the significance of three‐dimensional variability in the stratigraphic response to tectonic forcing, which may be overlooked or misinterpreted and suggests a high degree of uncertainty in re‐establishing the base‐level cycles from the stratigraphic record alone. Moreover, spectral analysis of the modelled stratigraphy and tectonic forcing suggests that low‐frequency tectonic signals are more likely to be recorded in the stratigraphy with a lag time, whereas high‐frequency tectonic signals are likely to be shredded, mixed with autogenic signals, or buffered through sediment‐routing systems. Finally, quantitative measurements of the stratigraphic architecture of the Nanpu sag in the Bohai Bay Basin, China are used to tune the numerical model of this study to illustrate how to evaluate the role of tectonic forcing on the development of characteristic stratigraphic sequences.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12322
2018-11-22
2020-08-04
Loading full text...

Full text loading...

References

  1. Allen, P. (2005). Striking a chord. Nature, 434, 961. https://doi.org/10.1038/434961a
    [Google Scholar]
  2. Allen, P. A. (2008). From landscapes into geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  3. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., … Schlunegger, F. (2013). Theqsproblem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  4. Allen, M. B., Macdonald, D. I. M., Xun, Z., Vincent, S. J., & Brouet‐Menzies, C. (1997). Early Cenozoic two‐phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14, 951–972. https://doi.org/10.1016/S0264-8172(97)00027-5
    [Google Scholar]
  5. Armitage, J. J., Burgess, P. A., Hampson, G. J., & Allen, P. A. (2016). Deciphering the origin of cyclical gravel front and shoreline progradation and retrogradation in the stratigraphic record. Basin Research, 30, 15–35. https://doi.org/10.1111/bre.12203
    [Google Scholar]
  6. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4, 231–235. https://doi.org/10.1038/ngeo1087
    [Google Scholar]
  7. Bell, R. E., Duclaux, G., Nixon, C. W., Gawthorpe, R. L., & McNeill, L. C. (2017). High‐angle, not low‐angle, normal faults dominate early rift extension in the Corinth Rift, central Greece. Geology, 46, 115–118. https://doi.org/10.1130/G39560.1
    [Google Scholar]
  8. Bianchi, V., Salles, T., Ghinassi, M., Billi, P., Dallanave, E., & Duclaux, G. (2015). Numerical modeling of tectonically driven river dynamics and deposition in an upland incised valley. Geomorphology, 241, 353–370. https://doi.org/10.1016/j.geomorph.2015.04.007
    [Google Scholar]
  9. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea‐level change: A review and look forward, Blackwell Science Ltd. Sedimentology, 47, 2–48.
    [Google Scholar]
  10. Bufe, A., Paola, C., & Burbank, D. W. (2016). Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate. Nature Geoscience, 9, 706–710. https://doi.org/10.1038/ngeo2773
    [Google Scholar]
  11. Burgess, P. M. (2016a). Identifying ordered strata: Evidence, methods, and meaning. Journal of Sedimentary Research, 86, 148–167.
    [Google Scholar]
  12. Burgess, P. M. (2016b). Research focus: The future of the sequence stratigraphy paradigm: Dealing with a variable third dimension. Geology, 44, 335–336.
    [Google Scholar]
  13. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27, 351–365. https://doi.org/10.1111/bre.12082
    [Google Scholar]
  14. Castelltort, S., & Van Den Driessche, J. (2003). How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sedimentary Geology, 157, 3–13. https://doi.org/10.1016/S0037-0738(03)00066-6
    [Google Scholar]
  15. Castelltort, S., Whittaker, A., & Vergés, J. (2015). Tectonics, sedimentation and surface processes: From the erosional engine to basin deposition. Earth Surface Processes and Landforms, 40, 1839–1846. https://doi.org/10.1002/esp.3769
    [Google Scholar]
  16. Chapin, C. E., & Cather, S. (1994). Tectonic setting of the axial basins of the northern and central Rio Grande rift. Geological Society of America (Special paper), 291, 5–26. https://doi.org/10.1130/SPE291-p5
    [Google Scholar]
  17. Clevis, Q., De Boer, P. L., & Nijman, W. (2004). Differentiating the effect of episodic tectonism and eustatic sea‐level fluctuations in foreland basins filled by alluvial fans and axial deltaic systems: Insights from a three‐dimensional stratigraphic forward model. Sedimentology, 51, 809–835. https://doi.org/10.1111/j.1365-3091.2004.00652.x
    [Google Scholar]
  18. Clevis, Q., Tucker, G. E., Lancaster, S. T., Desitter, A., Gasparini, N., & Lock, G. (2006). A simple algorithm for the mapping of TIN data onto a static grid: Applied to the stratigraphic simulation of river meander deposits. Computers & Geosciences, 32, 749–766. https://doi.org/10.1016/j.cageo.2005.05.012
    [Google Scholar]
  19. Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A., & Roberts, G. P. (2006). Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Research, 18, 231–266. https://doi.org/10.1111/j.1365-2117.2006.00298.x
    [Google Scholar]
  20. Cowie, P. A., Whittaker, A. C., Attal, M., Roberts, G., Tucker, G. E., & Ganas, A. (2008). New constraints on sediment‐flux–dependent river incision: Implications for extracting tectonic signals from river profiles. Geology, 36, 535. https://doi.org/10.1130/G24681A.1
    [Google Scholar]
  21. Crameri, F., Schmeling, H., Golabek, G. J., Duretz, T., Orendt, R., Buiter, S. J. H., … Tackley, P. J. (2012). A Comparison of numerical surface topography calculations in geodynamic modelling: An evaluation of the ‘Sticky Air’ method. Geophysical Journal International, 189, 38–54. https://doi.org/10.1111/j.1365-246X.2012.05388.x
    [Google Scholar]
  22. Csato, I., Catuneanu, O., & Granjeon, D. (2014). Millennial‐scale sequence stratigraphy: numerical simulation with Dionisos. Journal of Sedimentary Research, 84, 394–406. https://doi.org/10.2110/jsr.2014.36
    [Google Scholar]
  23. Dalman, R., Weltje, G. J., & Karamitopoulos, P. (2015). High‐resolution sequence stratigraphy of fluvio‐deltaic systems: prospects of system‐wide chronostratigraphic correlation. Earth and Planetary Science Letters, 412, 10–17. https://doi.org/10.1016/j.epsl.2014.12.030
    [Google Scholar]
  24. Densmore, A. L., Allen, P. A., & Simpson, G. (2007). Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. Journal of Geophysical Research, 112, F01002. https://doi.org/10.1029/2006JF000474
    [Google Scholar]
  25. Densmore, A. L., Gupta, S., Allen, P. A., & Dawers, N. H. (2007). Transient Landscapes at Fault Tips. Journal of Geophysical Research, 112, F03S08. https://doi.org/10.1029/2006JF000560
    [Google Scholar]
  26. Dong, Y., Xiao, L., Zhou, H., Du, J., Zhang, N., Xiang, H., … Huang, H. (2010). Volcanism of the Nanpu Sag in the Bohai Bay Basin, Eastern China: Geochemistry, petrogenesis, and implications for tectonic setting. Journal of Asian Earth Sciences, 39, 173–191. https://doi.org/10.1016/j.jseaes.2010.03.003
    [Google Scholar]
  27. Dong, Y., Xiao, L., Zhou, H., Wang, C., Zheng, J., Zhang, N., … Huang, H. (2009). The Tertiary evolution of the prolific Nanpu Sag of Bohai Bay Basin, China: Constraints from volcanic records and tectono‐stratigraphic sequences. Geological Society of America Bulletin, 122, 609–626. https://doi.org/10.1130/B30041.1
    [Google Scholar]
  28. Drucker, D. C., & Prager, W. (1952). Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10, 157–165. https://doi.org/10.1090/qam/48291
    [Google Scholar]
  29. Duller, R. A., Whittaker, A. C., Fedele, J. J., Whitchurch, A. L., Springett, J., Smithells, R., … Allen, P. A. (2010). From grain size to tectonics. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009JF001495
    [Google Scholar]
  30. Ebinger, C. J. (1989). Geometric and kinematic development of border faults and accommodation zones, Kivu‐Rusizi Rift, Africa. Tectonics, 8, 117–133. https://doi.org/10.1029/TC008i001p00117
    [Google Scholar]
  31. Ebinger, C. J., Deino, A. L., Tesha, A. L., Becker, T., & Ring, U. (1993). Tectonic controls on rift basin morphology: Evolution of the Northern Malawi (Nyasa) rift. Journal of Geophysical Research: Solid Earth, 98, 17821–17836.
    [Google Scholar]
  32. Flemings, P. B., & Jordan, T. E. (1989). A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research: Solid Earth, 94, 3851–3866. https://doi.org/10.1029/JB094iB04p03851
    [Google Scholar]
  33. Forzoni, A., Storms, J. E. A., Whittaker, A. C., & de Jager, G. (2014). Delayed delivery from the sediment factory: Modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surface Processes and Landforms, 39, 689–704. https://doi.org/10.1002/esp.3538
    [Google Scholar]
  34. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1046/j.1365-2117.2000.00121.x
    [Google Scholar]
  35. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., … Stamatakis, M. (2017). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift, Greece. Basin Research30, 448–479.
    [Google Scholar]
  36. Gawthorpe, R. L., Sharp, I., Underhill, J. R., & Gupta, S. (1997). Linked Sequence Stratigraphic and Structural Evolution of Propagating Normal Faults. Geology, 25, 795. https://doi.org/10.1130/0091-7613(1997)025<0795:LSSASE>2.3.CO;2
    [Google Scholar]
  37. Geurts, A. H., Cowie, P. A., Duclaux, G., Gawthorpe, R. L., Huismans, R. S., Pedersen, V. K., & Wedmore, L. N. J. (2018). Drainage integration and sediment dispersal in active continental rifts: A numerical modelling study of the central Italian Apennines. Basin Research, 30(5), 965–989. https://doi.org/10.1111/bre.12289
    [Google Scholar]
  38. Gong, C., Blum, M. D., Wang, Y., Lin, C., & Xu, Q. (2017). Can climatic signals be discerned in a deep‐water sink?: An answer from the Pearl River source‐to‐sink sediment‐routing system. GSA Bulletin. https://doi.org/10.1130/B31578.1
    [Google Scholar]
  39. Guan, H., & Zhu, X. M. (2008). Sequence framework and sedimentary facies of Ed formation in Paleogene, NanpuSag, BohaiBayBasin. Acta Sedimentologica Sina, 26, 730–735.
    [Google Scholar]
  40. Hajek, E., Paola, C., Petter, A., Alabbad, A., & Kim, W. (2014). Amplification of shoreline response to sea‐level change by back‐tilted subsidence. Journal of Sedimentary Research, 84, 470–474. https://doi.org/10.2110/jsr.2014.34
    [Google Scholar]
  41. Hardy, S., & Gawthorpe, R. L. (1998). Effects of variations in fault slip rate on sequence stratigraphy in fan deltas: Insights from numerical modeling. Geology, 26, 911. https://doi.org/10.1130/0091-7613(1998)026<0911:EOVIFS>2.3.CO;2
    [Google Scholar]
  42. Hickson, T. A., Sheets, B. A., Paola, C., & Kelberer, M. (2005). Experimental test of tectonic controls on three‐dimensional alluvial facies architecture. Journal of Sedimentary Research, 75, 710–722. https://doi.org/10.2110/jsr.2005.057
    [Google Scholar]
  43. Hirth, G., & Kohlstedt, D. (2003). Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. Geophysical Monograph, 138, 83–105.
    [Google Scholar]
  44. Horton, B. K., Constenius, K. N., & DeCelles, P. G. (2004). Tectonic control on coarse‐grained foreland‐basin sequences: An example from the Cordilleran foreland basin, Utah. Geology, 32, 637. https://doi.org/10.1130/G20407.1
    [Google Scholar]
  45. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37, n/a‐n/a. https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  46. Karamitopoulos, P., Weltje, G. J., & Dalman, R. A. F. (2014). Allogenic controls on autogenic variability in fluvio‐deltaic systems: inferences from analysis of synthetic stratigraphy. Basin Research, 26, 767–779. https://doi.org/10.1111/bre.12065
    [Google Scholar]
  47. Kim, W., & Muto, T. (2007). Autogenic response of alluvial‐bedrock transition to base‐level variation: experiment and theory. Journal of Geophysical Research, 112. https://doi.org/10.1029/2006JF000561
    [Google Scholar]
  48. Kim, W., Sheets, B. A., & Paola, C. (2010). Steering of experimental channels by lateral basin tilting. Basin Research, 22, 286–301. https://doi.org/10.1111/j.1365-2117.2009.00419.x
    [Google Scholar]
  49. Kopp, J., & Kim, W. (2015). The effect of lateral tectonic tilting on fluviodeltaic surficial and stratal asymmetries: Experiment and theory. Basin Research, 27, 517–530. https://doi.org/10.1111/bre.12086
    [Google Scholar]
  50. Leeder, M. R., & Alexander, J. A. N. (1987). The origin and tectonic significance of asymmetrical meander‐belts. Sedimentology, 34, 217–226. https://doi.org/10.1111/j.1365-3091.1987.tb00772.x
    [Google Scholar]
  51. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. Geological Society, London, Special Publications, 28, 139–152. https://doi.org/10.1144/GSL.SP.1987.028.01.11
    [Google Scholar]
  52. Leva López, J., Kim, W., & Steel, R. J. (2014). Autoacceleration of clinoform progradation in foreland basins: Theory and experiments. Basin Research, 26, 489–504. https://doi.org/10.1111/bre.12048
    [Google Scholar]
  53. Li, Q., Gasparini, N. M., & Straub, K. M. (2018). Some signals are not the same as they appear: How do erosional landscapes transform tectonic history into sediment flux records?Geology, 46, 407–410. https://doi.org/10.1130/G40026.1
    [Google Scholar]
  54. Li, Q., Yu, L., & Straub, K. M. (2016). Storage thresholds for relative sea‐level signals in the stratigraphic record. Geology, 44, 179–182. https://doi.org/10.1130/G37484.1
    [Google Scholar]
  55. Madof, A. S., Harris, A. D., & Connell, S. D. (2016). Nearshore along‐strike variability: Is the concept of the systems tract unhinged?Geology, 44, 315–318. https://doi.org/10.1130/G37613.1
    [Google Scholar]
  56. Marr, J. G., Swenson, J. B., Paola, C., & Voller, V. R. (2008). A two‐diffusion model of fluvial stratigraphy in closed depositional basins. Basin Research, 12, 381–398. https://doi.org/10.1111/j.1365-2117.2000.00134.x
    [Google Scholar]
  57. Martin, J., Paola, C., Abreu, V., Neal, J., & Sheets, B. (2009). Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level. AAPG Bulletin, 93, 503–533. https://doi.org/10.1306/12110808057
    [Google Scholar]
  58. Mondy, L. S., Rey, P. F., Duclaux, G., & Moresi, L. (2017). The role of asthenospheric flow during rift propagation and breakup. Geology, 46, 103–106. https://doi.org/10.1130/G39674.1
    [Google Scholar]
  59. Moresi, L., Dufour, F., & Mühlhaus, H. B. (2002). Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling. Pure and Applied Geophysics, 159, 2335–2356. https://doi.org/10.1007/s00024-002-8738-3
    [Google Scholar]
  60. Moresi, L., Dufour, F., & Mühlhaus, H. B. (2003). A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics, 184, 476–497. https://doi.org/10.1016/S0021-9991(02)00031-1
    [Google Scholar]
  61. Moresi, L., Quenette, S., Lemiale, V., Mériaux, C., Appelbe, B., & Mühlhaus, H. B. (2007). Computational approaches to studying non‐linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors, 163, 69–82. https://doi.org/10.1016/j.pepi.2007.06.009
    [Google Scholar]
  62. Muto, T. (2005). Large‐scale fluvial grade as a nonequilibrium state in linked depositional systems: Theory and experiment. Journal of Geophysical Research, 110, F03002. https://doi.org/10.1029/2005JF000284
    [Google Scholar]
  63. Muto, T., & Steel, R. J. (2004). Autogenic response of fluvial deltas to steady sea‐level fall: implications from flume‐tank experiments. Geology, 32, 401. https://doi.org/10.1130/G20269.1
    [Google Scholar]
  64. Muto, T., Steel, R. J., & Swenson, J. B. (2007). Autostratigraphy: A framework norm for genetic stratigraphy. Journal of Sedimentary Research, 77, 2–12. https://doi.org/10.2110/jsr.2007.005
    [Google Scholar]
  65. Muto, T., & Swenson, J. B. (2006). Autogenic attainment of large‐scale alluvial grade with steady sea‐level fall: An analog tank‐flume experiment. Geology, 34, 161. https://doi.org/10.1130/G21923.1
    [Google Scholar]
  66. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  67. Nicholas, A. P., Sambrook Smith, G. H., Amsler, M. L., Ashworth, P. J., Best, J. L., Hardy, R. J., … Szupiany, R. N. (2015). The role of discharge variability in determining alluvial stratigraphy. Geology, 44, 3–6. https://doi.org/10.1130/G37215.1
    [Google Scholar]
  68. Olive, J.‐A., Behn, M. D., & Malatesta, L. C. (2014). Modes of extensional faulting controlled by surface processes. Geophysical Research Letters, 41, 6725–6733. https://doi.org/10.1002/2014GL061507
    [Google Scholar]
  69. Paola, C., Heller, P. L., & Angevine, C. L. (1992). The large‐scale dynamics of grain‐size variation in alluvial basins, 1: Theory. Basin Research, 4, 73–90. https://doi.org/10.1111/j.1365-2117.1992.tb00145.x
    [Google Scholar]
  70. Paterson, M. S., & Luan, F. C. (1990). Quartzite rheology under geological conditions. Geological Society, London, Special Publications, 54, 299–307. https://doi.org/10.1144/GSL.SP.1990.054.01.26
    [Google Scholar]
  71. Petter, A. L., & Muto, T. (2008). Sustained alluvial aggradation and autogenic detachment of the alluvial river from the shoreline in response to steady fall of relative sea level. Journal of Sedimentary Research, 78, 98–111. https://doi.org/10.2110/jsr.2008.012
    [Google Scholar]
  72. Porebski, S. J., & Steel, R. J. (2006). Deltas and sea‐level change. Journal of Sedimentary Research, 76, 390–403. https://doi.org/10.2110/jsr.2006.034
    [Google Scholar]
  73. Qi, J., & Yang, Q. (2010). Cenozoic structural deformation and dynamic processes of the Bohai Bay Basin Province, China. Marine and Petroleum Geology, 27, 757–771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
    [Google Scholar]
  74. Rey, P. F., & Müller, R. D. (2010). Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge. Nature Geoscience, 3, 257–261. https://doi.org/10.1038/ngeo825
    [Google Scholar]
  75. Ritchie, B. D., Gawthorpe, R. L., & Hardy, S. (2004a). Three‐dimensional numerical modeling of deltaic depositional sequences 2: influence of local controls. Journal of Sedimentary Research, 74, 221–238.
    [Google Scholar]
  76. Ritchie, B. D., Gawthorpe, R. L., & Hardy, S. (2004b). Three‐dimensional numerical modeling of deltaic depositional sequences 1: influence of the rate and magnitude of sea‐level change. Journal of Sedimentary Research, 74, 203–220.
    [Google Scholar]
  77. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  78. Salles, T., & Duclaux, G. (2015). Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling. Earth Surface Processes and Landforms, 40, 823–839. https://doi.org/10.1002/esp.3674
    [Google Scholar]
  79. Simpson, G., & Castelltort, S. (2012). Model shows that rivers transmit high‐frequency climate cycles to the sedimentary record. Geology, 40, 1131–1134. https://doi.org/10.1130/G33451.1
    [Google Scholar]
  80. Somme, T. O., Helland‐Hansen, W., & Granjeon, D. (2009). Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus greenhouse systems. Geology, 37, 587–590. https://doi.org/10.1130/G25511A.1
    [Google Scholar]
  81. Straub, K. M., Paola, C., Kim, W., & Sheets, B. (2014). Experimental investigation of sediment‐dominated vs. tectonics‐dominated sediment transport systems in subsiding basins. Journal of Sedimentary Research, 83, 1162–1180. https://doi.org/10.2110/jsr.2013.91
    [Google Scholar]
  82. Sylvester, Z., Cantelli, A., & Pirmez, C. (2015). Stratigraphic evolution of intraslope minibasins: Insights from surface‐based model. AAPG Bulletin, 99, 1099–1129. https://doi.org/10.1306/01081514082
    [Google Scholar]
  83. Thieulot, C., Steer, P., & Huismans, R. S. (2014). Three‐dimensional numerical simulations of crustal systems undergoing orogeny and subjected to surface processes. Geochemistry, Geophysics, Geosystems, 15, 4936–4957. https://doi.org/10.1002/2014GC005490
    [Google Scholar]
  84. Tomer, A., Muto, T., & Kim, W. (2011). Autogenic hiatus in fluviodeltaic successions: geometrical modeling and physical experiments. Journal of Sedimentary Research, 81, 207–217. https://doi.org/10.2110/jsr.2011.19
    [Google Scholar]
  85. Tucker, G. E., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research, 33, 2031–2047. https://doi.org/10.1029/97WR00409
    [Google Scholar]
  86. Wang, Y. F., Zhang, J. F., Jin, Z. M., & Green, H. W. (2012). Mafic granulite rheology: Implications for a weak continental lower crust. Earth and Planetary Science Letters, 353–354, 99–107. https://doi.org/10.1016/j.epsl.2012.08.004
    [Google Scholar]
  87. Wang, H., Jiang, H., Lin, Z. L., & Zhao, S. E. (2011). Relations between synsedimentary tectonic activity and sedimentary framework of Dongying formation in Nanpu Sag. Journal of Earth Sciences and Environment, 33, 70–77.
    [Google Scholar]
  88. Wu, W., Wang, S. S. Y., & Jia, Y. (2000). Nonuniform sediment transport in alluvial rivers. Journal of Hydraulic Research, 38, 427–434. https://doi.org/10.1080/00221680009498296
    [Google Scholar]
  89. Xu, A. N., Zheng, H. J., Dong, Y. X., & Wang, Z. C. (2006). Sequence stratigraphic framework and sedimentary facies prediction in Dongying Formation of Nanpu Sag. Petroleum Exploration and Development, 33, 437–443.
    [Google Scholar]
  90. Yu, F., & Koyi, H. (2016). Cenozoic tectonic model of the Bohai Bay Basin in China. Geological Magazine, 153, 866–886. https://doi.org/10.1017/S0016756816000492
    [Google Scholar]
  91. Zhang, R. J. (1989). Sediment dynamics in rivers. Beijing, China: Water Resources Press. (in Chinese).
    [Google Scholar]
  92. Whittaker, A. C., Attal, M. I., & Allen, P. A. (2009). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22, 809–828. https://doi.org/10.1111/j.1365-2117.2009.00447.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12322
Loading
/content/journals/10.1111/bre.12322
Loading

Data & Media loading...

Supplements

 

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error