1887
Volume 31, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12327
2019-06-11
2020-06-03
Loading full text...

Full text loading...

References

  1. Abe, S., van Gent, H., & Urai, J. L. (2011). DEM simulation of normal faults in cohesive materials. Tectonophysics, 512, 12–21. https://doi.org/10.1016/j.tecto.2011.09.008
    [Google Scholar]
  2. Acocella, V., Korme, T., & Salvini, F. (2003). Formation of normal faults along the axial zone of the Ethiopian rift. Journal of Structural Geology, 25, 503–513. https://doi.org/10.1016/S0191-8141(02)00047-0
    [Google Scholar]
  3. Arbaret, L., & Burg, J.‐P. (2003). Complex flow in lowest crustal, anastomosing mylonites: Strain gradients in a Kohistan gabbro, northern Pakistan. Journal of Geophysical Research: Solid Earth, 108, 2467. https://doi.org/10.1029/2002JB002295
    [Google Scholar]
  4. Bartholomew, I. D., Peters, J. M., & Powell, C. M. (1993). Regional structural evolution of the North Sea: Oblique slip and reactivation of basement lineaments. In J. R.Parker (Ed.), Petroleum Geology of Northwest Europe, Proceedings of the 4th Conference (pp. 1109–1122). Geological Society, London, Special Publications.
    [Google Scholar]
  5. Baudon, C., & Cartwright, J. (2008a). The kinematics of reactivation of normal faults using high resolution throw mapping. Journal of Structural Geology, 30, 1072–1084. https://doi.org/10.1016/j.jsg.2008.04.008
    [Google Scholar]
  6. Baudon, C., & Cartwright, J. (2008b). Early stage evolution of growth faults: 3D seismic insights from the Levant Basin, Eastern Mediterranean. Journal of Structural Geology, 30, 888–898. https://doi.org/10.1016/j.jsg.2008.02.019
    [Google Scholar]
  7. Baudon, C., & Cartwright, J. A. (2008c). 3D Seismic characterisation of an array of blind normal faults in the Levant Basin, Eastern Mediterranean. Journal of Structural Geology, 30, 746–760. https://doi.org/10.1016/j.jsg.2007.12.008
    [Google Scholar]
  8. Bell, J. S. (1996). In situ stresses in sedimentary rocks (part 2): Applications of stress measurements. Geoscience Canada, 23, 135–153.
    [Google Scholar]
  9. Bird, P. C., Cartwright, J. A., & Davies, T. L. (2015). Basement reactivation in the development of rift basins: An example of reactivated Caledonide structures in the West Orkney Basin. Journal of the Geological Society, 172, 77–85. https://doi.org/10.1144/jgs2013-098
    [Google Scholar]
  10. Bradshaw, J. D. (1989). Cretaceous geotectonic patterns in the New Zealand region. Tectonics, 8, 803–820. https://doi.org/10.1029/TC008i004p00803
    [Google Scholar]
  11. Bradshaw, J. D. (1993). A review of the median tectonic zone: Terrane boundaries and terrane amalgamation near the median tectonic line. New Zealand Journal of Geology and Geophysics, 36, 117–125. https://doi.org/10.1080/00288306.1993.9514559
    [Google Scholar]
  12. Bradshaw, J. D., Pankhurst, R. J., Weaver, S. D., Storey, B. C., Muir, R. J., & Ireland, T. R. (1997). New Zealand superterranes recognized in Marie Byrd Land and Thurston Island. Terra Antartica, 3, 429–436.
    [Google Scholar]
  13. Brandes, C., & Tanner, D. C. (2014). Fault‐related folding: A review of kinematic models and their application. Earth‐Science Reviews, 138, 352–370. https://doi.org/10.1016/j.earscirev.2014.06.008
    [Google Scholar]
  14. Brewer, J. A., Matthews, D. H., Warner, M. R., Hall, J., Smythe, D. K., & Whittington, R. J. (1983). Birps deep seismic reflection studies of the British Caledonides. Nature, 305, 206–210. https://doi.org/10.1038/305206a0
    [Google Scholar]
  15. Bos, B., & Spiers, C. J. (2001). Experimental investigation into the microstuctural and mechanical evolution of phyllosilicate-bearing fault rock under conditions favouring pressure solution. Journal of Structural Geology, 23, 1187–1202.
    [Google Scholar]
  16. Brocher, T. M., & Christensen, N. I. (1990). Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska. Geology, 18, 737. https://doi.org/10.1130/0091-7613(1990)018<0737:SADTPM>2.3.CO;2
    [Google Scholar]
  17. Carreras, J., Czeck, D. M., Druguet, E., & Hudleston, P. J. (2010). Structure and development of an anastomosing network of ductile shear zones. Journal of Structural Geology, 32, 656–666. https://doi.org/10.1016/j.jsg.2010.03.013
    [Google Scholar]
  18. Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of Se Utah. Journal of Structural Geology, 17, 1319–1326. https://doi.org/10.1016/0191-8141(95)00033-A
    [Google Scholar]
  19. Chenrai, P., & Huuse, M. (2017). Pockmark formation by porewater expulsion during rapid progradation in the offshore Taranaki Basin, New Zealand. Marine and Petroleum Geology, 82, 399–413. https://doi.org/10.1016/j.marpetgeo.2017.02.017
    [Google Scholar]
  20. Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (2003). The growth and propagation of synsedimentary faults. Journal of Structural Geology, 25, 633–648. https://doi.org/10.1016/S0191-8141(02)00054-8
    [Google Scholar]
  21. Claringbould, J. S., Bell, R. E., Jackson, C.‐ A.‐L., Gawthorpe, R. L., & Odinsen, T. (2017). Pre‐existing normal faults have limited control on the rift geometry of the northern North Sea. Earth and Planetary Science Letters, 475, 190–206. https://doi.org/10.1016/j.epsl.2017.07.014
    [Google Scholar]
  22. Conneally, J., Childs, C., & Walsh, J. J. (2014). Contrasting origins of breached relay zone geometries. Journal of Structural Geology, 58, 59–68. https://doi.org/10.1016/j.jsg.2013.10.010
    [Google Scholar]
  23. Corti, G., Iandelli, I., & Cerca, M. (2013). Experimental modeling of rifting at craton margins. Geosphere, 9, 138–154. https://doi.org/10.1130/GES00863.1
    [Google Scholar]
  24. Corti, G., van Wijk, J., Cloetingh, S., & Morley, C. K. (2007). Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African rift system. Tectonics, 26, 659–13. https://doi.org/10.1029/2006TC002086
    [Google Scholar]
  25. Deng, C., Gawthorpe, R. L., Finch, E., & Fossen, H. (2017). Influence of a pre‐existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105, 44–61. https://doi.org/10.1016/j.jsg.2017.11.005
    [Google Scholar]
  26. Destro, N. (1995). Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe‐Alagoas Basin, Ne Brazil. Journal of Structural Geology, 17, 615–629. https://doi.org/10.1016/0191-8141(94)00088-H
    [Google Scholar]
  27. Doré, A. G., Lundin, E. R., Fichler, C., & Olesen, O. (1997). Patterns of basement structure and reactivation along the NE Atlantic margin. Journal of the Geological Society, 154, 85–92.
    [Google Scholar]
  28. Duffy, O. B., Bell, R. E., Jackson, C.‐ A.‐L., Gawthorpe, R. L., & Whipp, P. S. (2015). Fault growth and interactions in a multiphase rift fault network: Horda platform, Norwegian North Sea. Journal of Structural Geology, 80, 99–119. https://doi.org/10.1016/j.jsg.2015.08.015
    [Google Scholar]
  29. Erslev, E. A., & Mayborn, K. R. (1997). Multiple Geometries and modes of fault‐propagation folding in the Canadian thrust belt. Journal of Structural Geology, 19, 321–335. https://doi.org/10.1016/S0191-8141(97)83027-1
    [Google Scholar]
  30. Faccenna, C., Nalpas, T., Brun, J.‐P., Davy, P., & Bosi, V. (1995). The influence of pre‐existing thrust faults on normal fault geometry in nature and in experiments. Journal of Structural Geology, 17, 1139–1149. https://doi.org/10.1016/0191-8141(95)00008-2
    [Google Scholar]
  31. Færseth, R. B., Gabrielsen, R. H., & Hurich, C. A. (1995). Influence of basement in structuring of the North Sea basin, offshore southwest Norway. Norsk Geologisk Tidsskrift, 75, 105–119.
    [Google Scholar]
  32. Fazlikhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., & Bell, R. E. (2017). Basement structure and its influence on the structural configuration of the northern North Sea rift. Tectonics, 36, 1151–1177. https://doi.org/10.1002/2017TC004514
    [Google Scholar]
  33. Fossen, H., Fazlikhani, H., Faleide, J. I., Ksienzyk, A. K., & Dunlap, W. J. (2017). Post‐Caledonian extension in the West Norway‐northern North Sea region: the role of structural inheritance. Geological Society, London, Special Publications, 439, 465–486. https://doi.org/10.1144/SP439.6
    [Google Scholar]
  34. Fountain, D. M., Hurich, C. A., & Smithson, S. B. (1984). Seismic reflectivity of mylonite zones in the crust. Geology, 12, 195. https://doi.org/10.1130/0091-7613(1984)12<195:SROMZI>2.0.CO;2
    [Google Scholar]
  35. Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., & Yamasaki, T. (2014). Crustal and basin evolution of the southwestern Barents Sea: From Caledonian orogeny to continental breakup. Tectonics, 33, 347–373. https://doi.org/10.1002/2013TC003439
    [Google Scholar]
  36. Giba, M., Nicol, A., & Walsh, J. J. (2010). Evolution of Faulting and volcanism in a Back‐Arc Basin and Its Implications for subduction processes. Tectonics, 29, TC4020. https://doi.org/10.1029/2009TC002634
    [Google Scholar]
  37. Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004
    [Google Scholar]
  38. Gudlaugsson, S. T., Faleide, J. I., Johansen, S. E., & Breivik, A. J. (1998). Late Palaeozoic structural development of the South‐western Barents Sea. Marine and Petroleum Geology, 15, 73–102. https://doi.org/10.1016/S0264-8172(97)00048-2
    [Google Scholar]
  39. Gudmundsson, A. (2011). Rock fractures in geological processes. Cambridge: Cambridge University Press.
    [Google Scholar]
  40. Hansen, R. J., & Kamp, P. J. (2002). Evolution of the Giant Foresets Formation, northern Taranaki Basin, New Zealand. New Zealand Petroleum Conference, (419–449). Wellington: Ministry of Economic Development.
    [Google Scholar]
  41. Hansen, R. J., & Kamp, P. J. (2004). Rapid progradation of the Pliocene‐Pleistocene continental margin, northern Taranaki Basin, New Zealand, and implications. Proceedings of New Zealand Petroleum Conference (659–9), Wellington: Ministry of Economic Development.
    [Google Scholar]
  42. Henstra, G. A., Rotevatn, A., Gawthorpe, R. L., & Ravnås, R. (2015). Evolution of a major segmented normal fault during multiphase rifting: The origin of plan‐view zigzag geometry. Journal of Structural Geology, 74, 45–63. https://doi.org/10.1016/j.jsg.2015.02.005
    [Google Scholar]
  43. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2010). Normal‐fault development during two phases of non‐coaxial extension: An experimental study. Journal of Structural Geology, 32, 1656–1667. https://doi.org/10.1016/j.jsg.2009.07.007
    [Google Scholar]
  44. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2011). How do the properties of a pre‐existing normal‐fault population influence fault development during a subsequent phase of extension?Journal of Structural Geology, 33, 1312–1324. https://doi.org/10.1016/j.jsg.2011.06.010
    [Google Scholar]
  45. Holland, M., Urai, J. L., & Stephen, M. (2006). The internal structure of fault zones in basaltic sequences. Earth and Planetary Science Letters, 248, 301–315. https://doi.org/10.1016/j.epsl.2006.05.035
    [Google Scholar]
  46. Holt, W. E., & Stern, T. A. (1994). Subduction, platform subsidence, and foreland thrust loading: The late Tertiary development of Taranaki Basin, New Zealand. Tectonics, 13, 1068–1092. https://doi.org/10.1029/94TC00454
    [Google Scholar]
  47. Homberg, C., Hu, J. C., Angelier, J., Bergerat, F., & Lacombe, O. (1997). Characterization of stress perturbations near major fault zones: Insights from 2‐D distinct‐element numerical modelling and field studies (Jura mountains). Journal of Structural Geology, 19, 703–718. https://doi.org/10.1016/S0191-8141(96)00104-6
    [Google Scholar]
  48. Hongxing, G., & Anderson, J. K. (2007). Fault throw profile and kinematics of normal fault: Conceptual models and geologic examples. Geological Journal of China Universities, 13, 75–88.
    [Google Scholar]
  49. Hurich, C. A., Smithson, S. B., Fountain, D. M., & Humphreys, M. C. (1985). Seismic evidence of mylonite reflectivity and deep structure in the kettle dome metamorphic core complex, Washington. Geology, 13, 577. https://doi.org/10.1130/0091-7613(1985)13<577:SEOMRA>2.0.CO;2
    [Google Scholar]
  50. Jackson, C.‐ A.‐L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215–234. https://doi.org/10.1016/j.jsg.2013.06.012
    [Google Scholar]
  51. Keep, M., & McClay, K. R. (1997). Analogue modelling of multiphase rift systems. Tectonophysics, 273, 239–270. https://doi.org/10.1016/S0040-1951(96)00272-7
    [Google Scholar]
  52. Kimbrough, D. L., Tulloch, A. J., Geary, E., Coombs, D. S., & Landis, C. A. (1993). Isotopic ages from the Nelson region of South Island New Zealand: Crustal structure and definition of the median tectonic zone. Tectonophysics, 225, 433–448. https://doi.org/10.1016/0040-1951(93)90308-7
    [Google Scholar]
  53. King, P. R., & Thrasher, G. P. (1996). Cretaceous‐Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand (p. 13). Lower Hutt: Institute of Geological and Nuclear Sciences Monographs.
    [Google Scholar]
  54. King, R. C., Tingay, M. R. P., Hillis, R. R., Morley, C. K., & Clark, J. (2010). Present‐day stress orientations and tectonic provinces of the NW Borneo collisional margin. Journal of Geophysical Research: Solid Earth, 115, B10415. https://doi.org/10.1029/2009JB006997
    [Google Scholar]
  55. Klemperer, S. L., & Group1, B. (1987). Reflectivity of the crystalline crust: Hypotheses and tests. Geophysical Journal International, 89, 217–222. https://doi.org/10.1111/j.1365-246X.1987.tb04411.x
    [Google Scholar]
  56. Korme, T., Acocella, V., & Abebe, B. (2004). The role of pre‐existing structures in the origin, propagation and architecture of faults in the Main Ethiopian rift. Gondwana Research, 7, 467–479. https://doi.org/10.1016/S1342-937X(05)70798-X
    [Google Scholar]
  57. Lenhart, A., Jackson, C.‐L., Bell, R. E., Duffy, O. B., Gawthorpe, R. L., & Fossen, H. (2019). Structural architecture and composition of crystalline basement offshore west Norway. Lithosphere, 11, 273–293. https://doi.org/10.1130/L668.1
    [Google Scholar]
  58. Maerten, L., Gillespie, P., & Pollard, D. D. (2002). Effects of local stress perturbation on secondary fault development. Journal of Structural Geology, 24, 145–153. https://doi.org/10.1016/S0191-8141(01)00054-2
    [Google Scholar]
  59. Maerten, L., Willemse, E. J. M., Pollard, D. D., & Rawnsley, K. (1999). Slip distributions on intersecting normal faults. Journal of Structural Geology, 21, 259–272. https://doi.org/10.1016/S0191-8141(98)00122-9
    [Google Scholar]
  60. Mansfield, C. S., & Cartwright, J. A. (1996). High resolution fault displacement mapping from three‐dimensional seismic data: Evidence for dip linkage during fault growth. Journal of Structural Geology, 18, 249–263. https://doi.org/10.1016/S0191-8141(96)80048-4
    [Google Scholar]
  61. McConnell, R. B. (1969). East African rift system. Nature, 224, 65. https://doi.org/10.1038/224065a0
    [Google Scholar]
  62. McConnell, R. B. (1972). Geological development of the rift system of Eastern Africa. GSA Bulletin, 83, 2549–2572. https://doi.org/10.1130/0016-7606(1972)83[2549:GDOTRS]2.0.CO;2
    [Google Scholar]
  63. McDonough, D. T., & Fountain, D. M. (1988). Reflection characteristics of a mylonite zone based on compressional wave velocities of rock samples. Geophysical Journal International, 93, 547–558. https://doi.org/10.1111/j.1365-246X.1988.tb03880.x
    [Google Scholar]
  64. Mitra, S. (1990). Fault‐propagation folds: Geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, 74, 921–945.
    [Google Scholar]
  65. Moore, M. E., Gleadow, A. J. W., & Lovering, J. F. (1986). Thermal evolution of rifted continental margins: New evidence from fission tracks in basement apatites from southeastern Australia. Earth and Planetary Science Letters, 78, 255–270. https://doi.org/10.1016/0012-821X(86)90066-X
    [Google Scholar]
  66. Morley, C. K. (2010). Stress re‐orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’ rift segments?Earth and Planetary Science Letters, 297, 667–673. https://doi.org/10.1016/j.epsl.2010.07.022
    [Google Scholar]
  67. Morley, C. K. (2014). The widespread occurrence of low‐angle normal faults in a rift setting: Review of examples from Thailand, and implications for their origin and evolution. Earth‐Science Reviews, 133, 18–42. https://doi.org/10.1016/j.earscirev.2014.02.007
    [Google Scholar]
  68. Morley, C. K. (2017). The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand. Geological Society, London, Special Publications, 439, 413–445. https://doi.org/10.1144/SP439.3
    [Google Scholar]
  69. Morley, C. K., Charusiri, P., & Watkinson, I. M. (2011). Structural geology of Thailand during the Cenozoic. In M. F.Ridd, A. J.Barber, & M. J.Crow (Eds.), Geology of Thailand (Vol. 11, pp. 273–334). Geological Society, London.
    [Google Scholar]
  70. Morley, C. K., Gabdi, S., & Seusutthiya, K. (2007). Fault superimposition and linkage resulting from stress changes during rifting: Examples from 3D seismic data, Phitsanulok Basin, Thailand. Journal of Structural Geology, 29, 646–663. https://doi.org/10.1016/j.jsg.2006.11.005
    [Google Scholar]
  71. Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., & Wonganan, N. (2004). Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand. Journal of Structural Geology, 26, 1803–1829. https://doi.org/10.1016/j.jsg.2004.02.014
    [Google Scholar]
  72. Mortimer, N., Tulloch, A. J., & Ireland, T. R. (1997). Basement geology of Taranaki and Wanganui Basins, New Zealand. New Zealand Journal of Geology and Geophysics, 40, 223–236. https://doi.org/10.1080/00288306.1997.9514754
    [Google Scholar]
  73. Mortimer, N., Tulloch, A. J., Spark, R. N., Walker, N. W., Ladley, E., Allibone, A., & Kimbrough, D. L. (1999). Overview of the Median Batholith, New Zealand: A new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. Journal of African Earth Sciences, 29, 257–268. https://doi.org/10.1016/S0899-5362(99)00095-0
    [Google Scholar]
  74. Mouslopoulou, V., Nicol, A., Walsh, J. J., Begg, J. G., Townsend, D. B., & Hristopulos, D. T. (2012). Fault‐slip accumulation in an active rift over thousands to millions of years and the importance of paleoearthquake sampling. Journal of Structural Geology, 36, 71–80. https://doi.org/10.1016/j.jsg.2011.11.010
    [Google Scholar]
  75. Muir, R. J., Bradshaw, J. D., Weaver, S. D., & Laird, M. G. (2000). the influence of basement structure on the evolution of the Taranaki Basin, New Zealand. Journal of the Geological Society, 157, 1179–1185. https://doi.org/10.1144/jgs.157.6.1179
    [Google Scholar]
  76. Muraoka, H., & Kamata, H. (1983). Displacement distribution along minor fault traces. Journal of Structural Geology, 5, 483–495. https://doi.org/10.1016/0191-8141(83)90054-8
    [Google Scholar]
  77. Nicol, A., Walsh, J., Berryman, K., & Nodder, S. (2005). Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology, 27, 327–342. https://doi.org/10.1016/j.jsg.2004.09.002
    [Google Scholar]
  78. Nicol, A., Watterson, J., Walsh, J. J., & Childs, C. (1996). The shapes, major axis orientations and displacement patterns of fault surfaces. Journal of Structural Geology, 18, 235–248. https://doi.org/10.1016/S0191-8141(96)80047-2
    [Google Scholar]
  79. Peace, A., McCaffrey, K., Imber, J., van Hunen, J., Hobbs, R., & Wilson, R. (2017). The role of pre‐existing structures during rifting, continental breakup and transform system development, offshore West Greenland. Basin Research, 30, 373–394.
    [Google Scholar]
  80. Phillips, T. B., Jackson, C.‐ A.‐L., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008
    [Google Scholar]
  81. Reeve, M. T., Bell, R. E., Duffy, O. B., Jackson, C.‐ A.‐L., & Sansom, E. (2015). The growth of non‐colinear normal fault systems; what can we learn from 3D seismic reflection data?Journal of Structural Geology, 70, 141–155. https://doi.org/10.1016/j.jsg.2014.11.007
    [Google Scholar]
  82. Reeve, M. T., Bell, R. E., & Jackson, C. A. L. (2013). Origin and significance of intra‐basement seismic reflections offshore western Norway. Journal of the Geological Society, 171, 659–4. https://doi.org/10.1144/jgs2013-020
    [Google Scholar]
  83. Reilly, C., Nicol, A., Walsh, J. J., & Seebeck, H. (2015). Evolution of faulting and plate boundary deformation in the southern Taranaki Basin, New Zealand. Tectonophysics, 651–652, 659–18. https://doi.org/10.1016/j.tecto.2015.02.009
    [Google Scholar]
  84. Rennie, S. F., Fagereng, Å., & Diener, J. F. A. (2013). Strain distribution within a km‐scale, mid‐crustal shear zone: The Kuckaus Mylonite Zone, Namibia. Journal of Structural Geology, 56, 57–69. https://doi.org/10.1016/j.jsg.2013.09.001
    [Google Scholar]
  85. Roberts, A. M., & Holdsworth, R. E. (1999). Linking onshore and offshore structures: Mesozoic extension in the Scottish Highlands. Journal of the Geological Society, 156, 1061–1064. https://doi.org/10.1144/gsjgs.156.6.1061
    [Google Scholar]
  86. Robin, P.‐Y.‐ F. (1979). Theory of metamorphic segregation and related processes. Geochimica et Cosmochimica Acta, 43, 1587–1600. https://doi.org/10.1016/0016-7037(79)90179-0
    [Google Scholar]
  87. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., … Andresen, A. (2018). Structural inheritance and rapid rift‐length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry. Tectonics, 37, 1858–1875. https://doi.org/10.1029/2018TC005018
    [Google Scholar]
  88. Rundle, J. B., Rundle, P. B., Donnellan, A., Li, P., Klein, W., Morein, G., … Grant, L. (2006). Stress transfer in earthquakes, hazard estimation and ensemble forecasting: Inferences from numerical simulations. Tectonophysics, 413, 109–125. https://doi.org/10.1016/j.tecto.2005.10.031
    [Google Scholar]
  89. Samsu, A., Cruden, A. R., Hall, M., Micklethwaite, S., & Denyszyn, S. (2019). The influence of basement faults on local extension directions: Insights from potential field geophysics and field observations. Basin Research, 659–26. https://doi.org/10.1111/bre.12344
    [Google Scholar]
  90. Scott, J. M. (2013). A review of the location and significance of the boundary between the Western Province and the Eastern Province, New Zealand. New Zealand Journal of Geology and Geophysics, 56, 276–293. https://doi.org/10.1080/00288306.2013.812971
    [Google Scholar]
  91. Seebeck, H., Nicol, A., Villamor, P., Ristau, J., & Pettinga, J. (2014). Structure and kinematics of the Taupo Rift, New Zealand. Tectonics, 33, 1178–1199. https://doi.org/10.1002/2014TC003569
    [Google Scholar]
  92. Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7, 751–754. https://doi.org/10.1016/0191-8141(85)90150-6
    [Google Scholar]
  93. Sibson, R. H. (1995). Selective fault reactivation during basin inversion: Potential for fluid redistribution through fault‐valve action. Geological Society, London, Special Publications, 88, 3–19. https://doi.org/10.1144/GSL.SP.1995.088.01.02
    [Google Scholar]
  94. Stagpoole, V., & Nicol, A. (2008). Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand. Journal of Geophysical Research, 659–19. https://doi.org/10.1029/2007JB005170
    [Google Scholar]
  95. Stern, T. A., & Davey, F. J. (1990). Deep seismic expression of a foreland basin: Taranaki basin, New Zealand. Geology, 18, 979–982. https://doi.org/10.1130/0091-7613(1990)018<0979:DSEOAF>2.3.CO;2
    [Google Scholar]
  96. Strogen, D. P. (2011). Updated paleogeographic maps for the Taranaki Basin and surrounds. Lower Hutt: GNS Science.
    [Google Scholar]
  97. Strogen, D. P., Bland, K. J., Nicol, A., & King, P. R. (2014). Paleogeography of the Taranaki Basin region during the latest Eocene‐Early Miocene and implications for the ‘total drowning’ of Zealandia. New Zealand Journal of Geology and Geophysics, 57, 110–127. https://doi.org/10.1080/00288306.2014.901231
    [Google Scholar]
  98. Strogen, D. P., Seebeck, H., Nicol, A., & King, P. R. (2017). Two‐phase Cretaceous‐Paleocene rifting in the Taranaki Basin region, New Zealand; implications for Gondwana break‐up. Journal of the Geological Society, 174, 929–946. https://doi.org/10.1144/jgs2016-160
    [Google Scholar]
  99. Sun, S., Hou, G., & Zheng, C. (2017). Fracture zones constrained by neutral surfaces in a fault‐related fold: Insights from the Kelasu tectonic zone, Kuqa Depression. Journal of Structural Geology, 104, 112–124. https://doi.org/10.1016/j.jsg.2017.10.005
    [Google Scholar]
  100. Taylor, S. K., Nicol, A., & Walsh, J. J. (2008). Displacement loss on growth faults due to sediment compaction. Journal of Structural Geology, 30, 394–405. https://doi.org/10.1016/j.jsg.2007.11.006
    [Google Scholar]
  101. Tingay, M. R. P., Morley, C. K., Hillis, R. R., & Meyer, J. (2010). Present‐day stress orientation in Thailand's basins. Journal of Structural Geology, 32, 235–248. https://doi.org/10.1016/j.jsg.2009.11.008
    [Google Scholar]
  102. Trudgill, B. D. (2002). Structural controls on drainage development in the Canyonlands grabens of southeast Utah. AAPG Bulletin, 86, 1095–1112.
    [Google Scholar]
  103. Vass, A., Koehn, D., Toussaint, R., Ghani, I., & Piazolo, S. (2014). The importance of fracture‐healing on the deformation of fluid‐filled layered systems. Journal of Structural Geology, 67, 94–106. https://doi.org/10.1016/j.jsg.2014.07.007
    [Google Scholar]
  104. Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., & Bonson, C. G. (2003). Formation of segmented normal faults: A 3‐D perspective. Journal of Structural Geology, 25, 1251–1262. https://doi.org/10.1016/S0191-8141(02)00161-X
    [Google Scholar]
  105. Walsh, J. J., & Watterson, J. (1987). Distributions of cumulative displacement and seismic slip on a single normal fault surface. Journal of Structural Geology, 9, 1039–1046. https://doi.org/10.1016/0191-8141(87)90012-5
    [Google Scholar]
  106. Walsh, J. J., & Watterson, J. (1991). Geometric and kinematic coherence and scale effects in normal fault systems. Geological Society, London, Special Publications, 56, 193–203. https://doi.org/10.1144/GSL.SP.1991.056.01.13
    [Google Scholar]
  107. Wang, C.‐Y., Okaya, D. A., Ruppert, C., Davis, G. A., Guo, T.‐S., Zhong, Z., & Wenk, H.‐R. (1989). Seismic reflectivity of the Whipple Mountain shear zone in southern California. Journal of Geophysical Research: Solid Earth, 94, 2989–3005. https://doi.org/10.1029/JB094iB03p02989
    [Google Scholar]
  108. Whipp, P. S., Jackson, C. A. L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26, 523–549. https://doi.org/10.1111/bre.12050
    [Google Scholar]
  109. Wilson, R. W., McCaffrey, K. J. W., Holdsworth, R. E., Imber, J., Jones, R. R., Welbon, A. I. F., & Roberts, D. (2006). Complex fault patterns, transtension and structural segmentation of the Lofoten Ridge, Norwegian margin: Using digital mapping to link onshore and offshore geology: Transtension and segmentation in Lofoten. Tectonics, 25, 659–28. https://doi.org/10.1029/2005TC001895
    [Google Scholar]
  110. Withjack, M. O., Henza, A. A., & Schlische, R. W. (2017). Three‐dimensional fault geometries and interactions within experimental models of multiphase extension. AAPG Bulletin, 101, 1767–1789. https://doi.org/10.1306/02071716090
    [Google Scholar]
  111. Zhang, Y.‐Z., Dusseault, M. B., & Yassir, N. A. (1994). Effects of rock anisotropy and heterogeneity on stress distributions at selected sites in North America. Engineering Geology, 37, 181–197. https://doi.org/10.1016/0013-7952(94)90055-
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12327
Loading
/content/journals/10.1111/bre.12327
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fault evolution , non-colinear faulting , rift basins and structural inheritance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error