1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The proto‐Paratethys Sea covered a vast area extending from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous and early Paleogene. Climate modelling and proxy studies suggest that Asian aridification has been governed by westerly moisture modulated by fluctuations of the proto‐Paratethys Sea. Transgressive and regressive episodes of the proto‐Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained. This hampers understanding of their driving mechanisms (tectonic and/or eustatic) and their contribution to Asian aridification. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed palaeoenvironmental analysis for the Paleogene proto‐Paratethys Sea incursions in the Tajik and Tarim basins. This enables us to identify the major drivers of marine fluctuations and their potential consequences on Asian aridification. A major regional restriction event, marked by the exceptionally thick (≤ 400 m) shelf evaporites is assigned a Danian‐Selandian age (ca. 63–59 Ma) in the Aertashi Formation. This is followed by the largest recorded proto‐Paratethys Sea incursion with a transgression estimated as early Thanetian (ca. 59–57 Ma) and a regression within the Ypresian (ca. 53–52 Ma), both within the Qimugen Formation. The transgression of the next incursion in the Kalatar and Wulagen formations is now constrained as early Lutetian (ca. 47–46 Ma), whereas its regression in the Bashibulake Formation is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian–Priabonian (ca. 39.7–36.7 Ma). We interpret the long‐term westward retreat of the proto‐Paratethys Sea starting at ca. 41 Ma to be associated with far‐field tectonic effects of the Indo‐Asia collision and Pamir/Tibetan plateau uplift. Short‐term eustatic sea level transgressions are superimposed on this long‐term regression and seem coeval with the transgression events in the other northern Peri‐Tethyan sedimentary provinces for the 1st and 2nd sea incursions. However, the 3rd sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto‐Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto‐Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12330
2019-01-29
2020-01-26
Loading full text...

Full text loading...

References

  1. Abels, H. A., Dupont‐Nivet, G., Xiao, G., Bosboom, R., & Krijgsman, W. (2011). Step‐wise change of Asian interior climate preceding the Eocene‐Oligocene Transition (EOT). Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3–4), 399–412. https://doi.org/10.1016/j.palaeo.2010.11.028
    [Google Scholar]
  2. Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., & Rio, D. (2014). Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, 47(2), 131–181. https://doi.org/10.1127/0078-0421/2014/0042
    [Google Scholar]
  3. Akhmetiev, M. A., & Beniamovski, V. N. (2009). Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia: Proxies for climatic and paleogeographic evolution. Geologica Acta, 7, 297–309.
    [Google Scholar]
  4. Akhmetiev, M. A., Zaporozhets, N. I., Benyamovskiy, V. N., Aleksandrova, G. N., Iakovleva, A. I., & Oreshkina, T. V. (2012). The Paleogene history of the western Siberian seaway – A connection of the Peri‐Tethys to the Arctic Ocean. Austrian Journal of Earth Sciences, 105, 50–67.
    [Google Scholar]
  5. Akhmetiev, M. A., Zaporozhets, N. I., Iakovleva, A. I., Aleksandrova, G. N., Benyamovskiy, V. N., Oreshkina, T. V., … Dolya, Z. A. (2010). Comparative analysis of marine Paleogene sections and biota from west Siberia and the Arctic Region. Stratigraphy and Geological Correlation, 18, 635–659. https://doi.org/10.1134/S0869593810060043
    [Google Scholar]
  6. Amidon, W. H., & Hynek, S. A. (2010). Exhumational history of the north central Pamir. Tectonics, 29, TC5017. https://doi.org/10.1029/2009TC002589
    [Google Scholar]
  7. Bao, J., Wang, Y., Song, C., Feng, Y., Hu, C., Zhong, S., & Yang, J. (2017). Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate. Global and Planetary Change, 155, 56–69. https://doi.org/10.1016/j.gloplacha.2017.03.006
    [Google Scholar]
  8. Barrier, E., Vrielynck, B., Brouillet, J. F., & Brunet, M. F. (Contributors : Angiolini L., Kaveh F., Poisson A., Pourteau A., Plunder A., Robertson A., Shekawat R., Sosson M. and Zanchi A.) (2018). Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono‐Sedimentary‐Palinspastic maps from Late Permian to Pliocene. CCGM/CGMW, Paris, http://www.ccgm.org. Atlas of 20 maps (scale: 1/15 000 000)
  9. Berggren, W. A., & Aubert, J. (1975). Paleocene benthonic foraminiferal biostratigraphy, paleobiogeography and paleoecology of Atlantic‐Tethyan regions: Midway‐type fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 18(2), 73–192. https://doi.org/10.1016/0031-0182(75)90025-5
    [Google Scholar]
  10. Bershaw, J., Garzione, C. N., Schoenbohm, L., Gehrels, G., & Tao, L. (2012). Cenozoic evolution of the Pamir Plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (West China). J. Asian Earth Sci., 44, 136–148.
    [Google Scholar]
  11. Bijl, P. K., Brinkhuis, H., Egger, L. M., Eldrett, J. S., Frieling, J., Grothe, A., … Sluijs, A.. (2016). Comment on “ Wetzeliella and its allies – the ‘hole’ story: a taxonomic revision of the Paleogene dinoflagellate subfamily Wetzelielloideae” by Williams et al. (2015). Palynology, 6122, 461–7. https://doi.org/10.1080/01916122.2016.1235056
    [Google Scholar]
  12. Bijl, P. K., Sluijs, A., & Brinkhuis, H. (2013). A magneto‐ and chemostratigraphically calibrated dinoflagellate cyst zonation of the early Paleogene South Pacific Ocean. Earth Science Reviews, 124, 461–31.
    [Google Scholar]
  13. Blayney, T., Dupont‐Nivet, G., Najman, Y., Proust, J., Meijer, N., Roperch, P., …Guo, Z.. (in revision). Pamir tectonic evolution recorded in the western Tarim Basin (China): sedimentologic and magnetostratigraphic analyses of the Aertashi section. Tectonics
  14. Blayney, T., Najman, Y., Dupont‐Nivet, G., Carter, A., Millar, I., Garzanti, E., … Vezzoli, G. (2016). Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record. Tectonics, 35(10), 2345–2369. https://doi.org/10.1002/2016TC004222
    [Google Scholar]
  15. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea‐level change: A review and look forward. Sedimentology, 47(Suppl. 1), 2–48. https://doi.org/10.1046/j.1365-3091.2000.00008.x
    [Google Scholar]
  16. Bosboom, R., Ables, H. A., Hoorn, C., van den Berg, B. C. J., Guo, Z., & Dupont‐Nivet, G. (2014c). Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO). Earth and Planetary Science Letters, 389, 34–42.
    [Google Scholar]
  17. Bosboom, R., Mandic, O., Dupont‐Nivet, G., Proust, J.‐N., Ormukov, C., & Aminov, J. (2017). Late Eocene palaeogeography of the proto‐paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). Geological Society, London, Special Publications, 427(1), 565–588. https://doi.org/10.1144/SP427.11
    [Google Scholar]
  18. Bosboom, R., Dupont‐Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., … Krijgsman, W. (2014a). Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Research, 26(5), 621–640. https://doi.org/10.1111/bre.12054
    [Google Scholar]
  19. Bosboom, R., Dupont‐Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., … Guo, Z. J. (2014b). Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China). Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 101–118. https://doi.org/10.1016/j.palaeo.2014.03.035
    [Google Scholar]
  20. Bosboom, R. E., Dupont‐Nivet, G., Houben, A. J. P., Brinkhuis, H., Villa, G., Mandic, O., … Krijgsman, W. (2011). Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3–4), 385–398. https://doi.org/10.1016/j.palaeo.2010.11.019
    [Google Scholar]
  21. Bougeois, L. (2014). Paleogene seasonal variability in Central Asia: Constrains from high‐resolution geochemistry on oyster shells. University of Rennes. PhD dissertation.
  22. Bougeois, L., Dupont‐Nivet, G., de Rafélis, M., Tindall, J. C., Proust, J.‐N., Reichart, G.‐J., … Ormukov, C. (2018). Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. Earth and Planetary Science Letters, 485, 99–110. https://doi.org/10.1016/j.epsl.2017.12.036
    [Google Scholar]
  23. Bown, P. R. (2005). Paleogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania (Tanzania Drilling Project 2003–4). Journal of Nannoplankton Research, 27, 21–95.
    [Google Scholar]
  24. Bown, P. R., & Young, J. R. (1998). Techniques. In P. R.Bown (Ed.), Calcareous nannofossil biostratigraphy (pp. 16–28). Cambridge, UK: Chapman & Hall.
    [Google Scholar]
  25. Burchette, T. P., & Wright, V. P. (1992). Carbonate ramp depositional systems. Sedimentary Geology, 79(1–4), 3–57. https://doi.org/10.1016/0037-0738(92)90003-A
    [Google Scholar]
  26. Burtman, V. S. (2000). Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir‐Tien Shan transition zone for the Cretaceous and Paleogene. Tectonophysics, 319(2), 69–92. https://doi.org/10.1016/S0040-1951(00)00022-6
    [Google Scholar]
  27. Burtman, V. S., & Molnar, P. H. (1993). Geological and geophysical evidence for deep subduction of continental crust beneath the pamir. Boulder, Colorado, Geological Society of America Special Papers, 281.
    [Google Scholar]
  28. Cao, K., Wang, G. C., Bernet, M., van der Beek, P., & Zhang, K. X. (2015). Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long‐lived, rejuvenated orogen. Earth and Planetary Science Letters, 432, 391–403. https://doi.org/10.1016/j.epsl.2015.10.033
    [Google Scholar]
  29. Catuneanu, O. (2006). Principles of sequence stratigraphy. Elsevier, Amsterdam. 375 pp.
    [Google Scholar]
  30. Caves, J. K., Winnick, M. J., Graham, S. A., Sjostrom, D. J., Mulch, A., & Chamberlain, C. P. (2015). Role of the westerlies in Central Asia climate over the Cenozoic. Earth and Planetary Science Letters, 428, 33–43. https://doi.org/10.1016/j.epsl.2015.07.023
    [Google Scholar]
  31. Chapman, J. B., Scoggin, S. H., Kapp, P., Carrapa, B., Ducea, M. N., Worthington, J., … Gadoev, M. (2018). Mesozoic to Cenozoic magmatic history of the Pamir. Earth and Planetary Science Letters, 482, 181–192. https://doi.org/10.1016/j.epsl.2017.10.041
    [Google Scholar]
  32. Chinese Bureau of Stratigraphy
    Chinese Bureau of Stratigraphy (1981). Stratigraphic tables for Xinjiang Autonomous Region, 496 p.
  33. Clark, M. K., Farley, K. A., Zheng, D., Wang, Z., & Duvall, A. R. (2010). Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U‐Th)/He ages. Earth and Planetary Science Letters, 296(1–2), 78–88. https://doi.org/10.1016/j.epsl.2010.04.051
    [Google Scholar]
  34. Cowgill, E. (2010). Cenozoic right‐slip faulting along the eastern margin of the Pamir salient, northwestern China. Bulletin of the Geological Society of America, 122(1–2), 145–161. https://doi.org/10.1130/B26520.1
    [Google Scholar]
  35. Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., & Miller, K. G. (2009). Ocean overturning since the Late Cretaceous: Inferences from a new foraminiferal isotope compilation. Paleoceanography, 24, PA4216. https://doi.org/10.1029/2008PA001683
    [Google Scholar]
  36. Crouch, E. M., Heilmann‐Clausen, C., Brinkhuis, H., Morgans, H. E. G., Rogers, K. M., Egger, H., & Schmitz, B. (2001). Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology, 29, 315–318. https://doi.org/10.1130/0091-7613(2001)029<0315:GDEAWT>2.0.CO;2
    [Google Scholar]
  37. Cushman, J. A. (1951). Paleocene foraminifera of the Gulf coastal region of the United States and adjacent areas. U.S. Geological Survey Professional Paper, 232, 75.
    [Google Scholar]
  38. Dayem, K. E., Molnar, P., Clark, M. K., & Houseman, G. A. (2009). Far‐field lithospheric deformation in Tibet during continental collision. Tectonics, 28(6), TC6005.
    [Google Scholar]
  39. DeCelles, P. G., Kapp, P., Quade, J., & Gehrels, G. E. (2011). Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Bulletin of the Geological Society of America, 123(7–8), 1337–1362. https://doi.org/10.1130/B30258.1
    [Google Scholar]
  40. Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju‐Duval, B., Brunet, M. F., Sandulescu, M.. (2000). Peri‐Tethys paleogeographical atlas.
  41. Dupont‐Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., & Fang, X. (2007). Tibetan plateau aridification linked to global cooling at the Eocene‐Oligocene transition. Nature, 445(7128), 635–638. https://doi.org/10.1038/nature05516
    [Google Scholar]
  42. Dupont‐Nivet, G., Lippert, P. C., vanHinsbergen, J. J. D., Meijers, M., & Kapp, P. (2010). Palaeolatitude and age of the Indo‐Asia collision: Palaeomagnetic constraints. Geophysical Journal International, 182, 1189–1198. https://doi.org/10.1111/j.1365-246X.2010.04697.x
    [Google Scholar]
  43. Eldrett, J. S., Harding, I. C., Firth, J. V., & Roberts, A. P. (2004). Magnetostratigraphic calibration of Eocene‐Oligocene dinoflagellate cyst biostratigraphy from the Norwegian‐Greenland Sea. Marine Geology, 204, 91–127. https://doi.org/10.1016/S0025-3227(03)00357-8
    [Google Scholar]
  44. Fensome, R. A., & Williams, G. L. (2004). The Lentin and Williams Index of Fossil Dinoflagellates 2004 Edition, 909 pp. Am. Assoc.of Strat. Coll. Station. Tex.
  45. Fisher, R. A. (1953). Dispersion on a sphere. Proc. R. Soc. Lond. A, 217(1130), 295–305.
    [Google Scholar]
  46. Flügel, E. (2004). Microfacies of carbonate rocks: Analysis, interpretation and application. Berlin: Springer.
    [Google Scholar]
  47. Fornaciari, E., Agnini, C., Catanzariti, R., Rio, D., Bolla, E. M., & Valvasoni, E. (2010). Mid‐latitude calcareous nannofossil biostratigraphy, biochronology and evolution across the middle to late Eocene transition. Stratigraphy, 7, 229–264.
    [Google Scholar]
  48. Graham, S. A., Chamberlain, C. P., Yue, Y., Ritts, B. D., Hanson, A. D., Horton, T. W., … Feng, X. (2005). Stable isotope records of cenozoic climate and topography, Tibetan plateau and Tarim basin. American Journal of Science, 305(2), 101–118. https://doi.org/10.2475/ajs.305.2.101
    [Google Scholar]
  49. Guasti, E., & Speijer, R. P. (2008). Acarinina multicamerata n. sp. (Foraminifera): A new marker for the Paleocene‐Eocene thermal maximum. Journal of Micropalaeontology, 27, 5–12.
    [Google Scholar]
  50. Guo, F., Yang, D., Eriksson, K. A., & Guo, L. (2015). Paleoenvironments, stratigraphic evolution and reservoir characteristics of the Upper Cretaceous Yingjisha Group, southwest Tarim Basin. Marine and Petroleum Geology, 67, 336–355. https://doi.org/10.1016/j.marpetgeo.2015.05.023
    [Google Scholar]
  51. Guo, X. (1990). Study on marine Cretaceous‐Tertiary boundary in the western Tarim Basin. Journal of China University of Geosciences, 15, 325–335.
    [Google Scholar]
  52. Guo, Z. T., Sun, B., Zhang, Z. S., Peng, S. Z., Xiao, G. Q., Ge, J. Y., … Wei, J. J. (2008). A major reorganization of Asian climate by the early Miocene. Climate of the past, 4, 153–174.
    [Google Scholar]
  53. Hao, Y., & Guo, X. (1990). Cretaceous‐Paleocene foraminiferal communities from the western Tarim basin and their environmental significance. Journal of China University of Geosciences, 1, 34–42.
    [Google Scholar]
  54. Hao, Y. C., Zeng, X. L., & Li, H. M. (1982). Late Cretaceous and Tertiary strata and foraminifera in Western Tarim Basin. Earth Science‐Journal of the Wuhan College of Geology, 17, 461–114. (In Chinese with English abstract).
    [Google Scholar]
  55. Hao, Y. C., Guo, X. P., Ye, L. S., Yao, P. Y., Fu, D. R., Li, H. M., … Wang, D. N. (2001). The boundary between the marine Cretaceous and Tertiary in the southwest Tarim Basin. Bejing: Geological Publishing House.
    [Google Scholar]
  56. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science, 235, 1156–1167. https://doi.org/10.1126/science.235.4793.1156
    [Google Scholar]
  57. Heermance, R. V., Chen, J., Burbank, D. W., & Wang, C. S. (2007). Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Research, 19, 599–632. http://dx.doi.org/10.1111/j.1365-2117.2007.00339.x
    [Google Scholar]
  58. Hendrix, M. S., Graham, S. A., Carroll, A. R., Sobel, E. R., McKnight, C. L., Schulein, B. J., & Wang, Z. (1992). Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins. Geological Society of America Bulletin, 104, 53–79.
    [Google Scholar]
  59. Hoorn, C., Straathof, J., Abels, H. A., Xu, Y., Utescher, T., & Dupont‐Nivet, G. (2012). A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 344–345, 16–38. https://doi.org/10.1016/j.palaeo.2012.05.011
    [Google Scholar]
  60. Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., & Webb, A. (2016). The timing of India‐Asia collision onset – Facts, theories, controversies. Earth‐Science Reviews, 160, 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014
    [Google Scholar]
  61. Hudson, J. D. (1977). Stable isotopes and limestone lithification. Journal of the Geological Society, 133, 637–660. https://doi.org/10.1144/gsjgs.133.6.0637
    [Google Scholar]
  62. Iakovleva, A. I., & Heilmann‐Clausen, C. (2007). Wilsonidium pechoricum new species—A new dinoflagellate species with unusual asymmetry from the Paleocene/Eocene transition. Journal of Paleontology, 81, 1020–1030.
    [Google Scholar]
  63. James,N.P., & Walker, R.G. (1992). Facies Models: response to sea level changes. Geological Association of Canada, 409 pp.
    [Google Scholar]
  64. Ji, J., Zhang, K., Clift, P. D., Zhuang, G., Song, B., Ke, X., & Xu, Y. (2017). High‐resolution magnetostratigraphic study of the Paleogene‐Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Research, 46, 141–155. https://doi.org/10.1016/j.gr.2017.02.015
    [Google Scholar]
  65. Jia, C. Z., Zhang, S. B., Wu, S. Z. (2004). Stratigraphy of the tarim basin and adjacent areas. Beijing: Sci. Press, 450 pp.
    [Google Scholar]
  66. Jin, C., Liu, Q., Liang, W., Roberts, A. P., Sun, J., Hu, P., … Yuan, S. (2018). Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India‐Eurasia collision and Tibetan Plateau deformation. Earth and Planetary Science Letters, 486, 41–53. https://doi.org/10.1016/j.epsl.2018.01.010.
    [Google Scholar]
  67. Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., … Wu, C. (2001). Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission‐track constraints. Tectonophysics, 343(1–2), 111–134. https://doi.org/10.1016/S0040-1951(01)00196-2.
    [Google Scholar]
  68. Jolivet, M., Heilbronn, G., Robin, C., Barrier, L., Bourquin, S., Guo, Z., … Fu, B. (2013). Reconstructing the Late Palaeozoic—Mesozoic topographic evolution of the Chinese Tian Shan: Available data and remaining uncertainties. Advances in Geosciences, 37, 7–18. https://doi.org/10.5194/adgeo-37-7-2013
    [Google Scholar]
  69. Kent‐Corson, M. L., Ritts, B. D., Zhuang, G., Bovet, P. M., Graham, S. A., & Page Chamberlain, C. (2009). Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 282(1–4), 158–166. https://doi.org/10.1016/j.epsl.2009.03.011
    [Google Scholar]
  70. Kirschvink, J. L. (1980). The least‐square line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62, 699–718.
    [Google Scholar]
  71. Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., & Mizintseva, S. (2008). Late cretaceous to miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20, 211–226. https://doi.org/10.1111/j.1365-2117.2008.00354.x
    [Google Scholar]
  72. Köthe, A. (2012). A revised Cenozoic dionflagellate cyst and calcareous nannoplankton zonation for the German sector of the southeastern North Sea Basin. Newsletters on Stratigraphy, 45, 189–220.
    [Google Scholar]
  73. Kutzbach, J. E., Prell, W. L., & Ruddiman, W. F. (1993). Sensitivity of Eurasian climate to surface uplift of the Tibetan Palteau. The Journal of Geology, 101, 177–190.
    [Google Scholar]
  74. Lan, X., & Wei, J. (1995). Late Cretaceous-Early Tertiary Marine Bivalve Fauna From the Western Tarim Basin. Chinese Science Publishing House, Beijing p. 212.
  75. Lee, E. Y., Novotny, J., & Wagreich, M. (2016). BasinVis 1.0: A MATLAB®‐based program for sedimentary basin subsidence analysis and visualization. Computers and Geosciences, 91, 119–127. https://doi.org/10.1016/j.cageo.2016.03.013
    [Google Scholar]
  76. LeRoy, L. W. (1953). Biostratigraphy of the Maqfi section. Egypt. GSA, Mem., 54, 73 pp.
  77. Li, X., Zhang, R., Zhang, Z., & Yan, Q. (in press). What enhanced the aridity in Eocene Asian inland: Gglobal cooling or early Tibetan Plateau uplift?Palaeogeography, Palaeoclimatology, Palaeoecology. 510, 6–14. doi: 10.1016/j.palaeo.2017.10.029.
    [Google Scholar]
  78. Li, Y. (1990). An Apparent Polar Wander Path from the Tarim Block, China. Tectonophysics, 181, 31–41. https://doi.org/10.1111/j.1755-6724.1990.mp3001001.x
    [Google Scholar]
  79. Licht, A., Dupont‐Nivet, G., Pullen, A., Kapp, P., Abels, H. A., Lai, Z., … Giesler, D. (2016). Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance. Nature Communications, 7, 12390. https://doi.org/10.1038/ncomms12390
    [Google Scholar]
  80. Licht, A., van Cappelle, M., Abels, H. A., Ladant, J. B., Trabucho‐Alexandre, J., France‐Lanord, C., … Jaeger, J. J. (2014). Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519), 501–506. 10.1038/nature13704\rhttp://www.nature.com/nature/journal/v513/n7519/abs/nature13704.html#supplementary-information
    [Google Scholar]
  81. Loeblich, A. R. J., & Tappan, H. (1988). Foraminiferal genera and their classification (p. 970). New York, NJ: Van Nostrand Reinhold.
    [Google Scholar]
  82. Lu, H., Wang, X., & Li, L. (2010). Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geological Society London Special Publications, 342, 29–44. https://doi.org/10.1144/SP342.4
    [Google Scholar]
  83. Manabe, S., & Broccoli, A. J. (1990). Mountains and arid climates of Middle latitudes. Science, 247, 192–195. https://doi.org/10.1126/science.247.4939.192
    [Google Scholar]
  84. Mao, S., & Norris, G. (1988). Late Cretaceous ‐ Early Tertiary Dinoflagellates and Acritarchs from the Kashi Area, Tarim Basin, Xinjiang Province, China. Toronto, ON: Royal Ontario Museum Life Sciences Publications.
    [Google Scholar]
  85. Martini, E. (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In A.Farinacci (Eds.), Proceedings 2nd International Conference Planktonic Microfossils Roma, 2, 739–785.
    [Google Scholar]
  86. McFadden, P. L., & McElhinny, M. W. (1988). The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth and Planetary Science Letters, 87(1–2), 161–172. https://doi.org/10.1016/0012-821X(88)90072-6
    [Google Scholar]
  87. Meijer, N., Dupont‐Nivet, G., Abels, H., Kaya, M. Y. K., Licht, A., Xiao, M., … Guo, Z. (2018). Central Asian moisture modulated by proto‐Paratethys Sea incursions since the early Eocene. Manuscript submitted for publication to Earth Palnet. Sci. Lett.
    [Google Scholar]
  88. Mudge, D. C., & Bujak, J. P. (1996). Palaeocene biostratigraphy and sequence stratigraphy of the UK central North Sea. Marine and Petroleum Geology, 13, 295–312. https://doi.org/10.1016/0264-8172(95)00066-6
    [Google Scholar]
  89. Negredo, A. M., Replumaz, A., Villaseñor, A., & Guillot, S. (2007). Modeling the evolution of continental subduction processes in the Pamir‐Hindu Kush region. Earth and Planetary Science Letters, 259(1–2), 212–225. https://doi.org/10.1016/j.epsl.2007.04.043
    [Google Scholar]
  90. Nelson, C. S., & Smith, A. M. (1996). Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: A synthesis and review. New Zealand Journal of Geology and Geophysics, 39, 93–107. https://doi.org/10.1080/00288306.1996.9514697
    [Google Scholar]
  91. Ogg, J. G., Ogg, G. M., & Gradstein, F. M. (2016). A concise geological time scale (240 pp.). Amsterdam: Elsevier.
    [Google Scholar]
  92. Okada, H. & Bukry, D. (1980). Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation. Marine Micropaleontology, 5, 321–325. https://doi.org/10.1016/0377-8398(80)90016-X
    [Google Scholar]
  93. Olsson, R. K., Hemleben, C., Berggren, W. A., & Huber, B. T. (Eds.) (1999). Atlas of paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology, 85, 461–252.
    [Google Scholar]
  94. Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., & Berggren, W. A.(eds.) (2006). The Atlas of Eocene Planktonic Foraminifera, Cushman Foundation Special Publication, 41. 514 pp.
  95. Perch‐Nielsen, K. (1985). Cenozoic calcareous nannofossils. In H. M.Bolli, J. B.Saunders, & K.Perch‐Nielsen (Eds.), Plankton Stratigraphy (pp. 427–554). Cambridge: Cambridge University Press.
    [Google Scholar]
  96. Poblete, F., Dupont‐Nivet, G., Licht, A., van Hinsbergen, D., Roperch, P., Guillocheau, F., …Baatsten, M. (2017) Preliminary global paleogeographic maps through the Greenhouse‐Icehouse transition: forcing of the Drake Passage and Asian Monsoons. EGU General Assembly 2017, Geophysical Research Abstracts, Vol. 19.
  97. Qiao, Q., Huang, B., Biggin, A. J., & Piper, J. D. A. (2017). Late Cenozoic evolution in the Pamir‐Tian Shan convergence: New chronological constraints from the magnetostratigraphic record of the southwestern Tianshan foreland basin (Ulugqat area). Tectonophysics, 717, 51–64. https://doi.org/10.1016/j.tecto.2017.07.013
    [Google Scholar]
  98. Radionova, E. P., Beniamovski, V. N., Iakovleva, A. I., Muzylov, N. G., Oreshkina, T. V., Shcherbinina, E. A., … Kozlova, G. E. (2003). Early Paleogene transgressions: Stratigraphical and sedimentological evidence from the northern Peri‐Tethys. Special Papers‐Geological Society of. America, 369, 239–262. https://doi.org/10.1130/0-8137-2369-8.239
    [Google Scholar]
  99. Raffi, I., Backman, J., & Pälike, H. (2005). Changes in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo‐equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 226, 93–126. https://doi.org/10.1016/j.palaeo.2005.05.006
    [Google Scholar]
  100. Ramstein, G., Fluteau, F., Besse, J., & Joussaume, S. (1997). Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature, https://doi.org/10.1038/386788a0
    [Google Scholar]
  101. Replumaz, A., Negredo, A. M., Villaseñor, A., & Guillot, S. (2010). Indian continental subduction and slab break-off during Tertiary collision. Terra Nova, 22(4), 290–296. https://doi.org/10.1111/j.1365-3121.2010.00945.x
    [Google Scholar]
  102. Roe, G. H., Ding, Q., Battisti, D. S., Molnar, P., Clark, M. K., & Garzione, C. N. (2016). A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma. Journal of Geophysical Research: Atmospheres, 121(10), 5453–5470. https://doi.org/10.1002/2015JD024370
    [Google Scholar]
  103. Rutte, D., Ratschbacher, L., Khan, J., Stübner, K., Hacker, B. R., Stearns, M. A., … Tichomirowa, M. (2017). Building the Pamir‐Tibetan Plateau‐Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 2. Timing and Rates. Tectonics, 36, 385–419.
    [Google Scholar]
  104. Scott, R. W., Wan, X., Sha, J., & Wen, S.‐X. (2010). Rudists of Tibet and the tarim basin, China: Significance to requieniidae phylogeny. Journal of Paleontology, 84(3), 444–465. https://doi.org/10.1666/09-137.1
    [Google Scholar]
  105. Şengör, A. M. C., Altıner, D., Cin, A., Ustaömer, T., & Hsü, K. J. (1988). Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society, London, Special Publications, 37(1), 119–181. https://doi.org/10.1144/GSL.SP.1988.037.01.09
    [Google Scholar]
  106. Şengör, A. M. C., Natal'in, B. A., & Burtman, V. S. (1993). Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature Letters, 364, 299–307. https://doi.org/10.1038/364299a0
    [Google Scholar]
  107. Shcherbinina, E., Gavrilov, Y., Iakovleva, A., Pokrovsky, B., Golovanova, O., Aleksandrova, G., et al. (2016). Environmental dynamics during the Paleocene‐Eocene thermal maximum (PETM) in the northeastern Proto‐Paratethys revealed by high‐resolution micropalaeontological and geochemical studies of a Caucasian key section. Palaeogeography, Palaeoclimatology, Palaeoecology, 456, 60–81.
    [Google Scholar]
  108. Sheldon, E. (2002). Paleogene nannofossil biostratigraphy of the Kangâmiut‐1 and Nukik‐2 wells, offshore West Greenland. Marine and Petroleum Geology, 20, 1031–1041. https://doi.org/10.1016/S0264-8172(02)00119-8
    [Google Scholar]
  109. Sobel, E. R. (1995). Basin analysis and apatite fission‐track thermochronology of the Jurassic‐Paleogene southwest Tarim Basin, NW China [Phd dissertation] (p. 308). Stanford, CA: Stanford University.
    [Google Scholar]
  110. Sobel, E. R., Chen, J., & Heermance, R. V. (2006). Late Oligocene‐Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations. Earth and Planetary Science Letters, 247(1–2), 70–81. https://doi.org/10.1016/j.epsl.2006.03.048
    [Google Scholar]
  111. Sobel, E. R., & Dumitru, T. A. (1997). Thrusting and exhumation around the margins of the western Tarim basin during the India‐Asia collision. Journal of Geophysical Research: Solid Earth, 102(B3), 5043–5063. https://doi.org/10.1029/96JB03267
    [Google Scholar]
  112. Song, B., Zhang, K., Lu, J., Wang, C., Xu, Y., & Greenough, J. (2013). The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Canadian Journal of Earth Sciences, 50(2), 183–196. https://doi.org/10.1139/cjes-2012-0048
    [Google Scholar]
  113. Speijer, R. P. (1994). Extinction and recovery patterns in benthic foraminiferal paleocommunities across the Cretaceous/Paleogene and Paleocene/Eocene boundaries. Geologica Ultraiectina, 124, 191. [Faculteit Aardwetenschappen, Universiteit Utrecht].
    [Google Scholar]
  114. Sun, J., & Jiang, M. (2013). Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 588, 27–38. https://doi.org/10.1016/j.tecto.2012.11.031.
    [Google Scholar]
  115. Sun, J., Li, Y., Zhang, Z., & Fu, B. (2009). Magnetostratigraphic data on Neogene growth folding in the foreland basin of the southern Tianshan Mountains. Geology, 37(11), 1051–1054. https://doi.org/10.1130/G30278A.1
    [Google Scholar]
  116. Sun, J., Windley, B. F., Zhang, Z., Fu, B., & Li, S. (2016). Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene. Journal of Asian Earth Sciences, 116, 222–231. https://doi.org/10.1016/j.jseaes.2015.11.020
    [Google Scholar]
  117. Tang, T., Yang, H., Lan, X., Yu, C., Xue, Y., Zhang, Y., … Wei, J.. (1989). Marine Late Cretaceous and Early tertiary stratigraphy and Petroleum Geology in Western Tarim Basin, China (118 pp). Beijing: Science Press (In Chinese with English abstract).
    [Google Scholar]
  118. Tang, W., Zhong, X., Guo, C., Yan, Z., & Ye, L. (1992). Abnormal event of carbon stable isotope at the boundary between Cretaceous and Tertiary in Altax section in Xinjiang Autonomous region. Acta Petrolei Sinica, 13(2), 209–214.
    [Google Scholar]
  119. van Hinsbergen, D. J. J., Lippert, P. C., Dupont‐Nivet, G., McQuarrie, N., Doubrovine, P. V., Spakman, W., & Torsvik, T. H. (2012). Greater India Basin hypothesis and a two‐stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences, 109(20), 7659–7664. https://doi.org/10.1073/pnas.1117262109
    [Google Scholar]
  120. van Hinsbergen, D. J. J., Lippert, P. C., Li, S., Huang, W., Advokaat, E. L., & Spakman, W. (2018). Reconstructing Greater India: Paleogeographic, kinematic and geodynamic perspectives. Tectonophysics. (in press), https://doi.org/10.1016/j.tecto.2018.04.006
    [Google Scholar]
  121. Van Morkhoven, F. P. C. M., Berggren, W. A., & Edwards, A. S. (1986). Cenozoic cosmopolitan deep‐water benthic foraminifera. Bulletin Des Centres De Recherches Exploration‐Production Elf‐Aquitaine. Mémoire, 11, 421.
    [Google Scholar]
  122. Wan, X., Jiang, T., Zhang, Y., Xi, D., & Li, G. (2014). Paleogene marine stratigraphy in China. Lethaia, 47(3), 297–308. https://doi.org/10.1111/let.12071.
    [Google Scholar]
  123. Wang, C., Hong, H., Li, Z., Yin, K., Xie, J., Liang, G., … Zhang, K. (2013). The Eocene‐Oligocene climate transition in the Tarim Basin, Northwest China: Evidence from clay mineralogy. Applied Clay Science, 74, 10–19. https://doi.org/10.1016/j.clay.2012.09.003
    [Google Scholar]
  124. Wang, D.‐N., Sun, X.‐Y., & Zhao, Y.‐N. (1990). Late cretaceous to tertiary palynofloras in xinjiang and Qinghai. China. Review of Palaeobotany and Palynology, 65(1–4), 95–104. https://doi.org/10.1016/0034-6667(90)90060-V
    [Google Scholar]
  125. Wang, Q., Wyman, D. A., Xu, J., Dong, Y., Vasconcelos, P. M., Pearson, N., … Chu, Z. (2008). Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central‐western Qiangtang high‐K calc‐alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1–2), 158–171. https://doi.org/10.1016/j.epsl.2008.04.034
    [Google Scholar]
  126. Wang, W., Zheng, W., Zhang, P., Li, Q., Kirby, E., Yuan, D., … Pang, J. (2017). Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8, 461–12. https://doi.org/10.1038/ncomms15887
    [Google Scholar]
  127. Warren, J. K. (2010). Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth‐Science Reviews, 98(3–4), 217–268. https://doi.org/10.1016/j.earscirev.2009.11.004
    [Google Scholar]
  128. Xi, D., Cao, W., Cheng, Y., Jiang, T., Jia, J., Li, Y., & Wan, X. (2016). Late Cretaceous biostratigraphy and sea‐level change in the southwest Tarim Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 516–527. https://doi.org/10.1016/j.palaeo.2015.09.045
    [Google Scholar]
  129. Yang, H. Q., Shen, J. W., Yang, H. J., Zhang, L. J., Li, M., & Wang, J. P. (2014). Mixed carbonate‐clastic facies in the Eocene Kalatar Formation of the southwest Tarim Basin (NW China): Tectonic and climatic controls. Facies, 60(1), 111–131. https://doi.org/10.1007/s10347-013-0373-1
    [Google Scholar]
  130. Yang, W., Dupont‐Nivet, G., Jolivet, M., Guo, Z., Bougeois, L., Bosboom, R., … Heilbronn, G. (2015). Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India‐Asia collision. Tectonophysics, 644, 122–137. https://doi.org/10.1016/j.tecto.2015.01.003
    [Google Scholar]
  131. Ye, D., Tang, W., Wei, J., Xu, D., & Mao, X. (1992). Geochemical markers of the Cretaceous-Tertiary boundary event in the Altax section. Tarim Basin, Acta Petrolei Sinica, 13(2), 202–208.
    [Google Scholar]
  132. Ye, C., Yang, Y., Fang, X., & Zhang, W. (2016). Late Eocene clay boron‐derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate. Sedimentary Geology, 346, 49–59. https://doi.org/10.1016/j.sedgeo.2016.10.006
    [Google Scholar]
  133. Yin, A., Craig, P., & Harrison, T. M. (1998). Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17(1), 461–27. https://doi.org/10.1029/97TC03140
    [Google Scholar]
  134. Yin, A., & Harrison, T. M. (2000). E Volution of the H Ealth C Are. Annual Reviews of Earth and Planetary Sciences, 28, 211–280. https://doi.org/10.1080/01947641003598252
    [Google Scholar]
  135. Yin, A., Rumelhart, P. E., Butler, R., Cowgill, E., Harrison, T. M., Foster, D. A., … Raza, A. (2002). Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Bulletin of the Geological Society of America, 114(10), 1257–1295. https://doi.org/10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2
    [Google Scholar]
  136. Young, J. R., Bown, P. R., & Lees, J. A. (eds). Nannotax3 website. International Nannoplankton Association. http://ina.tmsoc.org/Nannotax3
  137. Young, J. R., Wade, B. S., & Huber, B. T. (Eds.) [email protected] website. (2018). http://ww.mikrotax.org/pforams
  138. Zhang, S., Hu, X., Han, Z., Li, J., & Garzanti, E. (2018). Climatic and tectonic controls on Cretaceous Paleogene sea‐level changes recorded in the Tarim epicontinental sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 501, 92–110. https://doi.org/10.1016/j.palaeo.2018.04.008
    [Google Scholar]
  139. Zhang, Z., Flatøy, F., Wang, H., Bethke, I., Bentsen, M., & Guo, Z. (2012). Early Eocene Asian climate dominated by desert and steppe with limited monsoons. Journal of Asian Earth Sciences, 44, 24–35. https://doi.org/10.1016/j.jseaes.2011.05.013
    [Google Scholar]
  140. Zhang, Z., Wang, H., Guo, Z., & Jiang, D. (2007). What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 317–331
    [Google Scholar]
  141. Zhang, C. L., Zou, H. B., Li, H. K., & Wang, H. Y. (2013). Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research, 23, 1306–1315.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12330
Loading
/content/journals/10.1111/bre.12330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error