1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12332
2019-02-21
2020-05-26
Loading full text...

Full text loading...

References

  1. Baars, D. L. (1983). The Colorado Plateau, a geologic history. Albuquerque, NM: University of New Mexico Press.
    [Google Scholar]
  2. Bachmann, G. H., Geluk, M. C., Warrington, G., Becker‐Roman, A., Beutler, G., Hagdorn, H., … Szulc, A. (2010). Triassic. In J. C.Doornenbal & A. G.Stevenson (Eds.), Petroleum geological atlas of the Southern Permian Basin Area (pp. 149–173). Houten, the Netherlands: EAGE Publications b.v.
    [Google Scholar]
  3. Barbeau, D. L. (2003). A flexural model for the Paradox Basin: Implications for the tectonics of the Ancestral Rocky Mountains. Basin Research, 15, 97–115. https://doi.org/10.1046/j.1365-2117.2003.00194.x
    [Google Scholar]
  4. Biddle, K. T., & Rudolph, K. W. (1988). Early tertiary structural inversion in the Stord basin, Norwegian north sea. Journal of the Geological Society, 145, 603–611. https://doi.org/10.1144/gsjgs.145.4.0603
    [Google Scholar]
  5. Brown, A. (2004). Interpretation of three‐dimensional seismic data (9.6th ed.). AAPG Memoir 42, SEG Investigations in Geophysics.
    [Google Scholar]
  6. Burliga, S., Koyi, H. A., & Chemia, Z. (2012). Analogue and numerical modelling of salt supply to a diapiric structure rising above an active basement fault. In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, &R.Hodgkinson (Eds.), Salt tedtonics, sediment and prospectivity. Geol. Soc. London Spec. Publ., 363, 395–408.
    [Google Scholar]
  7. Cartwright, J. A. (1989). The kinematics of inversion in the Danish Central Graben. Geological Society, London, Special Publications, 44, 153–175. https://doi.org/10.1144/GSL.SP.1989.044.01.10
    [Google Scholar]
  8. Cartwright, J. A., Jackson, M. P. A., Dooley, T., & Higgins, S. (2012). Strain partitioning in gravity‐driven shortening of a thick, multilayered evaporite sequence. In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds.), Salt tectonics, sediments and prospectivity. Geological Society of London Special Publication, 363, 449–470.
    [Google Scholar]
  9. Clark, J. A., Stewart, S. A., & Cartwright, J. A. (1998). Evolution of the NW margin of the North Permian Basin, UK North Sea. Journal of the Geological Society, 155, 663–676. https://doi.org/10.1144/gsjgs.155.4.0663
    [Google Scholar]
  10. Cockings, J. H., Kessler, L. G.II, Mazza, T. A., & Riley, L. A. (1992). Bathonian to mid‐Oxfordian sequence stratigraphy of the South Viking Graben, North Sea. In R. F. P.Hardman) (Ed.), Exploration Britain: Insights for the Next Decade, Geol. Soc. London Spec. Publ., 67, 65–105.
    [Google Scholar]
  11. Coward, M. P. (1995). Structural and tectonic setting of the Permo‐Triassic basins of Northwest Europe. In S. A. R.Boldy (Ed.), Permian and Triassic rifting in Northwest Europe (Vol. 91, pp. 7–39). London, UK: Geological Society Special Publication.
    [Google Scholar]
  12. Coward, M. P., Dewey, J. F., Hempton, M., & Holroyd, J. (2003). Tectonic evolution. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (pp. 17–33). London, NY: The Geological Society of London.
    [Google Scholar]
  13. De Freitas, R. T. J. (2006). Ciclos Deposicionais Evaporiticos Da Bacia De Santos: Una Analise Cicloestratigrafica a Partir De Dados De 2 Pocos E De Tracos De Sismica. Universidade Federal do Rio Grande do Sul, Brazil.
  14. Dooley, T., McClay, K. R., Hempton, M., & Smit, D. (2005). Salt tectonics above complex basement extensional fault systems: Results from analogue modelling. In Geological Society, London, Petroleum Geology Conference series (Vol. 6, No. 1, pp. 1631–1648). London, UK: Geological Society of London.
    [Google Scholar]
  15. Duffy, O. B., Gawthorpe, R. L., Docherty, M., & Brocklehurst, S. H. (2013). Mobile evaporite controls on the structural style and evolution of rift basins. Basin Research, 25, 310–330.
    [Google Scholar]
  16. Erratt, D. (1993). Relationships between basement faulting, salt withdrawal and Late Jurassic rifting, UK Central North Sea. In J. R.Parker (Ed.), Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (pp. 1211–1219). London, UK: Geological Society.
    [Google Scholar]
  17. Evans, D., Armour, A., Bathurst, P., Gammage, J., Swallow, J., Graham, C., & Stewart, H. (2003). Millennium Atlas: Petroleum Geology of Central & Northern North Sea (390 pp). London, UK: The Geological Society of London.
    [Google Scholar]
  18. Fraser, S. I., Robinson, A. M., Johnson, H. D., Underhill, J. R., Kadolsky, D. G. A., Connell, R., … Ravnas, R. (2003). Upper Jurassic. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (pp. 157–189). London, UK: The Geological Society of London.
    [Google Scholar]
  19. Gambôa, L. A. P., Machado, M. A. P., Silveira, D. P., de Freitas, J. T. R., & da Silva, S. R. P. (2008). Evaporitos Estratificados No Atlantico Sul: Interpretacao Sismica E Controle Tectono‐Estratigrafino Na Bacia De Santos. In W.Mohriak, P.Szatmari, & S. M. C.Anjos (Eds.), Sal: Geologia e Tectonica, Exemplos nas Basicas Brasileiras (pp. 340–359). Sao Paulo, Brasil: Beca Edicoes Ltda.
    [Google Scholar]
  20. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono-sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  21. Ge, Z., Gawthorpe, R. L., Rotevatn, A., & Thomas, M. B. (2017). Impact of normal faulting and pre‐rift salt tectonics on the structural style of salt‐influenced rifts: The Late Jurassic Norwegian Central Graben, North Sea. Basin Research, 29, 674–698.
    [Google Scholar]
  22. Glennie, K. W. (Ed.). (1998). Petroleum geology of the North Sea. Basic concepts and recent advances (4th ed., pp. 636). Oxford, UK: Blackwell Science for JAPEC.
    [Google Scholar]
  23. Glennie, K. W., Highman, J., & Stemmerik, L. (2003). Permian. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The Millennium Atlas: Petroleum geology of the central and northern North Sea (pp. 91–103). London, UK: The Geological Society of London.
    [Google Scholar]
  24. Hsü, K. J. (1972). Origin of saline giants: A critical review after the discovery of the Mediterranean evaporite. Earth‐Science Reviews, 8, 371–396. https://doi.org/10.1016/0012-8252(72)90062-1
    [Google Scholar]
  25. Hudec, M. R., & Jackson, M. P. A. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82, 514–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  26. Jackson, M. P. A., & Vendeville, B. C. (1994). Regional extension as a geologic trigger for diapirism. Geological Society of America Bulletin, 106, 57–73. https://doi.org/10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2
    [Google Scholar]
  27. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  28. Jackson, C.‐A.‐L., & Larsen, E. (2009). Temporal and spatial development of a gravity‐driven normal fault array: Middle‐Upper Jurassic, South Viking Graben, northern North Sea. Journal of Structural Geology, 31, 388–402. https://doi.org/10.1016/j.jsg.2009.01.007
    [Google Scholar]
  29. Jackson, C.‐A.‐L., Kane, K. E., & Larsen, E. (2010). Structural evolution of minibasins on the Utsira High, northern North Sea; implications for Jurassic sediment dispersal and reservoir distribution. Petroleum Geoscience, 16, 105–120.
    [Google Scholar]
  30. Jackson, C.‐A.‐L., & Lewis, M. M. (2013). Physiography of the NE margin of the Permian Salt Basin: New insights from 3D seismic reflection data. Journal of the Geological Society, 170, 857–860. https://doi.org/10.1144/jgs2013-026
    [Google Scholar]
  31. Jackson, C.‐A.‐L., & Lewis, M. M. (2016). Structural style and evolution of a salt‐influenced rift basin margin: The impact of variations in salt composition and the role of polyphase extension. Basin Research, 28, 81–102. https://doi.org/10.1111/bre.12099
    [Google Scholar]
  32. Jackson, C. A. L., Rodriguez, C. R., Rotevatn, A., & Bell, R. E. (2014). Geological and geophysical expression of a primary salt weld: An example from the Santos Basin, Brazil. Interpretation, 2, SM77–SM89.
    [Google Scholar]
  33. Jackson, C.‐A.‐L., & Stewart, S. A. (2017). Composition, tectonics, and hydrocarbon significance of Zechstein Supergroup Salt on the United Kingdom and Norwegian Continental Shelves: A review. J. I.Sato, J.Flinch, & G.Tari (Eds.), In Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic Margins (pp. 175–201). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  34. Kane, K. E., Jackson, C.‐A.‐L., & Larsen, E. (2010). Normal fault growth and fault‐related folding in a salt‐influenced rift basin: South Viking Graben, offshore Norway. Journal of Structural Geology, 32(4), 490–506. https://doi.org/10.1016/j.jsg.2010.02.005
    [Google Scholar]
  35. Knott, S. D., Burchell, M. T., Jolley, E. J., & Fraser, A. J. (1993). Mesozoic to Cenozoic plate reconstructions of the North Atlantic and hydrocarbon plays of the Atlantic margins. In J. R.Parker (Ed.), Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (pp. 953–974). London, UK: Geological Society.
    [Google Scholar]
  36. Knott, S. D. (2001). Gravity‐driven crustal shortening in failed rifts. Journal of the Geological Society, 158, 193–196.
    [Google Scholar]
  37. Krzywiec, P. (2012). Mesozoic and Cenozoic evolution of salt structures within the Polish Basin: An overview. In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds.), Salt Tectonics, Sediment and Prospectivity. Geol. Soc. London Spec. Publ., 363, 381–394.
    [Google Scholar]
  38. Kupfer, D. H. (1968). Relationship of internal to external structure of salt domes. In J.Braunstein (Ed.), Diapirism and Diapirs: American Association of Petroleum Geologists Memoir, 8, 79–80.
    [Google Scholar]
  39. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt-block/half-graben basins. In M. P.Coward, J. F.Dewey, & P. L.Hancock (Eds.), Continental extensional tectonics (pp. 139–152). London, UK: Geological Society.
    [Google Scholar]
  40. Lewis, M. M., Jackson, C.‐A.‐L., & Gawthorpe, R. L. (2013). Salt‐influenced normal fault growth and forced folding: The Stavanger Fault System, North Sea. Journal of Structural Geology, 54, 156–173. https://doi.org/10.1016/j.jsg.2013.07.015
    [Google Scholar]
  41. Lyngsie, S. B., Thybo, H., & Rasmussen, T. M. (2006). Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics, 413, 147–170. https://doi.org/10.1016/j.tecto.2005.10.045
    [Google Scholar]
  42. Marsh, N., Imber, J., Holdsworth, R. E., Brockbank, P., & Ringrose, P. (2009). The structural evolution of the Halten Terrace, offshore Mid‐Norway: Extensional fault growth and strain localisation in a multi‐layer brittle‐ductile system. Basin Research, 22, 195–214.
    [Google Scholar]
  43. Matthews, W. J., Hampson, G. J., Trudgill, B. D., & Underhill, J. R. (2007). Controls on fluvio‐lacustrine reservoir distribution and architecture in passive salt diapir provinces: Insights from outcrop analogs. American Association of Petroleum Geologists Bulletin, 91, 1367–1403.
    [Google Scholar]
  44. McKie, T. (2017). Paleogeographic evolution of Latest Permian and Triassic Salt Basins in Northwest Europe. In J. I.Sato, J.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 159–173). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  45. Moreira, J. L. P., Madeira, C., Gil, J. A., & Machado, M. A. P. (2007). Bacia De Santos. Bulletin Geociencias Petrobras, 15, 531–549.
    [Google Scholar]
  46. Pascoe, R., Hooper, R., Storhaug, K., & Harper, H. (1999). Evolution of extensional styles at the southern termination of the Nordland Ridge, Mid-Norway: A response to variations in coupling above Triassic salt. In A. J.Fleet & S. A. R.Boldy (Eds.), Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (pp. 83–90). London, UK: Geological Society.
    [Google Scholar]
  47. Pegrum, R. M., & Ljones, T. E. (1984). 15/9 Gamma gas field offshore Norway, new trap type for the North Sea basin with regional structural implications. AAPG Bulletin, 68, 874–902.
    [Google Scholar]
  48. Prosser, S. (1993). Rift-related linked depositional systems and their seismic expression. In G. D.Williams, & A.Dobb (Eds.), Tectonics and seismic sequence stratigraphy (pp. 35–66). London, UK: Geological Society.
    [Google Scholar]
  49. Richardson, N. J., Underhill, J. R., & Lewis, G. (2005). The role of evaporite mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, Mid‐Norway. Basin Research, 17, 203–223.
    [Google Scholar]
  50. Rider, M. H., & Kennedy, M. (2011). The geological interpretation of well logs, 3rd ed. (p. 440). Rogart, UK: Rider-French Consulting Ltd..
    [Google Scholar]
  51. Roberts, A. M., Yielding, G., Kusznir, N. J., Walker, I. M., & Dorn‐Lopez, D. (1995). Quantitative analysis of Triassic extension in the Northern Viking Graben. Journal of the Geological Society, 152, 15–26.
    [Google Scholar]
  52. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26, 154–182. https://doi.org/10.1111/bre.12043
    [Google Scholar]
  53. Schlumberger
    Schlumberger (2009). Log interpretation charts (2009th ed.). TX: Schlumberger Publication.
    [Google Scholar]
  54. Soto, J. I., Flinch, J. F., & Tari, G. (2017). Permo‐Triassic Basins and Tectonics in Europe, North Africa and the Atlantic Margins: A synthesis. In J. I.Sato, J.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 3–41). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  55. Stewart, S. A., Harvey, M. J., Otto, S. C., & Weston, P. J. (1996). Influence of salt on fault geometry: Examples from the UK salt basins. In G. I.Alsop, D. J.Blundell, & I.Davison (Eds.), Salt tectonics. Geol. Soc. Spec. Publ., 100, 175–202.
    [Google Scholar]
  56. Stewart, S. A., Ruffell, A. H., & Harvey, M. J. (1997). Relationship between basement-linked and gravity-driven fault systems in the UKCS salt basins. Marine and Petroleum Geology, 14, 581–604.
    [Google Scholar]
  57. Stewart, S. A. (2007). Salt tectonics in the North Sea Basin: A structural style template for seismic interpreters. In A. C.Ries, R. W. H.Butler, & R. H.Graham (Eds.), Deformation of the Continental Crust: The Legacy of Mike Coward. Geol. Soc. London Spec. Publ., 272, 361–396.
    [Google Scholar]
  58. Sørensen, S., Morizot, H., & Skottheim, S. (1992). A tectonostratigraphic analysis of the southeast Norwegian North Sea Basin. In R. M.Larsen, H.Brekke, B. T.Larsen, & E.Talleraas (Eds.), Structural and Tectonic Modelling and its Application to Petroleum Geology: Proceedings of the Norwegin Petroleum Society Workshop (pp. 19–42). Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  59. Taylor, J. C. M. (1990). Upper Permian‐Zechstein. In K. W.Glennie (Ed.), Introduction to the Petroleum Geology of the North Sea (3rd ed., pp. 153–190). Oxford, UK: Blackwell Scientific Publications.
    [Google Scholar]
  60. Thomas, D. W., & Coward, M. P. (1996). Mesozoic regional tectonics and South Viking Graben formation; evidence for localized thin‐ skinned detachments during rift development and inversion. Marine and Petroleum Geology, 13, 149–177.
    [Google Scholar]
  61. Trudgill, B., Banbury, N., & Underhill, J. (2004). Salt evolution as a control on structural and stratigraphic systems: Northern Paradox foreland basin, SE Utah, USA. In P. J.Post, D. L.Olson, K. T.Lyons, S. L.Palmes, P. F.Harrison, & N. C.Rosen (Eds.), Salt Sediment Interactions and hydrocarbon Prospectivity: Proceedings of 24th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins research conference (pp. 669–700). Houston, TX: Gulf Coast Section SEPM.
    [Google Scholar]
  62. Trudgill, B. D. (2011). Evolution of salt structures in the northern Paradox Basin: Controls on evaporite deposition, salt wall growth and supra‐salt stratigraphic architecture. Basin Research, 23, 208–238. https://doi.org/10.1111/j.1365-2117.2010.00478.x
    [Google Scholar]
  63. Tucker, M. E. (1991). Sequence stratigraphy of carbonate‐evaporite basins: Models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. Journal of the Geological Society, 148, 1019–1036. https://doi.org/10.1144/gsjgs.148.6.1019
    [Google Scholar]
  64. Tvedt, A. B. M., Rotevatn, A., Jackson, C.‐A.‐L., Fossen, H., & Gawthorpe, R. L. (2013). Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea. Journal of Structural Geology, 55, 514–20. https://doi.org/10.1016/j.jsg.2013.08.002
    [Google Scholar]
  65. Vendeville, B. C., & Jackson, M. P. A. (1992). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9, 331–354. https://doi.org/10.1016/0264-8172(92)90047-I
    [Google Scholar]
  66. Wagner, B. H.III, & Jackson, M. P. A. (2011). Viscous flow during salt welding. Tectonophysics, 510, 309–326.
    [Google Scholar]
  67. Warren, J. K. (2010). Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth‐Science Reviews, 98, 217–268. https://doi.org/10.1016/j.earscirev.2009.11.004
    [Google Scholar]
  68. Warren, J. K. (2016). Evaporites: A geological compendium. Berlin, Germany: Springer.
    [Google Scholar]
  69. Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C.‐A.‐L., Michelsen, L., & Sharp, I. R. (2013). Geometry and segmentation of an evaporite‐detached normal fault array: The southern Bremstein Fault Complex, offshore mid‐Norway. Journal of Structural Geology, 51, 74–91.
    [Google Scholar]
  70. Withjack, M. O., & Callaway, S. (2000). Active normal faulting beneath a salt layer: An experimental study of deformation patterns in the cover sequence. AAPG Bulletin, 84, 627–651.
    [Google Scholar]
  71. Zanella, E., & Coward, M. P. (2003). Structural framework. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The Millenium Atlas: Petroleum geology of the central and northern North Sea (pp. 45–59). London, UK: The Geological Society of London.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12332
Loading
/content/journals/10.1111/bre.12332
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error