1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The James Ross Basin, in the northern Antarctic Peninsula, exposes which is probably the world thickest and most complete Late Cretaceous sedimentary succession of southern high latitudes. Despite its very good exposures and varied and abundant fossil fauna, precise chronological determination of its infill is still lacking. We report results from a magnetostratigraphic study on shelfal sedimentary rocks of the Marambio Group, southeastern James Ross Basin, Antarctica. The succession studied covers a ~1,200 m‐thick stratigraphic interval within the Hamilton Point, Sanctuary Cliffs and Karlsen Cliffs Members of the Snow Hill Island Formation, the Haslum Crag Formation, and the lower López de Bertodano Formation. The basic chronological reference framework is given by ammonite assemblages, which indicate a Late Campanian – Early Maastrichtian age for the studied units. Magnetostratigraphic samples were obtained from five partial sections located on James Ross and Snow Hill islands, the results from which agree partially with this previous biostratigraphical framework. Seven geomagnetic polarity reversals are identified in this work, allowing to identify the Chron C32/C33 boundary in Ammonite Assemblage 8‐1, confirming the Late Campanian age of the Hamilton Point Member. However, the identification of the Chron C32/C31 boundary in Ammonite Assemblage 8‐2 assigns the base of the Sanctuary Cliffs Member to the early Maastrichtian, which differs from the Late Campanian age previously assigned by ammonite biostratigraphy. This magnetostratigraphy spans ~14 Ma of sedimentary succession and together with previous partial magnetostratigraphies on Early‐Mid Campanian and Middle Maastrichtian to Danian columns permits a complete and continuous record of the Late Cretaceous distal deposits of the James Ross Basin. This provides the required chronological resolution to solve the intra‐basin and global correlation problems of the Late Cretaceous in the Southern Hemisphere in general and in the Weddellian province in particular, given by endemism and diachronic extinctions on invertebrate fossils, including ammonites. The new chronostratigraphic scheme allowed us to calculate sediment accumulation rates for almost the entire Late Cretaceous infill of the distal James Ross Basin (the Marambio Group), showing a monotonous accumulation for more than 8 Myr during the upper Campanian and a dramatic increase during the early Maastrichtian, controlled by tectonic and/or eustatic causes.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12334
2019-01-20
2020-05-30
Loading full text...

Full text loading...

References

  1. Barreda, V. D., Palamarczuk, S., & Medina, F. A. (1999). Palinología de la Formación Hidden Lake (Coniaciano‐Santoniano), isla James Ross, Antártida. Revista Española De Micropaleontología, 31, 53–72.
    [Google Scholar]
  2. Behrendt, J. C. (1983). Petroleum and mineral resources of Antarctica. U.S. Geological Survey Circular, 909, 75 pp.
    [Google Scholar]
  3. Crame, J. A., Lomas, S. A., Pirrie, D., & Luther, A. (1996). Late Cretaceous extinction patterns in Antarctica. Journal of the Geological Society, 153, 503–506. https://doi.org/10.1144/gsjgs.153.4.0503
    [Google Scholar]
  4. Crame, J. A., McArthur, J. M. M., Pirrie, D., & Riding, J. B. (1999). Strontium isotope correlation of the basal Maastrichtian Stage in Antarctica to the European and US biostratigraphic schemes. Journal of the Geological Society, 156, 957–964. https://doi.org/10.1144/gsjgs.156.5.0957
    [Google Scholar]
  5. Crame, J. A., Pirrie, D., Riding, J. B., & Thomson, M. R. A. (1991). Campanian‐Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. Journal of the Geological Society, 148, 1125–1140. https://doi.org/10.1144/gsjgs.148.6.1125
    [Google Scholar]
  6. Day, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: Grain‐size and compositional dependence. Physics of the Earth and Planetary Interiors, 13, 260–267. https://doi.org/10.1016/0031-9201(77)90108-X
    [Google Scholar]
  7. del Valle, R. A., Elliot, D. H., & Macdonald, D. (1992). Sedimentary basins on the east flank of the Antarctic Peninsula: Proposed nomenclature. Antarctic Science, 4, 477–478. https://doi.org/10.1017/S0954102092000695
    [Google Scholar]
  8. do Monte Guerra, R., Concheyro, A., Lees, J., Fauth, G., de Araujo Carvalho, M., & Cabral Ramos, R. R. (2015). Calcareous nannofossils from the Santa Marta Formation (Upper Cretaceous), northern James Ross Island, Antarctic Peninsula. Cretaceous Research, 56, 550–562. https://doi.org/10.1016/j.cretres.2015.06.009
    [Google Scholar]
  9. Dunlop, D. J. (2002). Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107, 562–583. https://doi.org/10.1029/2001JB000486
    [Google Scholar]
  10. Einsele, G. (1992). Sedimentary Basins. Berlin, Germany: Springer.
    [Google Scholar]
  11. Feldmann, R. M., & Woodbourne, M. O. (1988). Geology and paleontology of Seymour Island, Antarctic Peninsula. The Geological Society of America Memoirs 169.
  12. Francis, J. E., Crame, J. A., & Pirrie, D. (2006). Cretaceous‐Tertiary high‐latitude palaeoenvironments, James Ross Basin, Antarctica: introduction. Geological Society of London, Special Publications, 258, 562–5. https://doi.org/10.1144/GSL.SP.2006.258.01.01
    [Google Scholar]
  13. Gao, L., Zhao, Y., Yang, Z., Liu, J., Liu, X., Zhang, S. H., & Pei, J. (2018). New paleomagnetic and 40Ar/39Ar geochronological results for the South Shetland Islands, West Antarctica, and their tectonic implications. Journal of Geophysical Research: Solid Earth, 123, 4–30. https://doi.org/10.1002/2017JB014677
    [Google Scholar]
  14. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The geologic time scale 2012. Oxford, UK: Elsevier.
    [Google Scholar]
  15. Hopkinson, J. (1889). Magnetic and other physical properties of iron at a high temperature.
  16. Iglesias, A. (2016). New upper cretaceous (Campanian) flora from James Ross Island, Antarctica. Ameghiniana, 53, 358–374. https://doi.org/10.5710/AMGH.17.02.2016.2930
    [Google Scholar]
  17. Ineson, J. R. (1989). Coarse‐grained submarine fan and slope apron deposits in a Cretaceous back‐arc basin, Antarctica. Sedimentology, 36, 793–819. https://doi.org/10.1111/j.1365-3091.1989.tb01747.x
    [Google Scholar]
  18. Ineson, J. R., Crame, J. A., & Thomson, M. R. A. (1986). Lithostratigraphy of the Cretaceous Strata of West James Ross Island, Antarctica. Cretaceous Research, 7, 141–159. https://doi.org/10.1016/0195-6671(86)90014-5
    [Google Scholar]
  19. Johnson, H. P., Lowrie, W., & Kent, D. V. (1975). Stability of anhysteretic remanent magnetization in fine and coarse magnetite and maghemite particles. Geophysical Journal International, 41, 562–10. https://doi.org/10.1111/j.1365-246X.1975.tb05480.x
    [Google Scholar]
  20. Jones, C. H. (2002). User‐driven Integrated Software Lives: “PaleoMag” Paleomagnetics Analysis on the Macintosh. Computers and Geosciences, 28, 1145–1151. https://doi.org/10.1016/S0098-3004(02)00032-8
    [Google Scholar]
  21. Kirschvink, J. L. (1980). The least‐squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62, 699–718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x
    [Google Scholar]
  22. Koymans, M. R., Langereis, C. G., Pastor‐Galán, D., & van Hinsbergen, D. J. J. (2016). Computers & Geosciences Paleomagnetism.org: An online multi‐platform open source environment for paleomagnetic data analysis. Computers and Geosciences, 93, 127–137. https://doi.org/10.1016/j.cageo.2016.05.007
    [Google Scholar]
  23. Lirio, J. M., Marenssi, S. A., Santillana, S., & Marshall, P. (1989). El Grupo Marambio en el Sudeste de la isla James Ross, Antártida. Contribución del Instituto Antártico Argentino.
  24. Lowrie, W., & Fuller, M. (1971). On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite. Journal of Geophysical Research, 76, 6339–6349. https://doi.org/10.1029/JB076i026p06339
    [Google Scholar]
  25. Macdonald, D. I. M., Barker, P. F., Garrett, S. W., Ineson, J. R., Pirrie, D., Storey, B. C., … Marshall, J. E. A. (1988). A preliminary assessment of the hydrocarbon potential of the Larsen Basin, Antarctica. Marine and Petroleum Geology, 5, 34–53. https://doi.org/10.1016/0264-8172(88)90038-4
    [Google Scholar]
  26. Macellari, C. E. (1988). Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf‐deltaic sediments of Seymour Island. Geological Society of America Memoirs, 16, 25–54. https://doi.org/10.1130/MEM169-p25
    [Google Scholar]
  27. Marenssi, S. A., Lirio, J. M., Santillana, S., Martinioni, D. R., & Palamarczuk, S. (1992). El Cretácico Superior del sudeste de la isla James Ross, Antártida. In C. A.Rinaldi (Ed.), Geología de La Isla James Ross (pp. 77–85). Buenos Aires: Instituto Antártico Argentino.
    [Google Scholar]
  28. Martinioni, D. R. (1992). La Formación Rabot (Cretácico superior, Isla James Ross, Antártida): Un ciclo transgresivo‐regresivo de plataforma con dominio de procesos de tormenta. In C. A.Rinaldi (Ed.), Geología de La Isla James Ross, Antártida (pp. 101–123). Buenos Aires, Argentina: Instituto Antártico Argentino.
    [Google Scholar]
  29. Matsumoto, T. (1984). Some ammonites from the Campanian (Upper Cretaceous) of northern Hokkaido. Paleontological Society of Japan, Special Paper, 27, 562–93.
    [Google Scholar]
  30. McArthur, J. M., Crame, J. A., & Thirlwall, M. F. (2000). Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy. The Journal of Geology, 108, 623–640. https://doi.org/10.1086/317952
    [Google Scholar]
  31. McFadden, P. L. L., & McElhinny, M. W. (1988). The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth and Planetary Science Letters, 87, 161–172. https://doi.org/10.1016/0012-821X(88)90072-6
    [Google Scholar]
  32. Milanese, F. N. (2018). Magnetoestratigrafía del Cretácico Superior de la Magnetoestratigrafía del Cretácico Superior de la cuenca James Ross, Antártida. Universidad de Buenos Aires.
  33. Milanese, F. N., Olivero, E. B., Kirschvink, J. L., & Rapalini, A. E. (2017). Magnetostratigraphy of the Rabot formation, upper cretaceous, James Ross Basin, Antarctic Peninsula. Cretaceous Research, 72, 172–187. https://doi.org/10.1016/j.cretres.2016.12.016
    [Google Scholar]
  34. Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J., & Savin, S. M. (1999). Does ice drive early Maastrichtian eustasy?Geology, 27, 783–786.
    [Google Scholar]
  35. Ogg, J. G., Ogg, G. M., & Gradstein, F. M. (2016). A concise geologic time scale: 2016. Amsterdam: Elsevier B.V..
    [Google Scholar]
  36. Olivero, E. B. (1984). Nuevos amonites campanianos de la Isla James Ross, Antártida. Ameghiniana, 21, 53–84.
    [Google Scholar]
  37. Olivero, E. B. (1988). Early Campanian heteromorph ammonites from James Ross Island, Antarctica. National Geographic Research, 4, 259–271.
    [Google Scholar]
  38. Olivero, E. B. (1992). Asociaciones de Amonites de la Formación Santa Marta (Cretácico Tardío), Isla James Ross, Antártida. In C. A.Rinaldi (Ed.), Geología de La Isla James Ross (pp. 45–75). Buenos Aires, Argentina: Instituto Antártico Argentino.
    [Google Scholar]
  39. Olivero, E. B. (2012a). Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretaceous Research, 34, 348–366. https://doi.org/10.1016/j.cretres.2011.11.015
    [Google Scholar]
  40. Olivero, E. B. (2012b). New Campanian kossmaticeratid ammonites from the James Ross Basin, Antarctica, and their possible relationships with Jimboiceras? Antarcticum Riccardi. Revue De Paleobiologie, 31, 133–149.
    [Google Scholar]
  41. Olivero, E. B., López Cabrera, M. I., & Torres Carbonell, P. J. (2010). Graphoglyptids from shallow marine, high‐energy, organic‐rich, and bioturbated turbidites, Fuegian Andes, Argentina. Acta Geologica Polonica, 60, 77–91.
    [Google Scholar]
  42. Olivero, E. B., & Medina, F. A. (2000). Patterns of Late Cretaceous ammonite biogeography in southern high latitudes: The family Kossmaticeratidae in Antarctica. Cretaceous Research, 21, 269–279. https://doi.org/10.1006/cres.1999.0192
    [Google Scholar]
  43. Olivero, E. B., Ponce, J. J., & Martinioni, D. R. (2008). Sedimentology and architecture of sharp‐based tidal sandstones in the upper Marambio Group, Maastrichtian of Antarctica. Sedimentary Geology, 210, 11–26. https://doi.org/10.1016/j.sedgeo.2008.07.003
    [Google Scholar]
  44. Olivero, E. B., Scasso, R. A., & Rinaldi, C. A. (1986). Revision of the Marambio Group, James Ross Island, Antarctica. Contribution del Instituto Antártico Argentino, 331, 27 pp.
  45. Pan, Y., Zhu, R., Banerjee, S. K., Gill, J., & Williams, Q. (2000). Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation. Journal of Geophysical Research, 105, 783–794.
    [Google Scholar]
  46. Pirrie, D., Crame, J. A., Riding, J. B., & Lomas, S. A. (1997). Late Cretaceous stratigraphy of the Admiralty Sound region, James Ross Basin, Antarctica. Cretaceous Research, 18, 109–137. https://doi.org/10.1016/0195-6671(91)90036-C
    [Google Scholar]
  47. Posamentier, H. W., Allen, G. P., James, D. P., & Tesson, M. (1992). Forced regressions in a sequence stratigraphic framework: Concepts, examples, and exploration significance. American Association of Petroleum Geologists Bulletin, 73, 1678–1709.
    [Google Scholar]
  48. Raffi, M. E., & Olivero, E. B. (2016). The ammonite genus Gaudryceras from the Santonian‐Campanian of Antarctica: Systematics and biostratigraphy. Ameghiniana, 53, 375–396. https://doi.org/10.5710/AMGH.29.02.2016.2972
    [Google Scholar]
  49. Reguero, M., Goin, F. J., Hospitaleche, C. A., Marenssi, S. A., & Dutra, T. (2013). Late cretaceous/paleogene west Antarctica terrestrial biota and its intercontinental affinities. In Springer Briefs in earth system sciences (pp. 19–25). Dordrecht: Springer.
    [Google Scholar]
  50. Riding, J. B., & Crame, J. A. (2002). Aptian to Coniacian (Early‐Late Cretaceous) palynostratigraphy of the Gustav Group, James Ross Basin, Antarctica. Cretaceous Research, 23, 739–760. https://doi.org/10.1006/cres.2002.1024
    [Google Scholar]
  51. Riding, J. B., Crame, J. A., Dettmann, M. E., & Cantrill, D. J. (1998). The age of the base of the Gustav Group in the James Ross Basin, Antarctica. Cretaceous Research, 19, 87–105. https://doi.org/10.1006/cres.1998.0098
    [Google Scholar]
  52. Scasso, R. A., Olivero, E. B., & Buatois, L. A. (1991). Lithofacies, biofacies, and ichnoassemblage evolution of a shallow submarine volcaniclastic fan‐shelf depositional system (Upper Cretaceous, James Ross Island, Antarctica). Journal of South American Earth Sciences, 4, 239–260. https://doi.org/10.1016/0895-9811(91)90034-I
    [Google Scholar]
  53. Tobin, T. S., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., … Kirschvink, J. L. (2012). Extinction patterns, δ 18 O trends, and magnetostratigraphy from a southern high‐latitude Cretaceous‐Paleogene section: Links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 180–188. https://doi.org/10.1016/j.palaeo.2012.06.029
    [Google Scholar]
  54. Vandamme, D. (1994). A new method to determine paleosecular variation. Physics of the Earth and Planetary Interiors, 85, 131–142. https://doi.org/10.1016/0031-9201(94)90012-4
    [Google Scholar]
  55. Whitham, A. G., Ineson, J. R., & Pirrie, D. (2006). Marine volcaniclastics of the Hidden Lake Formation (Coniacian) of James Ross Island, Antarctica: An enigmatic element in the history of a back‐arc basin. Geological Society of London, Special Publications, 258, 21–47. https://doi.org/10.1144/GSL.SP.2006.258.01.03
    [Google Scholar]
  56. Witts, J. D., Bowman, V. C., Wignall, P. B., Crame, J. A., Francis, J. E., & Newton, R. J. (2015). Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods from the López de Bertodano Formation, Seymour Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 418, 193–212. https://doi.org/10.1016/j.palaeo.2014.11.002
    [Google Scholar]
  57. Witts, J. D., Whittle, R. J., Wignall, P. B., Crame, J. A., Francis, J. E., Newton, R. J., & Bowman, V. C. (2016). Macrofossil evidence for a rapid and severe Cretaceous‐Paleogene mass extinction in Antarctica. Nature Communications, 7, 562–9. https://doi.org/10.1038/ncomms11738
    [Google Scholar]
  58. Wright, N. A., & Williams, P. L. (1974). Mineral resources of Antarctica. Geological Survey Circular, 705, 562–36.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12334
Loading
/content/journals/10.1111/bre.12334
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Antarctic Peninsula , Marambio group , palaeomagnetism and upper cretaceous
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error