1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried ( 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12337
2019-02-15
2020-07-07
Loading full text...

Full text loading...

References

  1. Alsop, G., & Holdsworth, R. (2007). Flow perturbation folding in shear zones. Geological Society, London, Special Publications, 272, 75–101. https://doi.org/10.1144/GSL.SP.2007.272.01.06
    [Google Scholar]
  2. Alsop, G., & Marco, S. (2011). Soft‐sediment deformation within seismogenic slumps of the Dead Sea Basin. Journal of Structural Geology, 33, 433–457. https://doi.org/10.1016/j.jsg.2011.02.003
    [Google Scholar]
  3. Alsop, G. I., & Marco, S. (2014). Fold and fabric relationships in temporally and spatially evolving slump systems: A multi‐cell flow model. Journal of Structural Geology, 63, 27–49. https://doi.org/10.1016/j.jsg.2014.02.007
    [Google Scholar]
  4. Alsop, G. I., Weinberger, R., & Marco, S. (2018). Distinguishing thrust sequences in gravity‐driven fold and thrust belts. Journal of Structural Geology, 109, 99–119. https://doi.org/10.1016/j.jsg.2018.01.005
    [Google Scholar]
  5. Alves, T. M. (2015). Submarine slide blocks and associated soft‐sediment deformation in deep‐water basins: A review. Marine and Petroleum Geology, 67, 262–285.
    [Google Scholar]
  6. Alves, T. M., & Lourenço, S. D. (2010). Geomorphologic features related to gravitational collapse: Submarine landsliding to lateral spreading on a late Miocene‐Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology, 123, 13–33. https://doi.org/10.1016/j.geomorph.2010.04.030
    [Google Scholar]
  7. Armandita, C., Morley, C. K., & Rowell, P. (2015). Origin, structural geometry, and development of a giant coherent slide: The South Makassar Strait mass transport complex. Geosphere, 11, 376–403. https://doi.org/10.1130/GES01077.1
    [Google Scholar]
  8. Armitage, D. A., & Stright, L. (2010). Modeling and interpreting the seismic‐reflection expression of sandstone in an ancient mass‐transport deposit dominated deep‐water slope environment. Marine and Petroleum Geology, 27, 600–12.
    [Google Scholar]
  9. Bond, C., Gibbs, A., Shipton, Z., & Jones, S. (2007). What do you think this is? “Conceptual uncertainty” in geoscience interpretation. GSA Today, 17, 4.
    [Google Scholar]
  10. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151.
    [Google Scholar]
  11. Burberry, C. M. (2015). Spatial and temporal variation in penetrative strain during compression: Insights from analog models. Lithosphere, 7, 611–624. https://doi.org/10.1130/L454.1
    [Google Scholar]
  12. Butler, R. W., Eggenhuisen, J. T., Haughton, P., & McCaffrey, W. D. (2016). Interpreting syndepositional sediment remobilization and deformation beneath submarine gravity flows; a kinematic boundary layer approach. Journal of the Geological Society, 173, 46–58.
    [Google Scholar]
  13. Butler, R., & Paton, D. (2010). Evaluating lateral compaction in deepwater fold and thrust belts: How much are we missing from “nature’s sandbox”. GSA Today, 20, 4–10. https://doi.org/10.1130/GSATG77A.1
    [Google Scholar]
  14. Chopra, S., & Marfurt, K. J. (2008). Gleaning meaningful information from seismic attributes. First Break, 26, 43–53.
    [Google Scholar]
  15. Clare, M. A., Vardy, M. E., Cartigny, M. J., Talling, P. J., Himsworth, M. D., Dix, J. K., … Belal, M. (2017). Direct monitoring of active geohazards: Emerging geophysical tools for deep‐water assessments. Near Surface Geophysics, 15, 427–444.
    [Google Scholar]
  16. Conti, B., de Jesus Perinotto, J. A., Veroslavsky, G., Castillo, M. G., de Santa Ana, H., Soto, M., & Morales, E. (2017). Speculative petroleum systems of the southern Pelotas Basin, offshore Uruguay. Marine and Petroleum Geology, 83, 600–25.
    [Google Scholar]
  17. Craddock, J. P., & van der Pluijm, B. A. (1989). Late Paleozoic deformation of the cratonic carbonate cover of eastern North America. Geology, 17, 416–419.
    [Google Scholar]
  18. Dahlstrom, C. (1969). Balanced cross sections. Canadian Journal of Earth Sciences, 6, 743–757.
    [Google Scholar]
  19. Dalton, T., Paton, D., Oldfield, S., Needham, D., & Wood, A. (2017). The importance of missing strain in Deep Water Fold and Thrust Belts. Marine and Petroleum Geology, 82, 163–177.
    [Google Scholar]
  20. Debacker, T. N., Dumon, M., & Matthys, A. (2009). Interpreting fold and fault geometries from within the lateral to oblique parts of slumps: A case study from the Anglo‐Brabant Deformation Belt (Belgium). Journal of Structural Geology, 31, 1525–1539.
    [Google Scholar]
  21. Dott, R. (1963). Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47, 104–128.
    [Google Scholar]
  22. Farrell, S. (1984). A dislocation model applied to slump structures, Ainsa Basin, South Central Pyrenees. Journal of Structural Geology, 6, 727–736.
    [Google Scholar]
  23. Fleming, R. W., & Johnson, A. M. (1989). Structures associated with strike‐slip faults that bound landslide elements. Engineering Geology, 27, 39–114.
    [Google Scholar]
  24. Fossen, H. (2016). Structural geology. Cambridge: Cambridge University Press.
    [Google Scholar]
  25. Franke, D., Neben, S., Ladage, S., Schreckenberger, B., & Hinz, K. (2007). Margin segmentation and volcano‐tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology, 244, 46–67.
    [Google Scholar]
  26. Frey‐Martínez, J., Cartwright, J., & James, D. (2006). Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Marine and Petroleum Geology, 23, 585–604.
    [Google Scholar]
  27. Gamboa, D., & Alves, T. M. (2015). Three‐dimensional fault meshes and multi‐layer shear in mass‐transport blocks: Implications for fluid flow on continental margins. Tectonophysics, 647, 21–32. https://doi.org/10.1016/j.tecto.2015.02.007
    [Google Scholar]
  28. Gamboa, D., & Alves, T. M. (2016). Bi‐modal deformation styles in confined mass‐transport deposits: Examples from a salt minibasin in SE Brazil. Marine Geology, 379, 176–193. https://doi.org/10.1016/j.margeo.2016.06.003
    [Google Scholar]
  29. Gauthier, B., & Lake, S. (1993). Probabilistic modeling of faults below the limit of seismic resolution in Pelican Field, North Sea, offshore United Kingdom. AAPG Bulletin, 77, 761–777.
    [Google Scholar]
  30. Gee, M., Gawthorpe, R., & Friedmann, J. (2005). Giant striations at the base of a submarine landslide. Marine Geology, 214, 287–294.
    [Google Scholar]
  31. Gee, M., Gawthorpe, R., & Friedmann, S. (2006). Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 76, 9–19.
    [Google Scholar]
  32. Groshong, R. H., Withjack, M. O., Schlische, R. W., & Hidayah, T. N. (2012). Bed length does not remain constant during deformation: Recognition and why it matters. Journal of Structural Geology, 41, 86–97.
    [Google Scholar]
  33. Heifetz, E., Agnon, A., & Marco, S. (2005). Soft sediment deformation by Kelvin Helmholtz Instability: A case from Dead Sea earthquakes. Earth and Planetary Science Letters, 236, 497–504.
    [Google Scholar]
  34. Henry, P., Jouniaux, L., Screaton, E. J., Hunze, S., & Saffer, D. M. (2003). Anisotropy of electrical conductivity record of initial strain at the toe of the Nankai accretionary wedge. Journal of Geophysical Research: Solid Earth, 108, 2407.
    [Google Scholar]
  35. Hodgson, D. M., Brooks, H. L., Ortiz-Karpf, A., Spychala, Y., Lee, D. R., & Jackson, C. L. (2018). Entrainment and abrasion of megaclasts during submarine landsliding and their impact on flow behaviour. Geological Society, London, Special Publications, 477, SP477-26.
    [Google Scholar]
  36. Hossack, J. R. (1979). The use of balanced cross‐sections in the calculation of orogenic contraction: A review. Journal of the Geological Society, 136, 705–711.
    [Google Scholar]
  37. Hudec, M. R., & Jackson, M. P. (2004). Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 88, 971–990. https://doi.org/10.1306/02050403061
    [Google Scholar]
  38. Jackson, C. A. (2011). Three‐dimensional seismic analysis of megaclast deformation within a mass transport deposit; implications for debris flow kinematics. Geology, 39, 203–206.
    [Google Scholar]
  39. Judge, P. A., & Allmendinger, R. W. (2011). Assessing uncertainties in balanced cross sections. Journal of Structural Geology, 33, 458–467.
    [Google Scholar]
  40. Kautz, S. A., & Sclater, J. G. (1988). Internal deformation in clay models of extension by block faulting. Tectonics, 7, 823–832.
    [Google Scholar]
  41. Knott, S. D., Beach, A., Brockbank, P. J., Brown, J. L., McCallum, J. E., & Welbon, A. I. (1996). Spatial and mechanical controls on normal fault populations. Journal of Structural Geology, 18, 359–372.
    [Google Scholar]
  42. Koyi, H. (1995). Mode of internal deformation in sand wedges. Journal of Structural Geology, 17, 293297–295300.
    [Google Scholar]
  43. Koyi, H. A., Sans, M., Teixell, A., Cotton, J., & Zeyen, H. (2004). The significance of penetrative strain in the restoration of shortened layers—Insights from sand models and the Spanish Pyrenees.
  44. Krastel, S., Wefer, G., Hanebuth, T. J., Antobreh, A. A., Freudenthal, T., Preu, B., … Winkelmann, D. (2011). Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo‐Marine Letters, 31, 271–283.
    [Google Scholar]
  45. Lamarche, G., Joanne, C., & Collot, J. Y. (2008). Successive, large mass‐transport deposits in the south Kermadec fore‐arc basin, New Zealand: The Matakaoa Submarine Instability Complex. Geochemistry, Geophysics, Geosystems, 9.
    [Google Scholar]
  46. Lewis, K. (1971). Slumping on a continental slope inclined at 1–4. Sedimentology, 16, 97–110.
    [Google Scholar]
  47. Lingrey, S., & Vidal‐Royo, O. (2015). Evaluating the quality of bed length and area balance in 2D structural restorations. Interpretation, 3, SAA133–SAA160.
    [Google Scholar]
  48. Marrett, R., & Allmendinger, R. W. (1992). Amount of extension on" small" faults: An example from the Viking graben. Geology, 20, 47–50.
    [Google Scholar]
  49. Martinsen, O. (1994). Mass movements. In A.Maltman (Ed.), The geological deformation of sediments (pp. 127–165). Dordrecht, The Netherlands: Springer.
    [Google Scholar]
  50. Martinsen, O. J., & Bakken, B. (1990). Extensional and compressional zones in slumps and slides in the Namurian of County Clare, Ireland. Journal of the Geological Society, 147, 153–164.
    [Google Scholar]
  51. Masson, D., Huggett, Q., & Brunsden, D. (1993). The surface texture of the Saharan debris flow deposit and some speculations on submarine debris flow processes. Sedimentology, 40, 583–598.
    [Google Scholar]
  52. Meckel, L. (2011). Reservoir characteristics and classification of sand‐prone submarine mass‐transport deposits. SEPM Special Publication, 96, 432–452.
    [Google Scholar]
  53. Merle, O. (1989). Strain models within spreading nappes. Tectonophysics, 165, 57–71.
    [Google Scholar]
  54. Moore, Z. T., & Sawyer, D. E. (2016). Assessing post‐failure mobility of submarine landslides from seismic geomorphology and physical properties of mass transport deposits: An example from seaward of the Kumano Basin, Nankai Trough, offshore Japan. Marine Geology, 374, 73–84. https://doi.org/10.1016/j.margeo.2016.02.003
    [Google Scholar]
  55. Morales, E., Chang, H. K., Soto, M., Corrêa, F. S., Veroslavsky, G., de Santa Ana, H., … Daners, G. (2017). Tectonic and stratigraphic evolution of the Punta del Este and Pelotas basins (offshore Uruguay). Petroleum Geoscience, 23(4), 415. https://doi.org/10.1144/petgeo2016-059
    [Google Scholar]
  56. Morita, S., Nakajima, T., & Hanamura, Y. (2011). Submarine slump sediments and related dewatering structures: Observations of 3D seismic data obtained for the continental slope off Shimokita Peninsula, NE Japan. Journal of the Geological Society of Japan, 117, 95–98.
    [Google Scholar]
  57. Moscardelli, L., & Wood, L. (2015). Morphometry of mass‐transport deposits as a predictive tool. Geological Society of America Bulletin, 128(1–2), 47–80. https://doi.org/10.1130/B31221.1
    [Google Scholar]
  58. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90, 1059–1088.
    [Google Scholar]
  59. Nardin, T. R. (1979). A review of mass movement processes sediment and acoustic characteristics, and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin floor systems.
  60. Nemec, W. (1990). Aspects of sediment movement on steep delta slopes. Coarse‐Grained Deltas, 10, 29–73.
    [Google Scholar]
  61. Nürnberg, D., & Müller, R. D. (1991). The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 191, 27–53.
    [Google Scholar]
  62. Ogata, K., Mountjoy, J., Pini, G. A., Festa, A., & Tinterri, R. (2014). Shear zone liquefaction in mass transport deposit emplacement: A multi‐scale integration of seismic reflection and outcrop data. Marine Geology, 356, 50–64. https://doi.org/10.1016/j.margeo.2014.05.001
    [Google Scholar]
  63. Ortiz‐Karpf, A., Hodgson, D. M., Jackson, C. A. L., & McCaffrey, W. D. (2018). Mass‐transport complexes as markers of deep‐water fold‐and‐thrust belt evolution: Insights from the southern Magdalena fan, offshore Colombia. Basin Research, 30, 65–88.
    [Google Scholar]
  64. Partyka, G., Gridley, J., & Lopez, J. (1999). Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge, 18, 353–360.
    [Google Scholar]
  65. Pickering, K. T., & Corregidor, J. (2005). Mass‐transport complexes (MTCs) and tectonic control on basin‐floor submarine fans, middle Eocene, south Spanish Pyrenees. Journal of Sedimentary Research, 75, 761–783.
    [Google Scholar]
  66. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388.
    [Google Scholar]
  67. Posamentier, H. W., & Martinsen, O. J. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. Mass‐transport Deposits in Deepwater Settings: Society for Sedimentary Geology (SEPM) Special Publication, 96, 7–38.
    [Google Scholar]
  68. Prior, D. B., Bornhold, B. D., & Johns, M. (1984). Depositional characteristics of a submarine debris flow. The Journal of Geology, 92, 707–727.
    [Google Scholar]
  69. Rabinowitz, P. D., & LaBrecque, J. (1979). The Mesozoic South Atlantic Ocean and evolution of its continental margins. Journal of Geophysical Research: Solid Earth, 84, 5973–6002.
    [Google Scholar]
  70. Randen, T. (1998). Automated Stratigraphic and Fault Interpretation. PCT Patent Application No PCT/IB99/01040.
  71. Randen, T., Pedersen, S. I., & Sønneland, L. (2001). Automatic extraction of fault surfaces from three‐dimensional seismic data SEG Technical Program Expanded Abstracts 2001 (pp. 551–554). Society of Exploration Geophysicists.
  72. Randen, T., & Sønneland, L. (2005). Atlas of 3D seismic attributes. In A.Iske, & T.Randen (Eds.), Mathematical methods and modelling in hydrocarbon exploration and production (pp. 23–46). Berlin, Heidelberg: Springer Berlin Heidelberg.
    [Google Scholar]
  73. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold belts on passive margins.
  74. Schlische, R. W., Groshong, R. H., Withjack, M. O., & Hidayah, T. N. (2014). Quantifying the geometry, displacements, and subresolution deformation in thrust‐ramp anticlines with growth and erosion: From models to seismic‐reflection profile. Journal of Structural Geology, 69, 304–319.
    [Google Scholar]
  75. Schnellmann, M., Anselmetti, F. S., Giardini, D., & McKenzie, J. A. (2005). Mass movement‐induced fold‐and‐thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology, 52, 271–289.
    [Google Scholar]
  76. Sclater, J. G., & Christie, P. A. (1980). Continental stretching: An explanation of the post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739.
    [Google Scholar]
  77. Sharman, G. R., Graham, S. A., Masalimova, L. U., Shumaker, L. E., & King, P. R. (2015). Spatial patterns of deformation and paleoslope estimation within the marginal and central portions of a basin‐floor mass‐transport deposit, Taranaki Basin, New Zealand. Geosphere, 11, 266–306. https://doi.org/10.1130/GES01126.1
    [Google Scholar]
  78. Sharman, G. R., Schwartz, T. M., Shumaker, L. E., Trigg, C. R., Nieminski, N. M., Sickmann, Z. T., … Graham, S. A. (2017). Submarine mass failure within the deltaic Domengine Formation (Eocene), California (USA). Geosphere, 13, 950–973. https://doi.org/10.1130/GES01442.1
    [Google Scholar]
  79. Sobiesiak, M. S., Alsop, G. I., Kneller, B., & Milana, J. P. (2017). Sub‐seismic scale folding and thrusting within an exposed mass transport deposit: A case study from NW Argentina. Journal of Structural Geology, 96, 176–191.
    [Google Scholar]
  80. Soto, M., Morales, E., Veroslavsky, G., de Santa Ana, H., Ucha, N., & Rodríguez, P. (2011). The continental margin of Uruguay: Crustal architecture and segmentation. Marine and Petroleum Geology, 28, 1676–1689.
    [Google Scholar]
  81. Strachan, L., & Alsop, G. I. (2006). Slump folds as estimators of palaeoslope: A case study from the Fisherstreet Slump of County Clare, Ireland. Basin Research, 18, 451–470.
    [Google Scholar]
  82. Van Bemmel, P. P., & Pepper, R. E. (2000). Seismic signal processing method and apparatus for generating a cube of variance values. Google Patents.
  83. Van der Merwe, W., Hodgson, D., & Flint, S. (2009). Widespread syn‐sedimentary deformation on a muddy deep‐water basin‐floor: The Vischkuil Formation (Permian), Karoo Basin, South Africa. Basin Research, 21, 389–406. https://doi.org/10.1111/j.1365-2117.2009.00396.x
    [Google Scholar]
  84. Van der Merwe, W. C., Hodgson, D. M., & Flint, S. S. (2011). Origin and terminal architecture of a submarine slide: A case study from the Permian Vischkuil Formation, Karoo Basin, South Africa. Sedimentology, 58, 2012–2038.
    [Google Scholar]
  85. Varnes, D. J. (1978). Slope movement types and processes. Special Report, 176, 11–33.
    [Google Scholar]
  86. Walsh, J., Watterson, J., Childs, C., & Nicol, A. (1996). Ductile strain effects in the analysis of seismic interpretations of normal fault systems. Geological Society, London, Special Publications, 99, 27–40.
    [Google Scholar]
  87. Wang, F., Dai, Z., & Zhang, S. (2018). Experimental study on the motion behavior and mechanism of submarine landslides. Bulletin of Engineering Geology and the Environment, 600–10.
    [Google Scholar]
  88. Watt, S., Talling, P., Vardy, M., Masson, D., Henstock, T., Hühnerbach, V., … Karstens, J. (2012). Widespread and progressive seafloor‐sediment failure following volcanic debris avalanche emplacement: Landslide dynamics and timing offshore Montserrat, Lesser Antilles. Marine Geology, 323, 69–94. https://doi.org/10.1016/j.margeo.2012.08.002
    [Google Scholar]
  89. Weimer, P. (1990). Sequence stratigraphy, facies geometries, and depositional history of the Mississippi Fan, Gulf of Mexico (1). AAPG Bulletin, 74, 425–453.
    [Google Scholar]
  90. Weimer, P., & Shipp, C. (2004). Mass transport complex: musing on past uses and suggestions for future directions. Offshore Technology Conference.
  91. Wetzler, N., Marco, S., & Heifetz, E. (2010). Quantitative analysis of seismogenic shear‐induced turbulence in lake sediments. Geology, 38, 303–306.
    [Google Scholar]
  92. Zeng, H., Henry, S. C., & Riola, J. P. (1998). Stratal slicing, part II: Real 3‐D seismic data. Geophysics, 63, 514–522.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12337
Loading
/content/journals/10.1111/bre.12337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error