1887
Volume 31, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Submarine magmatism and associated hydrothermal fluid flows has significant feedback influence on the petroleum geology of sedimentary basins. This study uses new seismic profiles and multibeam bathymetric data to examine the morphology and internal architecture of post‐seafloor spreading magmatic structures, especially volcanoes of the Xisha uplift, in extensive detail. We discover for the first time hydrothermal systems derived from magmatism in the northwestern South China Sea. Numerous solitary volcanoes and volcanic groups occur in the Xisha uplift and produce distinct seismic reflections together with plutons. Sills and other localized amplitude anomalies were fed by extrusions/intrusions and associated fluid flow through fractures and sedimentary layers that may act as conduits for magma and fluid flows transport. Hydrothermal structures such as pipes and pockmarks mainly occur in the proximity of volcanoes or accompany volcanic groups. Pipes, pockmarks and localized amplitude anomalies mainly constitute the magmatic hydrothermal systems, which are probably driven by post‐seafloor spreading volcanoes/plutons. The hydrothermal fluid flows released by magma degassing or/and related boiling of pore fluids/metamorphic dehydration reactions in sediments produced local overpressures, which drove upward flow of fluid or horizontal flow into the sediments or even seafloor. Results show that post‐seafloor spreading magmatic activity is more intense during a 5.5 Ma event than one in 2.6 Ma, whereas the hydrothermal activities are more active during 2.6 Ma than in 5.5 Ma. Our analysis indicates that post‐seafloor spreading magmatism may have a significant effect on hydrocarbon maturation and gas hydrate formation in the Xisha uplift and adjacent petroliferous basins. Consequently the study presented here improves our understanding of hydrocarbon exploration in the northwestern South China Sea.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12338
2019-02-08
2020-03-29
Loading full text...

Full text loading...

References

  1. Aarnes, I., Svensen, H., Connolly, J. A., & Podladchikov, Y. Y. (2010). How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica (Beijing)Et Cosmochimica Acta, 74(24), 7179–7195. https://doi.org/10.1016/j.gca.2010.09.011
    [Google Scholar]
  2. Allard, P., Burton, M., & Muré, F. (2005). Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. Nature, 433, 407. https://doi.org/10.1038/nature03246
    [Google Scholar]
  3. Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599–611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
    [Google Scholar]
  4. Barckhausen, U., & Roeser, H. A. (2004). Seafloor spreading anomalies in the South China Sea revisited. In P.Clift et al., (Eds.) Continent‐Ocean Interactions within East Asian Marginal Seas. Geophys. Monogr. 149 (pp. 121–125), Washington, DC: American Geophysical Union.
    [Google Scholar]
  5. Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299–6328.
    [Google Scholar]
  6. Burton, M., Allard, P., Muré, F., & La Spina, A. (2007). Magmatic gas composition reveals the source depth of slug‐driven Strombolian explosive activity. Science, 317(5835), 227–230.
    [Google Scholar]
  7. Cant, D. J. (1991). Geometric modelling of facies migration: Theoretical development of facies successions and local unconformities. Basin Research, 3(2), 51–62.
    [Google Scholar]
  8. Cartwright, J., Huuse, M., & Aplin, A. (2007). Seal Bypass Systems. AAPG Bulletin, 91(8), 1141–1166. https://doi.org/10.1306/04090705181
    [Google Scholar]
  9. Chang, J. H., Lee, T. Y., Hsu, H. H., & Liu, C. S. (2015). Comment on Barckhausen et al., 2014–Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 59, 676–678.
    [Google Scholar]
  10. Chen, J., Song, H., Guan, Y., Yang, S., Pinheiro, L. M., Bai, Y., … Geng, M. (2015). Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 122, 106–117. https://doi.org/10.1016/j.dsr2.2015.11.007
    [Google Scholar]
  11. Clift, P., Lee, G. H., Anh Duc, N., Barckhausen, U., Van Long, H., & Zhen, S. (2008). Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea. Tectonics, 27(3), TC3008,10.1029/2007TC002216
    [Google Scholar]
  12. Darros De Matos, R. M. (2000). Tectonic evolution of the equatorial South Atlantic. In W.Wohriak, & M.Taiwani (Eds.), Atlantic Rifts and continental margins. Geophys. Monogr. 115 (pp. 331–354), Washington, DC: American Geophysical Union.
    [Google Scholar]
  13. De Ronde, C. E., Hannington, M. D., Stoffers, P., Wright, I. C., Ditchburn, R. G., Reyes, A. G., … Resing, J. A. (2005). Evolution of a submarine magmatic‐hydrothermal system: Brothers volcano, southern Kermadec arc. New Zealand. Economic Geology, 100(6), 1097–1133. https://doi.org/10.2113/gsecongeo.100.6.1097
    [Google Scholar]
  14. Didyk, B. M., & Simoneit, B. R. (1989). Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature, 342, 65–342. https://doi.org/10.1038/342065a0
    [Google Scholar]
  15. Ding, W., Sun, Z., Dadd, K., Fang, Y., & Li, J. (2018). Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes. Earth and Planetary Science Letters, 488, 115–125. https://doi.org/10.1016/j.epsl.2018.02.011
    [Google Scholar]
  16. Dong, M., Wu, S., Zhang, J., Xu, X., Gao, J., & Song, T. (2018). Lithospheric structure of the Southwest South China Sea: Implications for rifting and extension. International Geology Review, 688–14. https://doi.org/10.1080/00206814.2018.1539926
    [Google Scholar]
  17. Einsele, G. (1982). Mechanism of sill intrusion into soft sediment and expulsion of pore water. Deep Sea Drilling Project, Initial Reports, 64, 1169–1176.
    [Google Scholar]
  18. Fan, C., Xia, S., Zhao, F., Sun, J., Cao, J., Xu, H., & Wan, K. (2017). New insights into the magmatism in the northern margin of the South China Sea: Spatial features and volume of intraplate seamounts. Geochemistry, Geophysics, Geosystems, 18(6), 2216–2239. https://doi.org/10.1002/2016GC006792
    [Google Scholar]
  19. Fjeldskaar, W., Helset, H. M., Johansen, H., Grunnaleite, I., & Horstad, I. (2008). Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: Implications for vitrinite reflectance and hydrocarbon maturation. Basin Research, 20(1), 143–159. https://doi.org/10.1111/j.1365-2117.2007.00347.x
    [Google Scholar]
  20. Franke, D., Barckhausen, U., Baristeas, N., Engles, M., Ladage, S., Lutz, R., … Schnabel, M. (2011). The continent‐ocean transition at the southeastern margin of the South China Sea. Marine and Petroleum Geology, 28(6), 1187–1204. https://doi.org/10.1016/j.marpetgeo.2011.01.004
    [Google Scholar]
  21. Fyhn, M. B., Boldreel, L. O., & Nielsen, L. H. (2009). Geological development of the Central and South Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism. Tectonophysics, 478(3–4), 184–214. https://doi.org/10.1016/j.tecto.2009.08.002
    [Google Scholar]
  22. Gao, J., Peng, X., Wu, S., Lüdmann, T., McIntosh, K., Ma, B., & Xu, Z. (2018). Different expressions of the crustal structure across the Dongsha Rise along the northeastern margin of the South China Sea. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2018.01.034
    [Google Scholar]
  23. Gao, J., Wu, S., McIntosh, K., Mi, L., Liu, Z., & Spence, G. (2016). Crustal structure and extension mode in the northwestern margin of the South China Sea. Geochemistry, Geophysics, Geosystems, 17(6), 2143–2167. https://doi.org/10.1002/2016GC006247
    [Google Scholar]
  24. Gao, J., Wu, S., McIntosh, K., Mi, L., Yao, B., Chen, Z., & Jia, L. (2015). The continent–ocean transition at the mid‐northern margin of the South China Sea. Tectonophysics, 654, 688–19. https://doi.org/10.1016/j.tecto.2015.03.003
    [Google Scholar]
  25. Gay, A., Mourgues, R., Berndt, C., Bureau, D., Planke, S., Laurent, D., … Loggia, D. (2012). Anatomy of a fluid pipe in the Norway Basin: Initiation, propagation and 3D shape. Marine Geology, 332, 75–88. https://doi.org/10.1016/j.margeo.2012.08.010
    [Google Scholar]
  26. Grapes, R. H., Reid, D. L., & McPherson, J. G. (1974). Shallow dolerite intrusion and phreatic eruption in the Allan Hills region, Antarctica. New Zealand Journal of Geology and Geophysics, 17(3), 563–577. https://doi.org/10.1080/00288306.1973.10421581
    [Google Scholar]
  27. Hansen, D. M. (2006). The morphology of intrusion‐related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin. Journal of the Geological Society, 163(5), 789–800. https://doi.org/10.1144/0016-76492004-167
    [Google Scholar]
  28. Hansen, D. M., Redfern, J., Federici, F., Di Biase, D., & Bertozzi, G. (2008). Miocene igneous activity in the Northern Subbasin, offshore Senegal. NW Africa. Marine and Petroleum Geology, 25(1), 688–15. https://doi.org/10.1016/j.marpetgeo.2007.04.007
    [Google Scholar]
  29. Harding, J. L., Van Avendonk, H. J., Hayman, N. W., Grevemeyer, I., Peirce, C., & Dannowski, A. (2017). Magmatic‐tectonic conditions for hydrothermal venting on an ultraslow‐spread oceanic core complex. Geology, 45(9), 839–842. https://doi.org/10.1130/G39045.1
    [Google Scholar]
  30. Haymon, R. M. (1996). The response of ridge‐crest hydrothermal systems to segmented, episodic magma supply. In C. J.Macleod, P. A.Tyler, & C. L.Walker (Eds.), Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid‐Ocean Ridges, Vol. 118 (pp. 157–168). Geological Society of London, Special Publication.
    [Google Scholar]
  31. Hekinian, R., Bideau, D., Stoffers, P., Cheminee, J. L., Muhe, R., Puteanus, D., & Binard, N. (1991). Submarine intraplate volcanism in the South Pacific: Geological setting and petrology of the Society and the Austral regions. Journal of Geophysical Research: Solid Earth, 96(B2), 2109–2138.
    [Google Scholar]
  32. Holloway, N. H. (1982). North Palawan block, Philippines‐Its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9), 1355–1383.
    [Google Scholar]
  33. Huchon, P., Nguyen, T. N. H., & Chamot‐Rooke, N. (2001). Propagation of continental break‐up in the southwestern South China Sea. In R. C. L.Wilson, R. B.Whitmarsh, B.Taylor, & N.Froitzheim (Eds.), Non‐volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea, Vol. 187 (pp. 31–50). Geological Society of London, Special Publication.
    [Google Scholar]
  34. Ingebritsen, S. E., Geiger, S., Hurwitz, S., & Driesner, T. (2010). Numerical simulation of magmatic hydrothermal systems. Reviews of Geophysics, 48(1), RG1002. https://doi.org/10.1029/2009RG000287
    [Google Scholar]
  35. Iyer, K., Rüpke, L., & Galerne, C. Y. (2013). Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and climate change. Geochemistry, Geophysics, Geosystems, 14(12), 5244–5262. https://doi.org/10.1002/2013GC005012
    [Google Scholar]
  36. Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467, 30–42. https://doi.org/10.1016/j.epsl.2017.03.023
    [Google Scholar]
  37. Jamtveit, B., Svensen, H., Podladchikov, Y. Y., & Planke, S. (2004). Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In C.Breitkreuz, & N.Petford (Eds.), Physical Geology of High‐Level Magmatic Systems, Vol. 234 (pp. 233–241). Geological Society of London, Special Publications.
    [Google Scholar]
  38. Judd, A., & Hovland, M. (2009). Seabed fluid flow: The impact on geology, biology and the marine environment. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  39. Ker, S., Marsset, B., Garziglia, S., Le Gonidec, Y., Gibert, D., Voisset, M., & Adamy, J. (2010). High‐resolution seismic imaging in deep sea from a joint deep‐towed/OBH reflection experiment: Application to a Mass Transport Complex offshore Nigeria. Geophysical Journal International, 182(3), 1524–1542. https://doi.org/10.1111/j.1365-246X.2010.04700.x
    [Google Scholar]
  40. Langmuir, C., Humphris, S., Fornari, D., Van Dover, C., Von Damm, K. L. A. M., Tivey, M. K., … Bougault, H. (1997). Hydrothermal vents near a mantle hot spot: The Lucky Strike vent field at 37°N on the Mid‐Atlantic Ridge. Earth and Planetary Science Letters, 148(1–2), 69–91. https://doi.org/10.1016/S0012-821X(97)00027-7
    [Google Scholar]
  41. Larsen, H. C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., … Briais, A. (2018). Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10), 782. https://doi.org/10.1038/s41561-018-0198-1
    [Google Scholar]
  42. Lei, C., Ren, J., Clift, P. D., Wang, Z., Li, X., & Tong, C. (2011). The structure and formation of diapirs in the Yinggehai‐Song Hong Basin, South China Sea. Marine and Petroleum Geology, 28(5), 980–991. https://doi.org/10.1016/j.marpetgeo.2011.01.001
    [Google Scholar]
  43. Leloup, P. H., Arnaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M., Trong, T. T. P., … Tapponnier, P. (2001). New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. Journal of Geophysical Research: Solid Earth, 106(B4), 6683–6732. https://doi.org/10.1029/2000JB900322
    [Google Scholar]
  44. Lester, R., Van Avendonk, H. J., McIntosh, K., Lavier, L., Liu, C. S., Wang, T. K., & Wu, F. (2014). Rifting and magmatism in the northeastern South China Sea from wide‐angle tomography and seismic reflection imaging. Journal of Geophysical Research: Solid Earth, 119(3), 2305–2323. https://doi.org/10.1002/2013JB010639
    [Google Scholar]
  45. Li, C.‐F., Li, J., Ding, W., Franke, D., Yao, Y., Shi, H., … Zhao, X. (2015). Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 120(3), 1377–1399. https://doi.org/10.1002/2014JB011686
    [Google Scholar]
  46. Li, C.‐F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., … Zhang, G.‐L. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12), 4958–4983. https://doi.org/10.1002/2014GC005567
    [Google Scholar]
  47. Li, C. F., Zhou, Z., Li, J., Hao, H., & Geng, J. (2007). Structures of the northeasternmost South China Sea continental margin and ocean basin: Geophysical constraints and tectonic implications. Marine Geophysical Researches, 28(1), 59–79. https://doi.org/10.1007/s11001-007-9014-9
    [Google Scholar]
  48. Lowell, R. P. (1991). Modeling continental and submarine hydrothermal systems. Reviews of Geophysics, 29(3), 457–476. https://doi.org/10.1029/91RG01080
    [Google Scholar]
  49. Lowell, R. P., & Germanovich, L. N. (1994). On the temporal evolution of high‐temperature hydrothermal systems at ocean ridge crests. Journal of Geophysical Research: Solid Earth, 99(B1), 565–575. https://doi.org/10.1029/93JB02568
    [Google Scholar]
  50. Lüdmann, T., & Wong, H. K. (1999). Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 311(1–4), 113–138. https://doi.org/10.1016/S0040-1951(99)00155-9
    [Google Scholar]
  51. Ma, B., Wu, S., Betzler, C., Qin, Z., Mi, L., Gao, W., … Dong, D. (2018). Geometry, internal architecture, and evolution of buried volcanic mounds in the northern South China Sea. Marine and Petroleum Geology, 97, 540–555. https://doi.org/10.1016/j.marpetgeo.2018.07.029
    [Google Scholar]
  52. Magee, C., Jackson, C. A. L., Hardman, J. P., & Reeve, M. T. (2017b). Decoding sill emplacement and forced fold growth in the Exmouth Sub‐basin, offshore northwest Australia: Implications for hydrocarbon exploration. Interpretation, 5(3), SK11‐SK22.
    [Google Scholar]
  53. Magee, C., Jackson, C. A. L., & Schofield, N. (2013). The influence of normal fault geometry on igneous sill emplacement and morphology. Geology, 41(4), 407–410. https://doi.org/10.1130/G33824.1
    [Google Scholar]
  54. Magee, C., Bastow, I. D., van Wykde Vries, B., Jackson, C. A. L., Hetherington, R., … Hoggett, M. (2017a). Structure and dynamics of surface uplift induced by incremental sill emplacement. Geology, 45(5), 431–434.
    [Google Scholar]
  55. Magee, C., Muirhead, J., Schofield, N., Walker, R. J., Galland, O., Holford, S., … McCarthy, W. (2018). Structural signatures of igneous sheet intrusion propagation. Journal of Structural Geology. https://doi.org/10.1016/j.jsg.2018.07.010
    [Google Scholar]
  56. Medialdea, T., Somoza, L., González, F. J., Vázquez, J. T., de Ignacio, C., Sumino, H., … Palomino, D. (2017). Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central A tlantic O cean). Geochemistry, Geophysics, Geosystems, 18(8), 3138–3164. https://doi.org/10.1002/2017GC006889
    [Google Scholar]
  57. Morley, C. K. (2002). A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia. Tectonophysics, 347(4), 189–215. https://doi.org/10.1016/S0040-1951(02)00061-6
    [Google Scholar]
  58. Morley, C. K. (2016). Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62–86. https://doi.org/10.1016/j.jseaes.2016.01.013
    [Google Scholar]
  59. Moss, J. L., & Cartwright, J. (2010). 3D seismic expression of km‐scale fluid escape pipes from offshore Namibia. Basin Research, 22(4), 481–501. https://doi.org/10.1111/j.1365-2117.2010.00461.x
    [Google Scholar]
  60. Petersen, S., Krätschell, A., Augustin, N., Jamieson, J., Hein, J. R., & Hannington, M. D. (2016). News from the seabed–Geological characteristics and resource potential of deep‐sea mineral resources. Marine Policy, 70, 175–187. https://doi.org/10.1016/j.marpol.2016.03.012
    [Google Scholar]
  61. Piété, H., Marié, L., Marsset, B., Thomas, Y., & Gutscher, M. A. (2013). Seismic reflection imaging of shallow oceanographic structures. Journal of Geophysical Research: Oceans, 118(5), 2329–2344. https://doi.org/10.1002/jgrc.20156
    [Google Scholar]
  62. Pirajno, F., & Van Kranendonk, M. J. (2005). Review of hydrothermal processes and systems on Earth and implications for Martian analogues. Australian Journal of Earth Sciences, 52(3), 329–351. https://doi.org/10.1080/08120090500134571
    [Google Scholar]
  63. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In A. G.Doré, & B. A.Vining (Eds.), Petroleum Geology: North‐West Europe and Global Perspectives‐Proceedings of the 6th Petroleum Geology Conference, vol. 6. Geological Society of London, Petroleum Geology Conference series, pp. 833–844.
    [Google Scholar]
  64. Planke, S., Symonds, P. A., Alvestad, E., & Skogseid, J. (2000). Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research: Solid Earth, 105(B8), 19335–19351. https://doi.org/10.1029/1999JB900005
    [Google Scholar]
  65. Qiu, X., Ye, S., Wu, S., Shi, X., Zhou, D., Xia, K., & Flueh, E. R. (2001). Crustal structure across the Xisha trough, northwestern South China Sea. Tectonophysics, 341(1–4), 179–193. https://doi.org/10.1016/S0040-1951(01)00222-0
    [Google Scholar]
  66. Rangin, C., Klein, M., Roques, D., & Le Pichón, X. (1995). The Red river fault system in the Tonkin Gulf. Vietnam. Tectonophysics, 243(3–4), 209–222. https://doi.org/10.1016/0040-1951(94)00207-P
    [Google Scholar]
  67. Raymond, A. C., & Murchison, D. G. (1988). Development of organic maturation in the thermal aureoles of sills and its relation to sediment compaction. Fuel, 67(12), 1599–1608. https://doi.org/10.1016/0016-2361(88)90202-5
    [Google Scholar]
  68. Raymond, A. C., & Murchison, D. G. (1991). The relationship between organic maturation, the widths of thermal aureoles and the thickness of sills in the Midland Valley of Scotland and Northern England. Journal of the Geological Society, 148, 215–218.
    [Google Scholar]
  69. Reynolds, P., Planke, S., Millett, J. M., Jerram, D. A., Trulsvik, M., Schofield, N., & Myklebust, R. (2017). Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM. Earth and Planetary Science Letters, 467, 72–78. https://doi.org/10.1016/j.epsl.2017.03.031
    [Google Scholar]
  70. Ru, K., & Pigott, J. D. (1986). Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70(9), 1136–1155.
    [Google Scholar]
  71. Savva, D., Pubellier, M., Franke, D., Chamot‐Rooke, N., Meresse, F., Steuer, S., & Auxietre, J. L. (2014). Different expressions of rifting on the South China Sea margins. Marine and Petroleum Geology, 58, 579–598. https://doi.org/10.1016/j.marpetgeo.2014.05.023
    [Google Scholar]
  72. Savva, D., Meresse, F., Pubellier, M., Chamot‐Rooke, N., Lavier, L., Po, K. W., … Lamy, G. (2013). Seismic evidence of hyper‐stretched crust and mantle exhumation offshore Vietnam. Tectonophysics, 608, 72–83. https://doi.org/10.1016/j.tecto.2013.07.010
    [Google Scholar]
  73. Shi, X., Burov, E., Leroy, S., Qiu, X., & Xia, B. (2005). Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea. Tectonophysics, 407(1–2), 117–134. https://doi.org/10.1016/j.tecto.2005.07.004
    [Google Scholar]
  74. Song, X., Li, C. F., Yao, Y., & Shi, H. (2017). Magmatism in the evolution of the South China Sea: Geophysical characterization. Marine Geology, 394, 4–15. https://doi.org/10.1016/j.margeo.2017.07.021
    [Google Scholar]
  75. Stearns, D. W. (1978). Faulting and forced folding in the Rocky Mountains foreland. In V.Matthews (Ed.), Laramide folding associated with basement block faulting in the western United States (Vol. 151, pp. 688–37). Geological Society of America Memoir.
    [Google Scholar]
  76. Sun, J. (1991). Cenozoic volcanic activity in the northern South China Sea and Guangdong Coastal Area. Marine Geology & Quaternary Geology, 3, 45–67. (In Chinese with English abstract).
    [Google Scholar]
  77. Sun, Q., Wu, S., Cartwright, J., & Dong, D. (2012). Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 315, 688–14. https://doi.org/10.1016/j.margeo.2012.05.003
    [Google Scholar]
  78. Sun, Q., Wu, S., Cartwright, J., Lüdmann, T., & Yao, G. (2013). Focused fluid flowsystems of the Zhongjiannan Basin and Guangle Uplift, South China Sea. Basin Research, 25(1), 97–111. https://doi.org/10.1111/j.1365-2117.2012.00551.x
    [Google Scholar]
  79. Sun, Q., Wu, S., Cartwright, J., Wang, S., Lu, Y., Chen, D., & Dong, D. (2014). Neogene igneous intrusions in the northern South China Sea: Evidence from high‐resolution three dimensional seismic data. Marine and Petroleum Geology, 54, 83–95. https://doi.org/10.1016/j.marpetgeo.2014.02.014
    [Google Scholar]
  80. Sun, Q., Wu, S., Hovland, M., Luo, P., Lu, Y., & Qu, T. (2011). The morphologies and genesis of mega‐pockmarks near the Xisha Uplift, South China Sea. Marine and Petroleum Geology, 28(6), 1146–1156. https://doi.org/10.1016/j.marpetgeo.2011.03.003
    [Google Scholar]
  81. Sun, Z., Zhou, D., Zhong, Z., Zeng, Z., & Wu, S. (2003). Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics, 372(1–2), 41–58. https://doi.org/10.1016/S0040-1951(03)00230-0
    [Google Scholar]
  82. Svensen, H., Planke, S., Malthe‐Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545. https://doi.org/10.1038/nature02566
    [Google Scholar]
  83. Tapponnier, P., Peltzer, G., & Armijo, R. (1986). On the mechanics of the collision between India and Asia. In M. P.Coward, & A. C.Ries (Eds.), Collision Tectonics (Vol. 19, pp. 113–157). Geological Society of London, Special Publication.
    [Google Scholar]
  84. Tapponnier, P., Peltzer, G. L. D. A. Y., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616. https://doi.org/10.1130/0091-7613(1982)10&611:PETIAN&2.0.CO;2
    [Google Scholar]
  85. Taylor, B. E., Eichelberger, J. C., & Westrich, H. R. (1983). Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature, 306, 541–545. https://doi.org/10.1038/306541a0
    [Google Scholar]
  86. Taylor, B., & Hayes, D. E. (1983). Origin and history of the South China Sea basin. In D. E.Hayes (Ed.), The tectonic and geologic evolution of Southeast Asian Seas and Islands (Part 2). Geophys. Monogr. 27, (pp. 23–56). Washington, DC: American Geophysical Union.
    [Google Scholar]
  87. Trude, K. J. (2004). Kinematic indicators for shallow level igneous intrusion from 3D seismic data: Evidence of flow direction and feeder location. In R. J.Davies, J. A.Cartwright, S. A.Stewart, M.Lappin, & J. R.Underhill (Eds.), 3D Seismic Technology: Application to the Exploration of Sedimentary Basins, Memoirs, 29 (pp. 209–217). London, UK: Geological Society.
    [Google Scholar]
  88. Villemant, B., & Boudon, G. (1999). H2O and halogen (F, Cl, Br) behaviour during shallow magma degassing processes. Earth and Planetary Science Letters, 168(3–4), 271–286. https://doi.org/10.1016/S0012-821X(99)00058-8
    [Google Scholar]
  89. Wan, K., Xia, S., Cao, J., Sun, J., & Xu, H. (2017). Deep seismic structure of the northeastern South China Sea: Origin of a high‐velocity layer in the lower crust. Journal of Geophysical Research: Solid Earth, 122(4), 2831–2858.
    [Google Scholar]
  90. Wan, Z., Yao, Y., Chen, K., Zhong, S., Xia, B., & Sun, Y. (2018). Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea. Geological Journal, 54(1), 177–189. https://doi.org/10.1002/gj.3168
    [Google Scholar]
  91. Wang, H., Zhao, Q., Wu, S., Wang, D., & Wang, B. (2018a). Post‐rifting magmatism and the drowned reefs in the Xisha Archipelago domain. Journal of Ocean University of China, 17(1), 195–208.
    [Google Scholar]
  92. Wang, J., Wu, S., Kong, X., Li, Q., Wang, J., & Ding, R. (2018b). Geophysical characterization of a fine‐grained gas hydrate reservoir in the Shenhu area, northern South China Sea: Integration of seismic data and downhole logs. Marine and Petroleum Geology, 92, 895–903.
    [Google Scholar]
  93. Wang, J., Wu, S., & Yao, Y. (2018c). Quantifying gas hydrate from microbial methane in the South China Sea. Journal of Asian Earth Sciences, https://doi.org/10.1016/j.jseaes.2018.01.020
    [Google Scholar]
  94. Wang, K. L., Chung, S. L., Lo, Y. M., Lo, C. H., Yang, H. J., Shinjo, R., … Huang, S.‐T. (2012). Age and geochemical characteristics of Paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin. Lithos, 155, 426–441. https://doi.org/10.1016/j.lithos.2012.10.002
    [Google Scholar]
  95. Wang, T. K., Chen, M. K., Lee, C. S., & Xia, K. (2006). Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3–4), 237–254. https://doi.org/10.1016/j.tecto.2005.10.039
    [Google Scholar]
  96. Wang, X., Wu, S., Yuan, S., Wang, D., Ma, Y., Yao, G., … Zhang, G. (2010). Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin. South China Sea. Geofluids, 10(3), 351–368. https://doi.org/10.1111/j.1468-8123.2010.00292.x
    [Google Scholar]
  97. Westrich, H. R., & Gerlach, T. M. (1992). Magmatic gas source for the stratospheric SO2 cloud from the June 15, 1991, eruption of Mount Pinatubo. Geology, 20(10), 867–870. https://doi.org/10.1130/0091-7613(1992)020&0867:MGSFTS&2.3.CO;2
    [Google Scholar]
  98. Wheeler, A. J., Murton, B., Copley, J., Lim, A., Carlsson, J., Collins, P., … Morris, K. (2013). Moytirra: Discovery of the first known deep‐sea hydrothermal vent field on the slow‐spreading Mid‐Atlantic Ridge north of the Azores. Geochemistry, Geophysics, Geosystems, 14(10), 4170–4184. https://doi.org/10.1002/ggge.20243
    [Google Scholar]
  99. Wintsch, R. P., Yang, H. J., Li, X. H., & Tung, K. A. (2011). Geochronologic evidence for a cold arc–continent collision: The Taiwan orogeny. Lithos, 125(1–2), 236–248. https://doi.org/10.1016/j.lithos.2011.02.009
    [Google Scholar]
  100. Wu, S., Yang, Z., Wang, D., Lü, F., Lüdmann, T., Fulthorpe, C., & Wang, B. (2014). Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea. Marine Geology, 350, 71–83. https://doi.org/10.1016/j.margeo.2013.12.016
    [Google Scholar]
  101. Wu, S., Yuan, S., Zhang, G., Ma, Y., Mi, L., & Xu, N. (2009). Seismic characteristics of a reef carbonate reservoir and implications for hydrocarbon exploration in deepwater of the Qiongdongnan Basin, northern South China Sea. Marine and Petroleum Geology, 26(6), 817–823.
    [Google Scholar]
  102. Xu, X., Yao, Y., Peng, D., & Yao, B. (2018). The characteristics and analysis of heat flow in the Southwest sub‐basin of South China Sea. Chinse Journal of Geophysics‐Chinese Edition, 61(7), 2915–2925. (In Chinese with English abstract).
    [Google Scholar]
  103. Yan, P., Deng, H., Liu, H., Zhang, Z., & Jiang, Y. (2006). The temporal and spatial distribution of volcanism in the South China Sea region. Journal of Asian Earth Sciences, 27(5), 647–659. https://doi.org/10.1016/j.jseaes.2005.06.005
    [Google Scholar]
  104. Yuan, Y., Zhu, W., Mi, L., Zhang, G., Hu, S., & He, L. (2009). “Uniform geothermal gradient” and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea. Marine and Petroleum Geology, 26(7), 1152–1162. https://doi.org/10.1016/j.marpetgeo.2008.08.008
    [Google Scholar]
  105. Yui, T. F., Heaman, L., & Lan, C. Y. (1996). U‐Pb and Sr isotopic studies on granitoids from Taiwan and Chinmen‐Lieyü and tectonic implications. Tectonophysics, 263(1–4), 61–76. https://doi.org/10.1016/S0040-1951(96)00023-6
    [Google Scholar]
  106. Zhang, G., Zhang, Y., Shen, H., & He, Y. (2014). An analysis of natural gas exploration potential in the Qiongdongnan Basin by use of the theory of “joint control of source rocks and geothermal heat”. Natural Gas Industry, B1(1), 41–50. https://doi.org/10.1016/j.ngib.2014.10.005
    [Google Scholar]
  107. Zhang, Q., Wu, S., & Dong, D. (2016). Cenozoic magmatism in the northern continental margin of the South China Sea: Evidence from seismic profiles. Marine Geophysical Research, 37(2), 71–94. https://doi.org/10.1007/s11001-016-9266-3
    [Google Scholar]
  108. Zhao, M., He, E., Sibuet, J. C., Sun, L., Qiu, X., Tan, P., & Wang, J. (2018). Postseafloor spreading volcanism in the central east South China Sea and its formation through an extremely thin oceanic crust. Geochemistry, Geophysics, Geosystems, 19(3), 621–641. https://doi.org/10.1002/2017GC007034
    [Google Scholar]
  109. Zhu, W., Zhong, K., Li, Y., Xu, Q., & Fang, D. (2012). Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Chinese Science Bulletin, 57(24), 3121–3129. https://doi.org/10.1007/s11434-011-4940-y
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12338
Loading
/content/journals/10.1111/bre.12338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error