1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Peat horizons are characteristic features of delta plains worldwide. In this study, we tested the use of peat‐based correlations to assess the deformation of Holocene strata in the Po coastal plain (Northern Italy). The Holocene stratigraphy, about 30 km inland from the modern coastline consists of a peat‐bearing, estuarine and deltaic succession, up to 23 m thick. Through the analysis of 31 core data and 100 piezocone penetration tests, we identified and mapped three 10–40 cm‐thick peat layers (T1–T3) dated to 6.6–5.8, 5.5–5.0 and 3.3–2.7 cal kyr BP respectively. These peat horizons were found to be suitable stratigraphic markers within the Holocene succession over an area of about 200 km2. The mid‐late Holocene palaeogeography, reconstructed through high‐resolution peat correlation, supported by 72 radiocarbon dates, highlights a typical upper delta plain environment, with ribbon‐shaped distributary channels and swamp interdistributary areas. Peat layers are inclined towards E‐NE with gradients that increase downsection from ~0.016% (T3) to 0.021% (T1). The gradient of the oldest peat horizon is one order of magnitude larger than the slope of the modern delta plain (~0.0025%). We infer that peat horizons accumulated during periods of low sediment supply mainly controlled by autogenic processes and were deformed after deposition. Differential compaction of underlying sedimentary strata and recent tectonic activity of the buried Apenninic thrust systems are the most likely drivers of strata deformation. Based on isochore maps, we document that higher sedimentation rates in topographically depressed areas compensated, in part at least, the ongoing deformation, keeping unaltered the topographic gradient and the depositional environment. This study demonstrates that peat‐based correlation and mapping can shed lights on the mechanisms of strata accumulation and deformation in deltaic settings, constituting a robust basis for reconstructing delta evolution.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12339
2019-02-19
2020-05-26
Loading full text...

Full text loading...

References

  1. Allmendinger, R. W., Loveless, J. P., Pritchard, M. E., & Meade, B. (2009). From decades to epochs: Spanning the gap between geodesy and structural geology of active mountain belts. Journal of Structural Geology, 31, 1409–1422. https://doi.org/10.1016/j.jsg.2009.08.008
    [Google Scholar]
  2. Amorosi, A., & Marchi, N. (1999). High‐resolution sequence stratigraphy from piezocone tests: An example from the Late Quaternary deposits of the SE Po Plain. Sedimentary Geology, 128, 69–83.
    [Google Scholar]
  3. Amorosi, A., Colalongo, M. L., Fiorini, F., Fusco, F., Pasini, G., Vaiani, S. C., & Sarti, G. (2004). Palaeogeographic and palaeoclimatic evolution of the Po Plain from 150‐ky core records. Global and Planetary Change, 40, 55–78.
    [Google Scholar]
  4. Amorosi, A., Pavesi, M., Ricci Lucchi, M., Sarti, G., & Piccin, A. (2008). Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po plain, Italy. Sedimentary Geology, 209, 58–68.
    [Google Scholar]
  5. Amorosi, A., Maselli, V., & Trincardi, F. (2016). Onshore to offshore anatomy of a late Quaternary source‐to‐sink system (Po Plain‐Adriatic Sea, Italy). Earth‐Science Reviews, 153, 212–237.
    [Google Scholar]
  6. Amorosi, A., Bruno, L., Campo, B., Morelli, A., Rossi, V., Scarponi, D., … Drexler, T. M. (2017). Global sea‐level control on local parasequence architecture from the Holocene record of the Po Plain, Italy. Marine and Petroleum Geology, 87, 99–111.
    [Google Scholar]
  7. Amorosi, A., Bruno, L., Cleveland, D. M., Morelli, A., & Hong, W. (2017). Paleosols and associated channel‐belt sand bodies from a continuously subsiding late Quaternary system (Po Basin, Italy): New insights into continental sequence stratigraphy. Geological Society of American Bulletin, 129(3–4), 449–463.
    [Google Scholar]
  8. Amorosi, A., Bohacs, K. M., Bruno, L., Campo, B., & Drexler, T. M. (2017). How close is geological thought to reality? The concept of time as revealed by the sequence stratigraphy of the late Quaternary record. In B.Hart, N. C.Rosen, D.West, A.D'Agostino, C.Messina, M.Hoffman, & R.Wild (Eds.), Sequence stratigraphy: The future defined, 36th Annual Gulf Coast Section SEPM Foundation Perkins‐Rosen (pp. 47–86).Research Conference, Marathon Conference Center, Houston, December 4–5.
    [Google Scholar]
  9. Anadòn, P., Cabrera, L., Colombo, F., Marzo, M., & Riba, O. (1986). Syntectonic intraformational unconformities in alluvial fan deposits, eastern Ebro Basin margins (NE Spain). In P. A.Allen, & P.Homewood (Eds.) Foreland basins (Vol. 8, pp. 259–271). International Association of Sedimentologists Special Publication.
  10. Anzidei, M., Maramai, A., & Montone, P. (Eds.) (2012). The Emilia (Northern Italy) seismic sequence of May–June, 2012: Preliminary data and results. Annals of Geophysics, 55, 515–842.
    [Google Scholar]
  11. Argnani, A., & Frugoni, F. (1997). Foreland deformation in the Central Adriatic and its bearing on the evolution of the Northern Apennines. Annali Di Geofisica, 40(3), 771–780.
    [Google Scholar]
  12. Artoni, A., & Casero, P. (1997). Sequential balancing of growth structures, the late Tertiary example from the central Apennine. Bulletin De La Societe Geolgique De France, 168, 35–49.
    [Google Scholar]
  13. Aslan, A., & Blum, M. D. (1999). Contrasting styles of Holocene avulsions, Texas Gulf Coastal Plain. In N. D.Smith, & J. J.Rogers (Eds.), Current Research in Fluvial Sedimentology: Proceedings of 6th International Conference on Fluvial Sedimentology. IAS Special Publication, 28, pp. 193–209.
    [Google Scholar]
  14. Barber, K. E. (2007). Peatland records of Holocene climate change. InE.Scott (Ed.), Encyclopedia of quaternary science (pp. 1884–1895). Oxford, UK: Elsevier.
    [Google Scholar]
  15. Bhattacharya, J. P. (2006). Deltas. In R. G.Walker, & H.Posamentier (Eds.), Facies models revisited, (Vol. 84, pp. 237–292). SEPM Special Publication.
    [Google Scholar]
  16. Begemann, H. K. S. P. H. (1965). The friction jacket cone as an aid in determining the soil profile. Proc. Int. Conf. Soil. Mech. Found. Eng., 6th, Montreal, pp. 17–20.
  17. Berendsen, H. J., & Stouthamer, E. (2000). Late Weichselian and Holocene palaeogeography of the Rhine‐Meuse delta, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 161(3–4), 311–335. https://doi.org/10.1016/S0031-0182(00)00073-0
    [Google Scholar]
  18. Bigi, G., Cosentino, D., Parotto, M., Sartori, R., & Scandone, P. (1990). Structural model of Italy and gravity map (1:500.000). Quaderni De La Recerca Scientifica, 114, 3.
    [Google Scholar]
  19. Bignami, C., Burrato, P., Cannelli, V., Chini, M., Falcucci, E., Ferretti, A., … Vannoli, P. (2012). Coseismic deformation pattern of the Emilia 2012 seismic sequence imaged by Radarsat‐1 interferometry. Annales Geophysicae, 55(4), 788–795.
    [Google Scholar]
  20. Boccaletti, M., Corti, G., & Martelli, L. (2011). Recent and active tectonics of the external zone of the Northern Apennines (Italy). International Journal of Earth Science, 100, 1331–1348.
    [Google Scholar]
  21. Bondesan, M., Favero, V., & Viñals, M. J. (1995). New evidence on the evolution of the Po‐Delta coastal plain during the Holocene. Quaternary International, 29–30, 105–110. https://doi.org/10.1016/1040-6182(95)00012-8
    [Google Scholar]
  22. Bos, I. J., Busschers, F. S., & Hoek, W. Z. (2012). Organic‐facies determination: A key for understanding facies distribution in the basal peat layer of the Holocene Rhine‐Meuse delta, The Netherlands. Sedimentology, 59, 676–703. https://doi.org/10.1111/j.1365-3091.2011.01271.x
    [Google Scholar]
  23. Bronk Ramsey, C., & Lee, S. (2013). Recent and planned developments of the program OxCal. Radiocarbon, 55(2–3), 720–730. https://doi.org/10.1017/S0033822200057878
    [Google Scholar]
  24. Bruno, L., Bohacs, K. M., Campo, B., Drexler, T. M., Rossi, V., Sammartino, I., … Amorosi, A. (2017). Early Holocene transgressive paleogeography in the Po coastal plain (Northern Italy). Sedimentology, 64(7), 1792–1816.
    [Google Scholar]
  25. Bruno, L., Amorosi, A., Severi, P., & Costagli, B. (2017). Late Quaternary aggradation rates and stratigraphic architecture of the southern Po Plain, Italy. Basin Research, 29, 234–248.
    [Google Scholar]
  26. Burrato, P., Ciucci, F., & Valensise, G. (2003). An inventory of river anomalies in the Po Plain, Northern Italy: Evidence for active blind thrust faulting. Annales Geophysicae, 44, 865–882.
    [Google Scholar]
  27. Burbank, D. W., & Raynolds, R. G. H. (1988). Stratigraphic keys to the timing of thrusting in terrestrial foreland basins: Application to the northwestern Himalaya. In K. L.Kleinspehn, & C.Paola (Eds.), New perspectives in basin analysis (pp. 331–351). New York, NY: Springer.
    [Google Scholar]
  28. Butler, R. W. H., & Lickorish, W. H. (1997). Using high‐resolution stratigraphy to date fold and thrust activity: Examples from the Neogene of south‐central Sicily. Journal of the Geological Society, 154, 633–643. https://doi.org/10.1144/gsjgs.154.4.0633
    [Google Scholar]
  29. Cacciari, M., Rossi, V., Amorosi, A., Bruno, L., & Campo, B. (2018). Palynological characterization of the Po Delta succession (northern Italy): Holocene vegetation dynamics, stratigraphic patterns and palaeoclimate variability. Alpine and Mediterranean Quaternary, 31. (Quaternary: Past, Present, Future – AIQUA Conference, Florence, 13–14/06/2018),109–112.
  30. Campanella, R. G., Gillespie, D., & Robertson, P. K. (1982). Pore pressures during cone penetration testing. Proc. 2nd Eur. Symp. Penetration Testing, ESOPT, OpenCheckIICloseCheck,507–512.
  31. Campo, B., Amorosi, A., & Vaiani, S. C. (2017). Sequence stratigraphy and late Quaternary paleoenvironmental evolution of the Northern Adriatic coastal plain (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 265–278.
    [Google Scholar]
  32. Caputo, R., Pellegrinelli, A., Bignami, C., Bondesan, A., Mantovani, A., Stramondo, S., & Russo, P. (2015). High‐precision levelling, DInSAR and geomorphological effects in the Emilia 2012 epicentral area. Geomorphology, 235, 106–117. https://doi.org/10.1016/j.geomorph.2015.02.002
    [Google Scholar]
  33. Carannante, S., Argnani, A., Massa, M., D'Alema, E., Lovati, S., Moretti, M., … Augliera, P. (2015). The May 20 (MW 6.1) and 29 (MW 6.0), 2012, Emilia (Po Plain, northern Italy) earthquakes: New seismotectonic implications from subsurface geology and high‐quality hypocenter location. Tectonophysics, 655, 107–123. https://doi.org/10.1016/j.tecto.2015.05.015
    [Google Scholar]
  34. Carmignani, L., & Kligfield, R. (1990). Crustal extension in the northern Apennines: The transition from compression to extension in the Alpi Apuane core complex. Tectonics, 9, 1275–1303. https://doi.org/10.1029/TC009i006p01275
    [Google Scholar]
  35. Carminati, E., & di Donato, G. (1999). Separating natural and anthropogenic vertical movements in fast subsiding areas: The Po Plain (N. Italy) case. Geophysical Research Letters, 26, 2291–2294. https://doi.org/10.1029/1999GL900518
    [Google Scholar]
  36. Carminati, E., & Doglioni, C. (2012). Alps Vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth‐Science Reviews, 112, 67–96. https://doi.org/10.1016/j.earscirev.2012.02.004
    [Google Scholar]
  37. Cenni, N., Viti, M., Baldi, P., Mantovani, E., Bacchetti, M., & Vannucchi, A.(2013). Present vertical movements in Central and Northern Italy from GPS data: Possible role of natural and anthropogenic causes. Journal of Geodynamics, 71, 74–85. https://doi.org/10.1016/j.jog.2013.07.004
    [Google Scholar]
  38. Cesca, S., Braun, T., Maccaferri, F., Passarelli, L., Rivalta, E., & Dahm, T. (2013). Source modelling of the M5–6 Emilia‐Romagna, Italy, earthquakes (2012 May 20–29). Geophysical Journal International, 193(3), 1658–1672. https://doi.org/10.1093/gji/ggt069
    [Google Scholar]
  39. Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B., & Wallinga, J. (2018). Anatomy of Mississippi Delta growth and its implications for coastal restoration. Science Advances, 4, eaar4740. https://doi.org/10.1126/sciadv.aar4740
    [Google Scholar]
  40. Charman, D. J. (2002). Peatland systems and environmental change (p. 301). Chichester, UK: John Wiley & Sons.
    [Google Scholar]
  41. Charreau, J., Avouac, J., Chen, Y., Dominguez, S., & Gilder, S. (2008). Miocene to present kinematics of fault‐bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data. Geology, 36, 871–874. https://doi.org/10.1130/G25073A.1
    [Google Scholar]
  42. Clevis, Q., deJager, G., Nijman, W., & DeBoer, P. L. (2004). Stratigraphic signatures of translation of thrust‐sheet top basins over low‐angle detachment faults. Basin Research, 16, 145–163.
    [Google Scholar]
  43. Cohen, K. M., Stouthamer, E., & Berendsen, H. J. A. (2002). Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine‐Meuse delta, the Netherlands. Geologie & Mijnbouw / Netherlands Journal of Geosciences, 81(3–4), 389–405. https://doi.org/10.1017/S0016774600022678
    [Google Scholar]
  44. Cohen, K. M., Gouw, M. J. P., & Holten, J. P. (2003). Fluvio‐deltaic floodbasin deposits recording differential subsidence within a coastal prism (Central Rhine‐Meuse Delta, the Netherlands). In M. D.Blum, S. B.Marriott, & S. F.Leclair (Eds), Fluvial sedimentology VII. Special Publication 35, International Association of Sedimentologists. Cambridge, MA: Blackwell Scientific.
    [Google Scholar]
  45. Cohen, K. M. (2005). 3D Geostatistical interpolation and geological interpretation of paleo–groundwater rise in the Holocene coastal prism in the Netherlands. In River Deltas—Concepts, Models, and Examples. SEPM spec. publication, 83, 341–364.
  46. Cook, F. A., Albaugh, D. S., Brown, L. D., Kaufman, S., Oliver, J. E., & Hatcher, R. D.(1979). Thin‐skinned tectonics in the crystalline southern Appalachians; COCORP seismic‐reflection profiling of the Blue Ridge and Piedmont. Geology, 7(12), 563–567. https://doi.org/10.1130/0091-7613(1979)7<563:TTITCS>2.0.CO;2
    [Google Scholar]
  47. de Celles, P. G., Gray, M. B., Ridgway, K. D., Cole, R. B., Pivnik, D. A., Pequera, N., & Srivastava, P. (1991). Controls on synorogenic alluvial‐fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology, 38, 567–590. https://doi.org/10.1111/j.1365-3091.1991.tb01009.x
    [Google Scholar]
  48. DeFátima‐Rossetti, D., Palloti Polizel, S., Lisboa Cohen, M. C., & Ruiz Pessenda, L. C. (2015). Late Pleistocene‐Holocene evolution of the Doce River delta, southeastern Brazil: Implications for the understanding of wave‐influenced deltas. Marine Geology, 367, 171–190.
    [Google Scholar]
  49. Drexler, J. Z., Fontaine, C. S., & Deverel, S. J. (2009). The legacy of wetland drainage on the remaining peat in the Sacramento‐San Joaquin delta, USA. Wetlands, 29, 372–386.
    [Google Scholar]
  50. Erkens, G., van der Meulen, M., & Middelkoop, H. (2016). Double trouble: Subsidence and CO2 respiration due to 1000 years of cultivation of the Dutch coastal peatlands. Hydrogeological Journal, 24, 551–568.
    [Google Scholar]
  51. Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi, G., … Verrubbi, V. (2006). Markers of the last interglacial sea‐level high stand along the coast of Italy: Tectonic implications. Quaternary International, 145–146, 30–54. https://doi.org/10.1016/j.quaint.2005.07.009
    [Google Scholar]
  52. Ford, M., Williams, E. A., Artoni, A., Vergès, J., & Hardy, S. (1997). Progressive evolution of a fault‐related fold pair from growth strata geometries, Sant Llorenç de Morunys, SE Pyrenees. Journal of Structural Geology, 19, 413–441.
    [Google Scholar]
  53. Ford, M. (2004). Depositional wedge tops: Interaction between low basal friction external orogenic wedges and flexural foreland basins. Basin Research, 16, 361–375. https://doi.org/10.1111/j.1365-2117.2004.00236.x
    [Google Scholar]
  54. Galli, P., Castenetto, S., & Peronace, E. (2012). May 2012 Emilia earthquakes (Mw 6, Northern Italy): Macroseismic effects distribution and seismotectonic implications. Alpine Mediterranean Quaternary, 2, 105–123.
    [Google Scholar]
  55. Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Sgattoni, G., & Valensise, G. (2018). CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.‐1997) e nell'area Mediterranea (760 a.C. – 1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). Retrieved from http://storing.ingv.it/cfti/cfti5/
  56. Gunderson, K. L., Anastasio, D. J., Pazzaglia, F. J., & Picotti, V. (2013). Fault slip rate variability on 104–105yr timescales for the Salsomaggiore blind thrust fault, Northern Apennines, Italy. Tectonophysics, 608, 356–365.
    [Google Scholar]
  57. Gunderson, K. L., Pazzaglia, F. J., Picotti, V., Anastasio, D. J., Kodama, K. P., Rittenour, T. … Sabbatini, A. (2014). Unraveling tectonic and climatic controls on synorogenic growth strata (Northern Apennines, Italy). Geological Society of America Bulletin, 126(3–4), 532–552. https://doi.org/10.1130/B30902.1
    [Google Scholar]
  58. Gunderson, K. L., Anastasio, D. J., Pazzaglia, F. J., & Kodama, K. P. (2018). Intrinsically variable buried thrust faulting. Tectonics, 37(5), 1454–1471.
    [Google Scholar]
  59. Hijma, M. P., Shen, Z., Törnqvist, T. E., & Mauz, B. (2017). Late Holocene evolution of a coupled, mud‐dominated delta plain–chenier plain system, coastal Louisiana, USA. Earth Surface Dynamics Discussions, 5, 689–710.
    [Google Scholar]
  60. Hobbs, N. B. (1986). Mire morphology and the properties and behaviour of some British and foreign peats. Quartely Journal of Engineering Geology and Hydrogeology, 19, 7–80.
    [Google Scholar]
  61. Hoang, T. M., van Lap, N., Oanh, T. T. K., & Takemura, J. (2016). The influence of delta formation mechanism on geotechnical property sequence of the late Pleistocene‐Holocene sediments in the Mekong River Delta. Heliyon, 2, e00165.
    [Google Scholar]
  62. Holl, J. E., & Anastasio, D. J. (1993). Paleomagnetically derived folding rates, southern Pyrenees, Spain. Geology (Boulder), 21, 271–274. https://doi.org/10.1130/0091-7613(1993)021<0271:PDFRSP>2.3.CO;2
    [Google Scholar]
  63. Hsieh, M., & Knuepfer, P. L. K. (2001). Middle–late Holocene river terraces in the Erhjen River Basin, southwestern Taiwan—implications of river response to climate change and active tectonic uplift. Geomorphology, 38, 337–372. https://doi.org/10.1016/S0169-555X(00)00105-7
    [Google Scholar]
  64. Ishii, Y., Hori, K., Momohara, A., Nakanishi, T., & Hong, W. (2016). Middle to late‐Holocene decreased fluvial aggradation and widespread peat initiation in the Ishikari lowland (northern Japan). Holocene, 26, 1924–1938. https://doi.org/10.1177/0959683616646189
    [Google Scholar]
  65. Iside Working Group
    Iside Working Group (2010). Italian seismological instrumental and parametric database. Retrieved from http://iside.rm.ingv.it
  66. Jones, M. A., Heller, P. L., Roca, E., Garcés, M., & Cabrera, L. (2004). Time lag of syntectonic sedimentation across an alluvial basin: Theory and example from the Ebro Basin, Spain. Basin Research, 16, 467–488. https://doi.org/10.1111/j.1365-2117.2004.00244.x
    [Google Scholar]
  67. Koster, K., Erkens, G., & Zwanenburg, C. (2016). A new soil mechanics approach to quantify and predict land subsidence by peat compression. Geophysical Research Letters, 43, 10792–10799.
    [Google Scholar]
  68. Koster, K., Stafleu, J., Cohen, K. M., Stouthamer, E., Busschers, F. S., & Middelkoop, H. (2018). Three‐dimensional distribution of organic matter in coastal‐deltaic peat: Implications for subsidence and carbon dioxide emissions by human‐induced peat oxidation. Anthropocene, 22, 621–9.
    [Google Scholar]
  69. Koster, K., de Lange, G., Harting, R., de Heer, E., & Middelkoop, H. (2018). Characterizing void ratio and compressibility of Holocene peat with CPT for assessing coastal–deltaic subsidence. Quarterly Journal of Engineering Geology and Hydrogeology, 51(2), 210–218. https://doi.org/10.1144/qjegh2017-120
    [Google Scholar]
  70. Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G., & Silenzi, S. (2011). Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International, 232(1), 250–257. https://doi.org/10.1016/j.quaint.2010.04.026
    [Google Scholar]
  71. Lefebvre, G., Langlois, P., Lupien, C., & Lavallee, J. G. (1984). Laboratory testing and in situbehaviour of peat as embankment foundation. Canadian Geotechnical Journal, 21, 322–337.
    [Google Scholar]
  72. Lavé, J., & Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105, 5735–5770.
    [Google Scholar]
  73. Lickorish, W. H., & Butler, R. W. H. (1996). Fold amplification and parasequence stacking patterns in syntectonic shoreface carbonates. Geological Society of America Bulletin, 108, 966–977.
    [Google Scholar]
  74. Lunne, T., Robertson, P. K., & Powell, J. J. M. (1997). Cone penetration testing in geotechnical practice. Blackie Academic and Professional: London, UK.
    [Google Scholar]
  75. Magny, M., de Beaulieu, J. L., Drescher‐Schneider, R., Vannière, B., Walter‐Simonnet, A. V., Miras, Y., … Leroux, A. (2007). Holocene climate changes in the central Mediterranean as recorded by lake‐level fluctuations at Lake Accesa (Tuscany, Italy). Quaternary Science Reviews, 26, 1736–1758.
    [Google Scholar]
  76. Magny, M., Joannin, S., Galop, D., Vannière, B., Haas, J. N., Bassetti, M., … Desmet, M. (2012). Holocene palaeohydrological changes in the northern Mediterranean borderlands as reflected by the lake‐level record of Lake Ledro, northeastern Italy. Quaternary Research, 77, 382–396. https://doi.org/10.1016/j.yqres.2012.01.005
    [Google Scholar]
  77. Massey, A. C., Paul, M. A., Gehrels, W. R., & Charman, D. J. (2006). Autocompaction in Holocene coastal back‐barrier sediments from south Devon, southwest England, UK. Marine Geology, 226, 225–241.
    [Google Scholar]
  78. Massoli, D., Koyi, H. A., & Barchi, M. R. (2006). Structural evolution of a fold and thrust belt generated by multiple décollements: Analogue models and natural examples from the Northern Apennines (Italy). Journal of Structural Geology, 28, 185–199. https://doi.org/10.1016/j.jsg.2005.11.002
    [Google Scholar]
  79. McIntosh, K., Nakamura, Y., Wang, T.‐K., Shih, R.‐C., Chen, A., & Liu, C.‐S. (2005). Crustal‐scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401, 23–54. https://doi.org/10.1016/j.tecto.2005.02.015
    [Google Scholar]
  80. Meigs, A. J., Verges, J., & Burbank, D. W. (1996). Ten‐million‐year history of a thrust sheet. Geological Society of American Bulletin, 108, 1608–1625.
    [Google Scholar]
  81. Miola, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P., Piovan, S., & Sostizzo, I. (2006). Wetlands in the Venetian Po Plain (north‐eastern Italy) during the Last Glacial Maximum: Vegetation, hydrology, sedimentary environments. Review of Palaeobotany Palynology, 141, 53–81.
    [Google Scholar]
  82. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., … Sciunnach, D. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989–992. https://doi.org/10.1130/G19445.1
    [Google Scholar]
  83. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37(9), 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  84. Olariu, C., & Bhattacharya, J. P. (2006). Terminal distributary channels and delta front architecture of riverdominated delta systems. Journal of Sedimentary Research, 76, 212–233.
    [Google Scholar]
  85. Olszak, J. (2011). Evolution of fluvial terraces in response to climate change and tectonic uplift during the Pleistocene: Evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians). Geomorphology, 129, 71–78. https://doi.org/10.1016/j.geomorph.2011.01.014
    [Google Scholar]
  86. Ori, G. G. (1993). Continental depositional systems of the Quaternary of the Po Plain (northern Italy). Sedimentary Geology, 83(1/2), 621–14. https://doi.org/10.1016/S0037-0738(10)80001-6
    [Google Scholar]
  87. Pérez‐Arlucea, M., & Smith, N. D. (1999). Depositional patterns following the 1870s avulsion of the Saskatchewan River (Cumberland Marshes, Saskatchewan, Canada). Journal of Sedimentary Research, 69, 62–73. https://doi.org/10.2110/jsr.69.62
    [Google Scholar]
  88. Pezzo, G., Merryman Boncori, J. P., Tolomei, C., Salvi, S., Atzori, S., Antonioli, A., … Giuliani, R. (2013). Coseismic deformation and source modeling of the May 2012 Emilia (Northern Italy) earthquakes. Seismological Research Letters, 84(4), 645–655. https://doi.org/10.1785/0220120171
    [Google Scholar]
  89. Picotti, V., & Pazzaglia, F. J. (2008). A new active tectonic model for the construction of the Northern Apennines mountain front near Bologna (Italy). Journal of Geophysical Research: Solid Earth, 113, B08412. https://doi.org/10.1029/2007JB005307
    [Google Scholar]
  90. Pieri, M., & Groppi, G. (1981). Subsurface geological structure of the Po Plain, Italy. P.F. Geodin., Publ. 414, C.N.R. Roma, 621–23.
  91. Piovan, S., Mozzi, P., & Zecchin, M. (2012). The interplay between adjacent Adige and Po alluvial systems and deltas in the late Holocene (Northern Italy). Géomorphologie, 18, 427–440. https://doi.org/10.4000/geomorphologie.10034
    [Google Scholar]
  92. Pondrelli, S., Salimbeni, S., Perfetti, P., & Danecek, P. (2012). Quick regional centroid moment tensor solutions for the Emilia 2012 (northern Italy) seismic sequence. Annales Geophysicae, 55(4), 615–621.
    [Google Scholar]
  93. Pons, L. J. (1992). Holocene peat formation in the lower parts of the Netherlands. Geobotany, 18, 7–80.
    [Google Scholar]
  94. Ponza, A., Pazzaglia, F. J., & Picotti, V. (2010). Thrust–fold activity at the mountain front of the Northern Apennines (Italy) from quantitative landscape analysis. Geomorphology, 123, 211–231. https://doi.org/10.1016/j.geomorph.2010.06.008
    [Google Scholar]
  95. Price, J. S., & Schlotzhauer, S. M. (1999). Importance of shrinkage and compression in determining water storage changes in peat: The case of a mined peatland. Hydrological Processes, 13, 2591–2601. https://doi.org/10.1002/(SICI)1099-1085(199911)13:16<2591:AID-HYP933>3.0.CO;2-E
    [Google Scholar]
  96. Regione Emilia‐Romagna
    Regione Emilia‐Romagna & ENI‐AGIP (1998). Riserve idriche sotterranee della Regione Emilia‐Romagna. Firenze, Italy: S.EL.CA.
    [Google Scholar]
  97. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., … van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 55, 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947
    [Google Scholar]
  98. Ricci Lucchi, F. (1986). Oligocene to recent foreland basins of northern Apennines. In P.Allen, & P.Homewood (Ed.) Foreland basins (Vol. 8, pp. 105–139). International Association of Sedimentologists Special Publication. London, UK: Blackwell Scientific.
    [Google Scholar]
  99. Robertson, P. K. (1986). In situ testing and its application to foundation engineering. Canadian Geotechnical Journal, 23, 573–594.
    [Google Scholar]
  100. Robertson, P. K., & Campanella, R. G. (1986). Guidelines for use, interpretation and application of the CPT and CPTU, soil mechanics series no. 105. Vancouver, BC, Canada: Department of Civil Engineering, University of British Columbia.
    [Google Scholar]
  101. Robertson, P. K., Campanella, R. G., Gillespie, R. G., & Greig, J. (1986). Use of piezometer cone data. Proc., In‐situ '86, ASCE Specialty Conf., Blacksburg, VA.
  102. Rovida, A., Camassi, R., Gasperini, P., & Stucchi, M. (Eds.) (2011). Version of the Parametric Catalogue of Italian Earthquakes, Milano, Bologna. Retrieved from http://emidius.mi.ingv.it/CPTI/
  103. Salvi, S., Tolomei, C., Merryman Boncori, J. P., Pezzo, G., Atzori, S., Antonioli, A., … Coletta, A. (2012). Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMO‐SkyMed InSAR data. Annales Geophysicae, 55(4), 796–802.
    [Google Scholar]
  104. Schmertmann, J. H. (1969). Dutch friction‐cone penetrometer exploration of a research area at Field 5, Eglin Air Force Base, Florida. U.S. Army Eng. Waterways Exp. Stat., Vicksburg, Miss., Contract Rep. S‐69‐4.
  105. Scognamiglio, L., Margheriti, L., Mele, F. M., Tinti, E., Bono, A., de Gori, P., … Quintiliani, M. (2012). The 2012 Pianura Padana Emiliana seimic sequence: Locations, moment tensors and magnitudes. Annals of Geophysics, 55, 549–559.
    [Google Scholar]
  106. Scrocca, D., Carminati, E., Doglioni, C., & Marcantoni, D. (2007). Slab retreat and active shortening along the Central‐Northern Apennines. In O.Lacombe, F.Roure, J.Lavé, & J.Vergés (Eds.), Thrust belts and Foreland basins SE – 25, frontiers in earth sciences (pp. 471–487). Berlin, Heidelberg, Germany: Springer.
    [Google Scholar]
  107. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., … Gasperini, P. (2007). Kinematics of the Western Africa‐Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169, 1180–1200. https://doi.org/10.1111/j.1365-246X.2007.03367.x
    [Google Scholar]
  108. Somoza, L., Barnolas, A., Arasa, A., Maestro, A., Rees, J. G., & Hernandez‐Molina, F. J. (1998). Architectural stacking patterns of the Ebro delta controlled by Holocene high‐frequency eustatic fluctuations, delta‐lobe switching and subsidence processes. Sedimentary Geology, 117, 11–32.
    [Google Scholar]
  109. Stefani, M., & Vincenzi, S. (2005). The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Marine Geology, 222–223, 19–48. https://doi.org/10.1016/j.margeo.2005.06.029
    [Google Scholar]
  110. Stouthamer, E., & Berendsen, H. J. A. (2000). Factors controlling the Holocene avulsion history of the Rhine‐Meuse delta (The Netherlands). Journal of Sedimentary Research, 70, 1051–1064. https://doi.org/10.1306/033000701051
    [Google Scholar]
  111. Stouthamer, E., & Berendsen, H. J. A. (2001). Avulsion frequency, avulsion duration, and interavulsion period of Holocene channel belts in the Rhine‐Meuse delta, The Netherlands. Journal of Sedimentary Research, 71, 589–598. https://doi.org/10.1306/112100710589
    [Google Scholar]
  112. Suppe, J., Chou, T. G., & Hook, S. C. (1992). Rates of folding and faulting determined from growth strata. In K. R.McClay (Ed.), Thrust tectonics (pp. 105–121). London, UK: Chapman & Hall.
    [Google Scholar]
  113. Shen, Z., Törnqvist, T. E., Mauz, B., Chamberlain, E. L., Nijhuis, A. G., & Sandoval, L. (2015). Episodic overbank deposition as a dominant mechanism of floodplain and delta‐plain aggradation. Geology, 43, 875–878. https://doi.org/10.1130/G36847.1
    [Google Scholar]
  114. Törnqvist, T. E., & van Dijk, G. J. (1993). Optimizing sampling strategy for radiocarbon dating of Holocene fluvial systems in a vertically aggrading setting. Boreas, 22, 129–145. https://doi.org/10.1111/j.1502-3885.1993.tb00172.x
    [Google Scholar]
  115. Törnqvist, T. E., van Ree, M. H. M., van't Veer, R., & van Geel, B. (1998). Improving methodology for high‐resolution reconstruction of sea‐level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peats. Quaternary Research, 49, 72–85. https://doi.org/10.1006/qres.1997.1938
    [Google Scholar]
  116. Törnqvist, T. E., Gonzalez, J. L., Newsom, L. A., van der Borg, K., de Jong, A. F. M., & Kurnik, C. W. (2004). Deciphering Holocene sea‐level history on the US Gulf Coast: A high resolution record from the Mississippi Delta. Geological Society of America Bulletin, 116, 1026–1039.
    [Google Scholar]
  117. Törnqvist, T. E., Bick, S. J., van der Borg, K., & de Jong, A. F. M. (2006). How stable is the Mississippi Delta?Geology, 34, 697–700.
    [Google Scholar]
  118. Törnqvist, T. E., Wallace, D. J., Storms, J. E., Wallinga, J., van Dam, R. L., Blaauw, M., … Snijders, E. M. (2008). Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience, 1, 173–176.
    [Google Scholar]
  119. Toscani, G., Burrato, P., di Bucci, D., Seno, S., & Valensise, G. (2009). Plio‐Quaternary tectonic evolution of the Northern Apennines thrust fronts (Bologna–Ferrara section, Italy): Seismotectonic implications. Italian Journal of Geoscience, 128(2), 605–613.
    [Google Scholar]
  120. Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., & Rovere, A. (2016). Multiproxy assessment of Holocene relative sea‐level changes in the western Mediterranenan: Sea‐level variability and improvements in the definition of the isostatic signal. Earth‐Science Reviews, 155, 172–197.
    [Google Scholar]
  121. van Asselen, S., & Roosendaal, C. (2009). A new method for determining the bulk density of uncompacted peat from field settings. Journal of Sedimentary Research, 79, 918–922. https://doi.org/10.2110/jsr.2009.091
    [Google Scholar]
  122. van Asselen, S., Stouthamer, E., & van Asch, T. W. J. (2009). Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling. Earth‐Science Reviews, 92, 35–51.
    [Google Scholar]
  123. van Asselen, S., Stouthamer, E., & Smith, N. D. (2010). Factors controlling peat compaction in alluvial floodplains: A case study in the cold‐temperate Cumberland Marshes, Canada. Journal of Sedimentary Research, 80, 155–166. https://doi.org/10.2110/jsr.2010.015
    [Google Scholar]
  124. van Asselen, S. (2011). The contribution of peat compaction to total basin subsidence: Implications for the provision of accommodation space in organic‐rich deltas. Basin Research, 23, 239–255. https://doi.org/10.1111/j.1365-2117.2010.00482.x
    [Google Scholar]
  125. van Asselen, S., Erkens, G., Stouthamer, E., Woolderink, H. A. G., Geeraert, R. E. E., & Hefting, M. M. (2018). The relative contribution of peat compaction and oxidation to subsidence in built‐up areas in the Rhine‐Meuse delta, The Netherlands. Science of the Total Environment, 636, 177–191. https://doi.org/10.1016/j.scitotenv.2018.04.141
    [Google Scholar]
  126. van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., & Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In C. K.Wilgus, B. S.Hastings, C. G. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.VanWagoner (Eds.), Sea‐level changes: An integrated approach (vol. 42, pp. 39–45). SEPM Special Publication.
    [Google Scholar]
  127. Vergés, J., Marzo, M., & Munoz, J. A. (2002). Growth strata in foreland settings. Sedimentary Geology, 146, 621–9.
    [Google Scholar]
  128. Wilson, L. F., Pazzaglia, F. J., & Anastasio, D. A. (2009). A fluvial record of active fault propagation folding, Salsomaggiore anticline, northern Apennines, Italy. Journal of Geophysical Research, 114, B08403. https://doi.org/10.1029/2008JB005984
    [Google Scholar]
  129. Yeager, K. M., Brunner, C. A., Kulp, M. A., Fischer, D., Feagin, R. A., Schindler, K. J., … Bera, G. (2012). Significance of active growth faulting on marsh accretion processes in the lower Pearl River, Louisiana. Geomorphology, 153–154, 127–143. https://doi.org/10.1016/j.geomorph.2012.02.018
    [Google Scholar]
  130. Zapata, T. R., & Allmendinger, R. W. (1996). Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics, 15, 1065–1083. https://doi.org/10.1029/96TC00431
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12339
Loading
/content/journals/10.1111/bre.12339
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): holocene , peat layer , Po coastal plain and strata deformation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error