1887
Volume 31, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Geologic evidence across orogenic plateau margins enables the discrimination of the relative contributions of orogenic, epeirogenic and/or climatic processes that lead to growth and maintenance of those plateaus and their margins. Here, we discuss the mode of formation of the southern margin of the Central Anatolian Plateau (SCAP) and evaluate its time of formation using fieldwork in the onshore and seismic reflection data in the offshore. In the onshore, uplifted Miocene rocks in a dip‐slope topography show monocline flexure over >100 km, km‐scale asymmetric folds verging south, and outcrop‐scale syn‐sedimentary reverse faults. On the Turkish shelf, vertical faults transect the basal latest Messinian of a 10 km fold where on‐structure syntectonic wedges and synsedimentary unconformities indicate pre‐Pliocene uplift and erosion, followed by Pliocene and younger deformation. Collectively, Miocene rocks delineate a flexural monocline at plateau margin scale that is expressed along our on‐offshore sections as a kink‐band fold with a steep flank 20–25 km long. In these reconstructed sections, we estimate a relative vertical displacement of 3.8 km at rates of ca. 0.5 mm/y, and horizontal shortening values <1 %. We use this evidence together with our observations of shortening at outcrop, basin, plateau‐margin and forearc‐system scales to infer that the SCAP forms as a monoclinal flexure to accommodate deep‐seated thickening and shortening since >5 Ma, and to contextualize the plateau margin as the forearc high of the Cyprus subduction system.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12341
2019-03-26
2024-03-28
Loading full text...

Full text loading...

References

  1. Abgarmi, B., Delph, J., Ozacar, A., Beck, S., Zandt, G., Sandvol, E., … Biryol, C. (2017). Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions: New insights on isostatic compensation and slab dynamics. Geosphere, 13, 1774–1787. https://doi.org/10.1130/GES01509.1
    [Google Scholar]
  2. Aksu, A., Calon, T., Hall, J., Mansfield, S., & Yaşar, D. (2005). The Cilicia‐Adana basin complex, Eastern Mediterranean: Neogene evolution of an active fore‐arc basin in an obliquely convergent margin. Marine Geology, 221, 121–159.
    [Google Scholar]
  3. Aksu, A., Calon, T., Hall, J., & Yaşar, D. (2005). Origin and evolution of the Neogene Iskenderun Basin, northeastern Mediterranean Sea. Marine Geology, 221, 161–187.
    [Google Scholar]
  4. Aksu, A., Walsh‐Kennedy, S., Hall, J., Hiscott, R., Yaltırak, C., Akhun, S., & Çifçi, G. (2014). The Pliocene‐Quaternary tectonic evolution of the Cilicia and Adana basins, eastern Mediterranean: Special reference to the development of the Kozan Fault zone. Tectonophysics, 622, 22–43. https://doi.org/10.1016/j.tecto.2014.03.025
    [Google Scholar]
  5. Allmendinger, R., Jordan, T., Kay, S., & Isacks, B. (1997). The evolution of the Altiplano‐Puna plateau of the Central Andes. Annual Review of Earth and Planetary Sciences, 25, 139–174. https://doi.org/10.1146/annurev.earth.25.1.139
    [Google Scholar]
  6. Andrew, T., & Robertson, A. (2002). The Beyşehir–Hoyran–Hadim Nappes: Genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. Journal of the Geological Society, 159, 529–543. https://doi.org/10.1144/0016-764901-157
    [Google Scholar]
  7. Aydar, E. (1998). Early Miocene to Quaternary evolution of volcanism and the basin formation in western Anatolia: A review. Journal of Volcanology and Geothermal Research, 85, 69–82. https://doi.org/10.1016/S0377-0273(98)00050-X
    [Google Scholar]
  8. Bakırcı, T., Yoshizawa, K., & Özer, M. (2012). Three‐dimensional S‐wave structure of the upper mantle beneath Turkey from surface wave tomography. Geophysical Journal International, 190, 1058–1076. https://doi.org/10.1111/j.1365-246X.2012.05526.x
    [Google Scholar]
  9. Ballato, P., Mulch, A., Landgraf, A., Strecker, M., Dalconi, M., Friedrich, A., & Tabatabaei, S. (2010). Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth and Planetary Science Letters, 300, 125–138. https://doi.org/10.1016/j.epsl.2010.09.043
    [Google Scholar]
  10. Bartol, J., & Govers, R. (2014). A single cause for uplift of the Central and Eastern Anatolian plateau?Tectonophysics, 637, 116–136.
    [Google Scholar]
  11. Bassant, P., Van Buchem, F., Strasser, A., & Görür, N. (2005). The stratigraphic architecture and evolution of the Burdigalian carbonate—siliciclastic sedimentary systems of the Mut Basin, Turkey. Sedimentary Geology, 173, 187–232. https://doi.org/10.1016/j.sedgeo.2004.01.017
    [Google Scholar]
  12. Bird, P. (1979). Continental delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84, 7561–7571. https://doi.org/10.1029/JB084iB13p07561
    [Google Scholar]
  13. Biryol, C., Beck, S., Zandt, G., & Özacar, A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P‐wave tomography. Geophysical Journal, 184, 1037–1057. https://doi.org/10.1111/j.1365-246X.2010.04910.x
    [Google Scholar]
  14. Bridge, C., Calon, T., Hall, J., & Aksu, A. (2005). Salt tectonics in two convergent‐margin basins of the Cyprus arc, Northeastern Mediterranean. Marine Geology, 221, 223–259. https://doi.org/10.1016/j.margeo.2005.03.008
    [Google Scholar]
  15. Burton‐Ferguson, R., Aksu, A., Calon, T., & Hall, J. (2005). Seismic stratigraphy and structural evolution of the Adana Basin, eastern Mediterranean. Marine Geology, 221, 189–222. https://doi.org/10.1016/j.margeo.2005.03.009
    [Google Scholar]
  16. Calon, T., Aksu, A., & Hall, J. (2005a). The Neogene evolution of the Outer Latakia Basin and its extension into the Eastern Mesaoria Basin (Cyprus), Eastern Mediterranean. Marine Geology, 221, 61–94.
    [Google Scholar]
  17. Calon, T., Aksu, A., & Hall, J. (2005b). The Oligocene‐Recent evolution of the Mesaoria Basin (Cyprus) and its western marine extension, Eastern Mediterranean. Marine Geology, 221, 95–120.
    [Google Scholar]
  18. Çıner, A., Karabiyikoğlu, M., Monod, O., Deynoux, M., & Tuzcu, S. (2008). Late cenozoic sedimentary evolution of the Antalya Basin, Southern Turkey. Turkish Journal of Earth Sciences, 17, 709–41.
    [Google Scholar]
  19. Cipollari, P., Halásová, E., Gürbüz, K., & Cosentino, D. (2013). Middle‐Upper Miocene paleogeography of southern Turkey: Insights from stratigraphy and calcareous nannofossil biochronology of the Olukpınar and Başyayla sections (Mut‐Ermenek Basin). Turkish Journal of Earth Sciences, 22, 820–838. https://doi.org/10.3906/yer-1208-2
    [Google Scholar]
  20. Clark, M. (2012). Continental collision slowing due to viscous mantle lithosphere rather than topography. Nature, 483, 74–77. https://doi.org/10.1038/nature10848
    [Google Scholar]
  21. Clark, M., & Robertson, A. (2002). The role of the Early Tertiary Ulukisla Basin, southern Turkey, in suturing of the Mesozoic Tethys Ocean. Journal of the Geological Society, 159, 673–690. https://doi.org/10.1144/0016-764902-015
    [Google Scholar]
  22. Clark, M., & Robertson, A. (2005). Uppermost Cretaceous‐Lower Tertiary Ulukışla Basin, south‐central Turkey: Sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology, 173, 15–51. https://doi.org/10.1016/j.sedgeo.2003.12.010
    [Google Scholar]
  23. Cosentino, D., Buchwaldt, R., Sampalmieri, G., Iadanza, A., Cipollari, P., Schildgen, T., … Bowring, S. (2013). Refining the Mediterranean “Messinian gap” with high‐precision U‐Pb zircon geochronology, central and northern Italy. Geology, 41, 323–326. https://doi.org/10.1130/G33820.1
    [Google Scholar]
  24. Cosentino, D., Schildgen, T., Cipollari, P., Faranda, C., Gliozzi, E., Hudáčková, N., … Strecker, M. (2012). Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. GSA Bulletin, 124, 133–145. https://doi.org/10.1130/B30466.1
    [Google Scholar]
  25. Delph, J., Abgarmi, B., Ward, K., Beck, S., Özacar, A., Zandt, G., … Kalafat, D. (2017). The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia. Geosphere, 13, 1788–1805. https://doi.org/10.1130/GES01478.1
    [Google Scholar]
  26. Deniel, C., Aydar, E., & Gourgaud, A. (1998). The Hasan Dagi stratovolcano (Central Anatolia, Turkey): Evolution from calc‐alkaline to alkaline magmatism in a collision zone. Journal of Volcanology and Geothermal Research, 87, 275–302. https://doi.org/10.1016/S0377-0273(98)00097-3
    [Google Scholar]
  27. Dogan‐Kulahci, G., Temel, A., Gourgaud, A., Varol, E., Guillou, H., & Deniel, C. (2018). Contemporaneous alkaline and calc‐alkaline series in Central Anatolia (Turkey): Spatio‐temporal evolution of a post‐collisional Quaternary basaltic volcanism. Journal of Volcanology and Geothermal Research, 356, 56–74. https://doi.org/10.1016/j.jvolgeores.2018.02.012
    [Google Scholar]
  28. Eriş, K., Bassant, P., & Ülgen, U. (2005). Tectono‐stratigraphic evolution of an Early Miocene incised valley‐fill (Derinçay Formation) in the Mut Basin, Southern Turkey. Sedimentary Geology, 173, 151–185. https://doi.org/10.1016/j.sedgeo.2003.12.011
    [Google Scholar]
  29. Evans, G., Morgan, P., Evans, W., Evans, T., & Woodside, J. (1978). Faulting and halokinetics in the northeastern Mediterranean between Cyprus and Turkey. Geology, 6, 392–396. https://doi.org/10.1130/0091-7613(1978)6<392:FAHITN>2.0.CO;2
    [Google Scholar]
  30. Faranda, C., Gliozzi, E., Cipollari, P., Grossi, F., Darbaş, G., Gürbüz, K., … Cosentino, D. (2013). Messinian paleoenvironmental changes in the easternmost Mediterranean Basin: Adana Basin, southern Turkey. Turkish Journal of Earth Sciences, 22, 839–863.
    [Google Scholar]
  31. Fernández‐Blanco, D. (2014). Evolution of orogenic plateaus at subduction zones: Sinking and raising the southern margin of the Central Anatolian Plateau. Ph.D. Thesis Amsterdam: Vrije Universiteit.
    [Google Scholar]
  32. Fernández-Blanco, D., Bertotti, G., Cassola, T., & Willett, S. (2012). Neogene vertical tectonics of the south margin of the Central Anatolia plateau in relation to Cyprus Arc subduction. AGU Fall Meeting, San Francisco, CA.
    [Google Scholar]
  33. Fernández‐Blanco, D., Bertotti, G., & Çiner, A. (2013). Cenozoic tectonics of the Tuz Gölü Basin (Central Anatolia Plateau, Turkey). Turkish Journal of Earth Sciences, 22, 715–738. https://doi.org/10.3906/yer-1206-7
    [Google Scholar]
  34. Freund, R. (1979). Progressive strain in beds of monoclinal flexures. Geology, 7, 269–271. https://doi.org/10.1130/0091-7613(1979)7<269:PSIBOM>2.0.CO;2
    [Google Scholar]
  35. Fuller, C., Willett, S., & Brandon, M. (2006). Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34, 65–68. https://doi.org/10.1130/G21828.1
    [Google Scholar]
  36. Garcia‐Castellanos, D. (2007). The role of climate during high plateau formation. Insights from numerical experiments. Earth and Planetary Science Letters, 257, 372–390. https://doi.org/10.1016/j.epsl.2007.02.039
    [Google Scholar]
  37. Göğüş, O., & Pysklywec, R. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36, 723–726. https://doi.org/10.1130/G24982A.1
    [Google Scholar]
  38. Göğüş, O., Pysklywec, R., Şengör, A., & Gün, E. (2017). Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. NatureCommunications, 8, 1538. https://doi.org/10.1038/s41467-017-01611-3
    [Google Scholar]
  39. Görür, N., Oktay, F., Seymen, I., & Sengör, A. (1984). Palaeotectonic evolution of the Tuzgolu basin complex, Central Turkey: Sedimentary record of a Neo‐Tethyan closure. Geological Society of London Special Publications, 17, 467–482.
    [Google Scholar]
  40. Gürer, M. (2017). Subduction evolution in the Anatolian region: The rise, demise, and fate of the Anadolu Plate. University Utrecht.
  41. Hall, J., Aksu, A., Calon, T., & Yaşar, D. (2005). Varying tectonic control on basin development at an active microplate margin: Latakia Basin, Eastern Mediterranean. Marine Geology, 221, 15–60.
    [Google Scholar]
  42. Hall, J., Calon, T., Aksu, A., & Meade, S. (2005). Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea. Marine Geology, 221, 261–297.
    [Google Scholar]
  43. Huvaz, O. (2009). Comparative petroleum systems analysis of the interior basins of Turkey: Implications for petroleum potential. Marine and Petroleum Geology, 26, 1656–1676. https://doi.org/10.1016/j.marpetgeo.2009.05.002
    [Google Scholar]
  44. Ilgar, A., & Nemec, W. (2005). Early Miocene lacustrine deposits and sequence stratigraphy of the Ermenek Basin, Central Taurides, Turkey. Sedimentary Geology, 173, 233–275. https://doi.org/10.1016/j.sedgeo.2003.07.007
    [Google Scholar]
  45. Imprescia, P., Pondrelli, S., Vannucci, G., & Gresta, S. (2012). Regional centroid moment tensor solutions in Cyprus from 1977 to the present and seismotectonic implications. Journal of Seismology, 16, 147–167. https://doi.org/10.1007/s10950-011-9254-7
    [Google Scholar]
  46. Işler, F., Aksu, A., Hall, J., Calon, T., & Yaşar, D. (2005). Neogene development of the Antalya Basin, Eastern Mediterranean: An active forearc basin adjacent to an arc junction. Marine Geology, 221, 299–330. https://doi.org/10.1016/j.margeo.2005.03.006
    [Google Scholar]
  47. Janson, X., Van Buchem, F., Dromart, G., Eichenseer, H., Dellamonica, X., Boichard, R., … Eberli, G. (2010). Architecture and facies differentiation within a Middle Miocene carbonate platform, Ermenek, Mut Basin, southern Turkey. Geological Society, London, Special Publications, 329, 265–290. https://doi.org/10.1144/SP329.11
    [Google Scholar]
  48. Karabıyıkoğlu, M., Çiner, A., Monod, O., Deynoux, M., Tuzcu, S., & Örçen, S. (2000). Tectonosedimentary evolution of the Miocene Manavgat Basin, western Taurides, Turkey. Geological Society, London, Special Publications, 137, 271–294. https://doi.org/10.1144/GSL.SP.2000.173.01.14
    [Google Scholar]
  49. McCay, G. (2010). Tectonic‐sedimentary evolution of the Girne (Kyrenia) Range and the Mesarya (Mesaoria) Basin, North Cyprus. PhD Thesis. University of Edinburgh.
  50. McCay, G., & Robertson, A. (2012). Late Eocene‐Neogene sedimentary geology of the Girne (Kyrenia) Range, northern Cyprus: A case history of sedimentation related to progressive and diachronous continental collision. Sedimentary Geology, 265, 30–55. https://doi.org/10.1016/j.sedgeo.2012.03.001
    [Google Scholar]
  51. McCay, G., Robertson, A., Kroon, D., Raffi, I., Ellam, R., & Necdet, M. (2012). Stratigraphy of Cretaceous to Lower Pliocene sediments in the northern part of Cyprus based on comparative 87Sr/86Sr isotopic, nannofossil and planktonic foraminiferal dating. Geological Magazine, 150, 333–359. https://doi.org/10.1017/S0016756812000465
    [Google Scholar]
  52. Meijers, M., Brocard, G., Cosca, M., Lüdecke, T., Teyssier, C., Whitney, D., & Mulch, A. (2018). Rapid late Miocene surface uplift of the Central Anatolian Plateau margin. Earth and Planetary Science Letters, 497, 29–41. https://doi.org/10.1016/j.epsl.2018.05.040
    [Google Scholar]
  53. Monod, O. (1977). Recherches geologiques dans le Taurus occidental au Sud de Beysehir (Turquie). PhD. Université de Paris‐Sud Centre d’Orsay.
  54. Monod, O., Kuzucuoğlu, C., & Okay, A. (2006). A Miocene palaeovalley network in the Western Taurus (Turkey). Turkish Journal of Earth Sciences, 15, 709–23.
    [Google Scholar]
  55. Mulch, A., Graham, S., & Chamberlain, C. (2006). Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada. Science, 313, 87–89. https://doi.org/10.1126/science.1125986
    [Google Scholar]
  56. Nelson, K., Zhao, W., Brown, L., Kuo, J., Che, J., Liu, X., … Edwards, M. (1996). Partially molten middle crust beneath Southern Tibet: Synthesis of project INDEPTH results. Science, 274, 1684–1688. https://doi.org/10.1126/science.274.5293.1684
    [Google Scholar]
  57. Öğretmen, N., Cipollari, P., Frezza, V., Faranda, C., Karanika, K., Gliozzi, E., …Cosentino, D. (2018). Evidence for 1.5 km of uplift of the Central Anatolian Plateau’s Southern Margin in the Last 450 kyr and Implications for Its Multiphased Uplift History. Tectonics, 2017TC004805.
  58. Özsayin, E., Ciner, A., Rojay, B., Dirik, K., Melnick, D., Fernández‐Blanco, D., … Sudo, (2013). Plio‐Quaternary extensional tectonics of the Central Anatolian Plateau: A case study from the Tuz Gölü Basin, Turkey. Turkish Journal of Earth Sciences, 22, 691–714.
    [Google Scholar]
  59. Patton, T. (2004). Numerical models of growth‐sediment development above an active monocline. Basin Research, 16, 25–39. https://doi.org/10.1111/j.1365-2117.2003.00220.x
    [Google Scholar]
  60. Pavlis, T., & Bruhn, R. (1983). Deep‐seated flow as a mechanism for the uplift of broad forearc ridges and its role in the exposure of high P/T metamorphic terranes. Tectonics, 2, 473–497. https://doi.org/10.1029/TC002i005p00473
    [Google Scholar]
  61. Pope, D., & Willett, S. (1998). Thermal‐mechanical model for crustal thickening in the central Andes driven by ablative subduction. Geology, 26, 511–514. https://doi.org/10.1130/0091-7613(1998)026<0511:TMMFCT>2.3.CO;2
    [Google Scholar]
  62. Portner, D., Delph, J., Biryol, C., Beck, S., Zandt, G., Özacar, A., … Türkelli, N. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P‐wave tomography beneath Anatolia. Geosphere, 14, 907–925. https://doi.org/10.1130/GES01617.1
    [Google Scholar]
  63. Powell, C. (1986). Continental underplating model for the rise of the Tibetan Plateau. Earth and Planetary Science Letters, 81, 79–94. https://doi.org/10.1016/0012-821X(86)90102-0
    [Google Scholar]
  64. Reches, Z., Hoexter, D., & Hirsch, F. (1981). The structure of a monocline in the Syrian Arc system, Middle East‐Surface and subsurface analysis. Journal of Petroleum Geology, 3, 413–426. https://doi.org/10.1111/j.1747-5457.1981.tb00939.x
    [Google Scholar]
  65. Riba, O. (1976). Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: A genetic interpretation. Sedimentary Geology, 15, 213–233. https://doi.org/10.1016/0037-0738(76)90017-8
    [Google Scholar]
  66. Robertson, A. (1998). Mesozoic‐Tertiary tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160; Chapter 54.
  67. Rowley, D., & Currie, B. (2006). Palaeo‐altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439, 677–681. https://doi.org/10.1038/nature04506
    [Google Scholar]
  68. Şafak, Ü., Kelling, G., Gökçen, N., & Gürbüz, K. (2005). The mid‐Cenozoic succession and evolution of the Mut basin, southern Turkey, and its regional significance. Sedimentary Geology, 173, 121–150. https://doi.org/10.1016/j.sedgeo.2004.03.012
    [Google Scholar]
  69. Schildgen, T., Yıldırım, C., Cosentino, D., & Strecker, M. (2014). Linking slab break‐off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth‐Science Reviews, 128, 147–168. https://doi.org/10.1016/j.earscirev.2013.11.006
    [Google Scholar]
  70. Schildgen, T., Cosentino, D., Bookhagen, B., Niedermann, S., Yıldırım, C., Echtler, H., … Strecker, M. (2012). Multi‐phased uplift of the southern margin of the Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes. Earth and Planetary Science Letters, 317–318, 85–95. https://doi.org/10.1016/j.epsl.2011.12.003
    [Google Scholar]
  71. Şengör, A., Özeren, S., Genç, T., & Zor, E.(2003). East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure. Geophysical Research Letters, 30, 709–12. https://doi.org/10.1029/2003GL017858
    [Google Scholar]
  72. Sobel, E., Hilley, G., & Strecker, M. (2003). Formation of internally drained contractional basins by aridity‐limited bedrock incision. Journal of Geophysical Research: Solid Earth, 108(B7). https://doi.org/10.1029/2002JB001883
    [Google Scholar]
  73. Strecker, M., Alonso, R., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M., … Sobel, E. (2009). Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?Geology, 37, 643–646.
    [Google Scholar]
  74. Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibet plateau. Science, 294, 1671–1677. https://doi.org/10.1126/science.105978
    [Google Scholar]
  75. Tindall, S., & Davis, G. (1999). Monocline development by oblique‐slip fault‐propagation folding: The East Kaibab monocline, Colorado Plateau, Utah. Journal of Structural Geology, 21, 1303–1320. https://doi.org/10.1016/S0191-8141(99)00089-9
    [Google Scholar]
  76. Ulü, Ü. (2002). Geological map of Turkey, Adana (No. 15): Maden Tetkik ve Arama Genel Müdürlüğü (MTA), M. Şenel (Ed)., scale 1;500,000, 1 sheet.
  77. Walsh‐Kennedy, S., Aksu, A., Hall, J., Hiscott, R., Yaltırak, C., & Çifçi, G. (2014). Source to sink: The development of the latest Messinian to Pliocene‐Quaternary Cilicia and Adana Basins and their linkages with the onland Mut Basin, eastern Mediterranean. Tectonophysics, 622, 709–21. https://doi.org/10.1016/j.tecto.2014.01.019
    [Google Scholar]
  78. Willett, S., & Schlunegger, F. (2010). The last phase of deposition in the Swiss Molasse Basin: From foredeep to negative‐alpha basin. Basin Research, 22, 623–639. https://doi.org/10.1111/j.1365-2117.2009.00435.x
    [Google Scholar]
  79. Willsey, S. P., Umhoefer, P. J., & Hilley, G. E. (2002). Early evolution of an extensional monocline by a propagating normal fault: 3D analysis from combined field study and numerical modeling. Journal of Structural Geology, 24, 651–669. https://doi.org/10.1016/S0191-8141(01)00120-1
    [Google Scholar]
  80. Yetiş, C., Kelling, G., Gökçen, S. L., & Baroz, F. (1995). A revised stratigraphic framework for Later Cenozoic sequences in the northeastern Mediterranean region. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 84, 794. https://doi.org/10.1007/BF00240569
    [Google Scholar]
  81. Yin, A., & Harrison, T. M. (2000). Geologic Evolution of the Himalayan‐Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12341
Loading
/content/journals/10.1111/bre.12341
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error