1887
Volume 31, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12343
2019-03-03
2020-03-30
Loading full text...

Full text loading...

References

  1. Abadi, A. M., Wees, J.‐D.‐V., Dijk, P. M. V., & Cloetingh, S. A. P. L. (2005). Tectonics and son of the Sirt Basin, Libya. AAPG Bulletin, 92, 993–1027.
    [Google Scholar]
  2. Abdullayev, N. A., Kadirov, F., & Guliyev, I. S. (2017). Subsidence history and basin‐fill evolution in the South Caspian Basin from geophysical mapping, flexural backstripping, forward lithospheric modelling and gravity modelling. Geological Society, London, Special Publications, 427, 175–196. https://doi.org/10.1144/SP427.5
    [Google Scholar]
  3. Allen, P. A., & Allen, J. R. (2005). Basin analysis, principles and applications (2nd ed.). Oxford, UK: Blackwell Publishing.
    [Google Scholar]
  4. Argand, E. (1922). La Tectonique De L'asie. Congrès Géologique International (XIIIe session), Belgique.
  5. Armstrong, P. A. (2005). Thermochronometers in sedimentary Basins. Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, 58, 499–525.
    [Google Scholar]
  6. Bai, Y. S., Li, L., Niu, Z. J., & Cui, J. L. (2005). Characteristics and tectonic setting of Erlongba formation volcanic rocks in Geladandong Area of Central Qiangtang. Acta Geosicientia Sinica, 26, 113–120 (in Chinese with English abstract).
    [Google Scholar]
  7. Bernet, M., Zattin, M., Garver, J. I., Brandon, M. T., & Vance, J. A. (2001). Steady‐state exhumation of the European Alps. Geology, 29, 35–38. https://doi.org/10.1130/0091-7613(2001)029<0035:SSEOTE>2.0.CO;2
    [Google Scholar]
  8. Bertram, G. T., & Milton, N. J. (1988). Reconstructing basin evolution from sedimentary thickness; the importance of palaeobathymetric control, with reference to the North Sea. Basin Research, 1, 247–257. https://doi.org/10.1111/j.1365-2117.1988.tb00020.x
    [Google Scholar]
  9. Blisniuk, P. M., Hacker, B. R., Glodny, J., Ratschbacher, L., Bi, S., Wu, Z., … Calvert, A. (2001). Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412, 628.
    [Google Scholar]
  10. Bond, G. C., & Kominz, M. A. (1984). Construction of tectonic subsidence curves for the early paleozoic miogeocline, Southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup, and crustal thinning. Geological Society of America Bulletin, 95, 155–173. https://doi.org/10.1130/0016-7606(1984)95<155:COTSCF>2.0.CO;2
    [Google Scholar]
  11. Brunet, M. F., Korotaev, M. V., Ershov, A. V., & Nikishin, A. M. (2003). The South Caspian Basin: A review of its evolution from subsidence modelling. Sedimentary Geology, 156, 119–148. https://doi.org/10.1016/S0037-0738(02)00285-3
    [Google Scholar]
  12. Busby, C. J., & Ingersoll, R. V. (1995). Tectonics of sedimentary basins. Cambridge, UK: Blackwell Science.
    [Google Scholar]
  13. Carrapa, B., & Garcia‐Gastellanos, D. (2005). Western Alpine back‐thrusting as subsidence mechanism in the Western Po Basin. Tectonophysics, 406, 197–212.
    [Google Scholar]
  14. Cederbom, C. E., Sinclair, H. D., Schlunegger, F., & Rahn, M. K. (2004). Climate‐induced rebound and exhumation of the European Alps. Geology, 32, 709–712. https://doi.org/10.1130/G20491.1
    [Google Scholar]
  15. Chang, E. Z. (2000). Geology and tectonics of the Songpan‐Ganzi Fold Belt, Southwestern China. International Geologiy Review, 42, 813–831. https://doi.org/10.1080/00206810009465113
    [Google Scholar]
  16. Chen, J. L., Wu, J. B., Xu, J. F., Dong, Y. H., Wang, B. D., & Kang, Z. Q. (2013). Geochemistry of Eocene high‐Mg# adakitic rocks in the northern Qiangtang Terrane, Central Tibet: Implications for early uplift of the Plateau. Geological Society of America Bulletin, 125, 1800–1819. https://doi.org/10.1130/B30755.1
    [Google Scholar]
  17. Chen, L., Jenkyns, H. C., Xu, G., Mattioli, E., Da, X., Yi, H., … Huang, Z. (2016). Preliminary nannofossil and geochemical data from Jurassic Black Shales from the Qiangtang Basin, northern Tibet. Journal of Asian Earth Sciences, 115, 257–267.
    [Google Scholar]
  18. Chen, L., Xu, G. W., Da, X. J., Ji, C. J., & Yi, H. S. (2014). Biomarkers of middle to late Jurassic marine sediments from a canonical section: New records from the Yanshiping Area, Northern Tibet. Mar Petrol Geol, 51, 256–267. https://doi.org/10.1016/j.marpetgeo.2013.12.018
    [Google Scholar]
  19. Chen, S. S., Fan, W. M., Shi, R. D., Gong, X. H., & Wu, K. (2017). Removal of deep lithosphere in ancient continental collisional Orogens: A case study from central Tibet, China. Geochemistry, Geophysics, Geosystems, 18, 1225–1243.
    [Google Scholar]
  20. Chen, W., Zhang, S., Ding, J., Zhang, J., Zhao, X., Zhu, L., … Wu, H. (2017). Combined paleomagnetic and geochronological study on Cretaceous Strata of the Qiangtang Terrane, Central Tibet. Gondwana Research, 41, 373–389.
    [Google Scholar]
  21. Cheng, L., Wang, J., Wan, Y., Fu, X., & Zhong, L. (2017). Astrochronology of the Middle Jurassic Buqu Formation (Tibet, China) and its implications for the Bathonian time scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 51–58. https://doi.org/10.1016/j.palaeo.2017.08.018
    [Google Scholar]
  22. Christie‐Blick, N., & Biddle, K. T. (1985). Deformation and basin formation along strike‐slip faults. In K. T.Biddle, & N.Christie‐Blick (Eds.), Strike‐slip deformation, basin formation, and sedimentation (pp. 754–34). Tulsa, OK: Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  23. Currie, B. S., Rowley, D. B., & Tabor, N. J. (2005). Middle miocene paleoaltimetry of southern Tibet: implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33, 181–184.
    [Google Scholar]
  24. Dai, J., Wang, C., Hébert, R., Li, Y., Zhong, H., Guillaume, R., … Wei, Y. (2011). Late Devonian OIB alkaline gabbro in the yarlung zangbo suture zone: Remnants of the paleo‐tethys?Gondwana Research, 19, 232–243.
    [Google Scholar]
  25. Dan, W., Wang, Q., White, W. M., Zhang, X.‐Z., Tang, G.‐J., Jiang, Z.‐Q., … Ou, Q. (2018). Rapid formation of eclogites during a nearly closed ocean: Revisiting the pianshishan eclogite in Qiangtang, Central Tibetan Plateau. Chemical Geology, 477, 112–122. https://doi.org/10.1016/j.chemgeo.2017.12.012
    [Google Scholar]
  26. Decelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  27. Dewey, J. F., Shackleton, R. M., Chengfa, C., & Yiyin, S. (1988). The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 327, 379–413. https://doi.org/10.1098/rsta.1988.0135
    [Google Scholar]
  28. Ding, L., Xu, Q., Yue, Y., Wang, H., Cai, F., & Li, S. (2014). The andean‐type Gangdese Mountains: Paleoelevation record from the Paleocene‐Eocene Linzhou Basin. Earth and Planetary Science Letters, 392, 250–264.
    [Google Scholar]
  29. Ding, L., Yang, D., Cai, F. L., Pullen, A., Kapp, P., Gehrels, G. E., … Shi, R. D. (2013). Provenance analysis of the Mesozoic Hoh‐Xil‐Songpan‐Ganzi turbidites in Northern Tibet: Implications for the tectonic evolution of the Eastern Paleo‐Tethys Ocean. Tectonics, 32, 34–48.
    [Google Scholar]
  30. Ding, W. L., Wan, H., Zhang, Y. Q., & Han, G. Z. (2013). Characteristics of the middle jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin of Tibet. Journal of Asian Earth Sciences, 66, 63–72.
    [Google Scholar]
  31. Donelick, R. A., O'Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission‐track analysis. Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, 58, 49–94.
    [Google Scholar]
  32. Dressel, I., Scheck‐Wenderoth, M., & Cacace, M. (2017). Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, Offshore Sw Africa. Tectonophysics, 716, 168–181. https://doi.org/10.1016/j.tecto.2016.08.007
    [Google Scholar]
  33. Ding, L., Spicer, R. A., Yang, J., Xu, Q., Cai, F. L., Li, S., … Mehrotra, R. (2017). Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45, 215–222.
    [Google Scholar]
  34. Dunkl, I. (2002). Trackkey: A windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28, 3–12. https://doi.org/10.1016/S0098-3004(01)00024-3
    [Google Scholar]
  35. Einsele, G. (1992). Sedimentary Basins: Evolution, facies, and sediment budget. Berlin, Germany: Springer‐Verlag.
    [Google Scholar]
  36. Fan, J. J., Li, C., Liu, Y. M., & Xu, J. X. (2015). Age and nature of the late early Cretaceous Zhaga Formation, Northern Tibet: Constraints on when the Bangong‐Nujiang Neo‐Tethys Ocean closed. International Geologiy Review, 57, 342–353. https://doi.org/10.1080/00206814.2015.1006695
    [Google Scholar]
  37. Fan, J. J., Li, C., Wu, H., Zhang, T. Y., Wang, M., Chen, J. W., & Xu, J. X. (2016). Late Jurassic adakitic granodiorite in the Dong Co Area, Northern Tibet: Implications for subduction of the bangong‐nujiang oceanic lithosphere and related accretion of the Southern Qiangtang Terrane. Tectonophysics, 691, 345–361. https://doi.org/10.1016/j.tecto.2016.10.026
    [Google Scholar]
  38. Fang, X., Song, C., Yan, M., Zan, J., Liu, C., Sha, J., … Zhang, D. (2016). Mesozoic litho‐ and magneto‐stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites. Gondwana Research, 37, 110–129. https://doi.org/10.1016/j.gr.2016.05.012
    [Google Scholar]
  39. Fu, X. G., Wang, J., Tan, F. W., Chen, M., & Chen, W. B. (2010). The late Triassic rift‐related volcanic rocks from eastern Qiangtang, Northern Tibet (China): Age and tectonic implications. Gondwana Research, 17, 135–144. https://doi.org/10.1016/j.gr.2009.04.010
    [Google Scholar]
  40. Fu, X. G., Wang, J., Wang, Z. J., & Chen, W. X. (2007). Identification of sedimentary gap between the late Triassic Nadi Kangri Formation and its underlying strata in the Qiangtang Basin, Northern Tibet and its geological significance. Geological Review, 53, 329–336 (in Chinese with English abstract).
    [Google Scholar]
  41. Galbraith, R. (1981). On statistical models for fission track counts. Mathematical Geology, 13, 471–478. https://doi.org/10.1007/BF01034498
    [Google Scholar]
  42. Galbraith, R. F. (2005). Statistics for fission track analysis. Boca Raton, FL: CRC Press.
    [Google Scholar]
  43. Galbraith, R. F., & Green, P. F. (1990). Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17, 197–206. https://doi.org/10.1016/1359-0189(90)90035-V
    [Google Scholar]
  44. Gleadow, A. (1981). Fission‐track dating methods: What are the real alternatives?Nuclear Tracks, 5, 3–14.
    [Google Scholar]
  45. Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., & Lourens, L. J. (2004). A new geologic time scale, with special reference to Precambrian and neogene. Episodes, 27, 83–100.
    [Google Scholar]
  46. Green, P. (1981). A new look at statistics in fission‐track dating. Nuclear Tracks, 5, 77–86. https://doi.org/10.1016/0191-278X(81)90029-9
    [Google Scholar]
  47. Guynn, J. H., Kapp, P., Pullen, A., Heizler, M., Gehrels, G., & Ding, L. (2006). Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34, 505–508. https://doi.org/10.1130/G22453.1
    [Google Scholar]
  48. He, J. L., Wang, J., Tan, F. W., Chen, M., Li, Z. X., Sun, T., … Chen, W. B. (2014). A comparative study between present and palaeo‐heat flow in the Qiangtang Basin, northern Tibet, China. Marine and Petroleum Geology, 57, 345–358. https://doi.org/10.1016/j.marpetgeo.2014.05.020
    [Google Scholar]
  49. Holt, P. J., Allen, M. B., & van Hunen, J. (2015). Basin formation by thermal subsidence of accretionary orogens. Tectonophysics, 639, 132–143. https://doi.org/10.1016/j.tecto.2014.11.021
    [Google Scholar]
  50. Holt, P. J., Allen, M. B., van Hunen, J., & Bjørnseth, H. M. (2010). Lithospheric cooling and thickening as a basin forming mechanism. Tectonophysics, 495, 184–194. https://doi.org/10.1016/j.tecto.2010.09.014
    [Google Scholar]
  51. Homewood, P., Allen, P. A., & Williams, G. D. (1986). Dynamics of the Molasse Basin of Western Switzerland. In P. A.Allen, & P.Homewood (Eds.), Foreland Basins (pp. 199–217). Oxford, UK: Special Publication of the International Association of Sedimentologists, Blackwell Science.
    [Google Scholar]
  52. Horton, B. K. (2012). Cenozoic evolution of Hinterland Basins in the Andes and Tibet. In C.Busby, & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent advances (pp. 427–444). New York, NY: John Wiley & Sons, Ltd.
    [Google Scholar]
  53. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth‐Science Reviews, 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025
    [Google Scholar]
  54. Huang, Q. T., Liu, W. L., Xia, B., Cai, Z. R., Chen, W. Y., Li, J. F., & Yin, Z. X. (2017). Petrogenesis of the Majiari Ophiolite (Western Tibet, China): Implications for intra‐oceanic subduction in the Bangong‐Nujiang Tethys. Journal of Asian Earth Sciences, 146, 337–351. https://doi.org/10.1016/j.jseaes.2017.06.008
    [Google Scholar]
  55. Hurford, A. J., & Green, P. F. (1983). The zeta‐age calibration of fission‐track dating. Chemical Geology, 41, 285–317. https://doi.org/10.1016/S0009-2541(83)80026-6
    [Google Scholar]
  56. Kapp, P., Decelles, P. G., Gehrels, G. E., Heizler, M., & Ding, L. (2007). Geological records of the Lhasa‐Qiangtang and Indo‐Asian collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119, 917–933.
    [Google Scholar]
  57. Kapp, P., Yin, A., Harrison, T. M., & Ding, L. (2005). Cretaceous‐tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117, 865–878.
    [Google Scholar]
  58. Kapp, P., Yin, A., Manning, C. E., Harrison, T. M., Taylor, M. H., & Ding, L. (2003). Tectonic evolution of the early Mesozoic blueschist‐bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22, 1043. https://doi.org/10.1029/2002TC001383
    [Google Scholar]
  59. Kapp, P., Yin, A., Manning, C. E., Murphy, M., Harrison, T. M., Spurlin, M., … Wu, C. M. (2000). Blueschist‐bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 28, 19–22. https://doi.org/10.1130/0091-7613(2000)28<19:BMCCIT>2.0.CO;2
    [Google Scholar]
  60. Ketcham, R. A. (2005). The role of crystallographic angle in characterizing and modeling apatite fission‐track length data. Radiation Measurements, 39, 595–601. https://doi.org/10.1016/j.radmeas.2004.07.008
    [Google Scholar]
  61. Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., & Hurford, A. J. (2007). Improved modeling of fission‐track annealing in apatite. American Mineralogist., 92, 799–810. https://doi.org/10.2138/am.2007.2281
    [Google Scholar]
  62. Ketcham, R. A., Donelick, R. A., & Carlson, W. D. (1999). Variability of apatite fission‐track annealing kinetics; III, Extrapolation to geological time scales. American Mineralogist, 84, 1235–1255. https://doi.org/10.2138/am-1999-0903
    [Google Scholar]
  63. Kneller, B. C. (1991). A foreland basin on the southern margin of Iapetus. Journal of the Geological Society, 148, 207–210. https://doi.org/10.1144/gsjgs.148.2.0207
    [Google Scholar]
  64. Kuhn, P. P., Echtler, H., Littke, R., & Alfaro, G. (2010). Thermal basin modelling of the Arauco forearc basin, south central Chile — Heat flow and active margin tectonics. Tectonophysics, 495, 111–128. https://doi.org/10.1016/j.tecto.2009.07.026
    [Google Scholar]
  65. Leary, R. J., Quade, J., Decelles, P. G., & Reynolds, A. (2017). Evidence from paleosols for low to moderate elevation of the India-Asia suture zone during mid-cenozoic time. Geology, 45, 399–402.
    [Google Scholar]
  66. Li, C., Cheng, L., Hu, K., Yang, Z., & Hong, Y. (1995). Study on the paleo‐tethys suture zone of lungmu Co‐Shuanghu, Tibet. Beijing, China: Geological Publishing House.
    [Google Scholar]
  67. Li, G. M., Li, J. X., Zhao, J. X., Qin, K. Z., Cao, M. J., & Evans, N. J. (2015). Petrogenesis and tectonic setting of triassic granitoids in the Qiangtang Terrane, Central Tibet: Evidence from U‐Pb ages, petrochemistry and Sr‐Nd‐Hf isotopes. Journal of Asian Earth Sciences, 105, 443–455.
    [Google Scholar]
  68. Li, G. M., Qin, K. Z., Li, J. X., Evans, N. J., Zhao, J. X., Cao, M. J., & Zhang, X. N. (2017). Cretaceous magmatism and metallogeny in the Bangong‐Nujiang Metallogenic Belt, Central Tibet: Evidence from petrogeochemistry, zircon U‐Pb ages, and Hf–O isotopic compositions. Gondwana Research, 41, 110–127.
    [Google Scholar]
  69. Li, H. Q., Xu, Z. Q., Webb, A. A. G., Li, T. F., Ma, S. W., & Huang, X. M. (2017). Early Jurassic tectonism occurred within the Basu Metamorphic Complex, Eastern Central Tibet: Implications for an archipelago‐accretion orogenic model. Tectonophysics, 702, 29–41.
    [Google Scholar]
  70. Li, J., & Batten, D. J. (2004). Early Cretaceous palynofloras from the Tanggula Mountains of the northern Qinghai‐Xizang (Tibet) Plateau, China. Cretaceous Research, 25, 531–542. https://doi.org/10.1016/j.cretres.2004.04.005
    [Google Scholar]
  71. Li, S., Ding, L., Guilmette, C., Fu, J., Xu, Q., Yue, Y., & Henrique‐Pinto, R. (2017). The subduction‐accretion history of the Bangong‐Nujiang Ocean: Constraints from provenance and geochronology of the mesozoic strata near Gaize, Central Tibet. Tectonophysics, 702, 42–60.
    [Google Scholar]
  72. Li, Y., He, J., Han, Z., Wang, C., Ma, P., Zhou, A., … Xu, M. (2016). Late Jurassic sodium‐rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction. Lithos, 245, 34–46. https://doi.org/10.1016/j.lithos.2015.10.014
    [Google Scholar]
  73. Li, Y., He, J., Wang, C., Han, Z., Ma, P., Xu, M., & Du, K. (2015). Cretaceous volcanic rocks in south Qiangtang Terrane: Products of northward subduction of the Bangong‐Nujiang Ocean?Journal of Asian Earth Sciences, 104, 69–83.
    [Google Scholar]
  74. Li, Y., He, J., Wang, C., Santosh, M., Dai, J., Zhang, Y., … Wang, J. (2013). Late cretaceous K‐rich magmatism in central Tibet: Evidence for early elevation of the Tibetan Plateau?Lithos, 160, 754–13.
    [Google Scholar]
  75. Li, Y., Wang, C., & Yi, H. (2002). Filled sequence and evolution of the Mesozoic Qiangtang composite foreland basin in the Qinghai‐Tibet plateau. Journal of Stratigraphy, 26, 62–67 (in Chinese with English abstract).
    [Google Scholar]
  76. Li, Y., Wang, C., & Yi, H. (2003). The late Triassic collision and sedimentary responses at western segment of jinshajing suture, Tibet. Acta Sedimentologica Sinica, 21, 191–197 (in Chinese with English abstract).
    [Google Scholar]
  77. Li, Y., Wang, C., Yi, H., Shi, H., Lin, J., Zhu, L., & Li, X. (2001). Fill models of in the Qiangtang composite foreland basin in Qinghai‐Xizang Plateau, China. Acta Sedimentologica Sinica, 19, 20–27 (in Chinese with English abstract).
    [Google Scholar]
  78. Liang, X., Wang, G., Yang, B., Ran, H., Zheng, Y., Du, J., & Li, L. (2017). Stepwise exhumation of the Triassic Lanling high‐pressure metamorphic belt in Central Qiangtang, Tibet: Insights from a coupled study of metamorphism, deformation, and geochronology. Tectonics, 36, 652–670. https://doi.org/10.1002/2016TC004455
    [Google Scholar]
  79. Liu, D., Shi, R., Ding, L., Huang, Q., Zhang, X., Yue, Y., & Zhang, L. (2017). Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong–Nujiang Tethyan Ocean. Gondwana Research, 41, 157–172. https://doi.org/10.1016/j.gr.2015.04.007
    [Google Scholar]
  80. Liu, Y., Santosh, M., Zhao, Z. B., Niu, W. C., & Wang, G. H. (2011). Evidence for palaeo‐Tethyan oceanic subduction within central Qiangtang, northern Tibet. Lithos, 127, 39–53. https://doi.org/10.1016/j.lithos.2011.07.023
    [Google Scholar]
  81. Lu, L., Zhang, K. J., Yan, L. L., Jin, X., & Zhang, Y. X. (2017). Was late triassic tanggula granitoid (Central Tibet, Western China) a product of melting of underthrust songpan‐ganzi flysch sediments?Tectonics, 36, 902–928.
    [Google Scholar]
  82. Magoon, L. B., & Dow, W. G. (1994).The petroleum system. In L. B.Magoon, & W. G.Dow (Eds.), The petroleum system: From source to trap 60 (pp. 3–24). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  83. Miall, A. (1995). Collision‐related foreland basins. In C. J.Busby, & R. V.Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 393–424). Oxford, UK: Blackwell Science.
    [Google Scholar]
  84. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  85. Mitrovica, J. X., Beaumont, C., & Jarvis, G. T. (1989). Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8, 1079–1094. https://doi.org/10.1029/TC008i005p01079
    [Google Scholar]
  86. Murphy, M. A., Yin, A., Harrison, T. M., DüRR, S. B., Chen, Z., Ryerson, F. J., … Zhou, X. (1997). Did the Indo‐Asian collision alone create the Tibetan Plateau?Geology, 25, 719–722.
    [Google Scholar]
  87. Naeser, N. D., Naeser, C. W., & McCulloh, T. H. (1989). The application of fission‐track dating to the depositional and thermal history of rocks in sedimentary basins. In N.Naeser, & T.McCulloh (Eds.), Thermal history of sedimentary basins (pp. 157–180). Berlin, Germany: Springer.
    [Google Scholar]
  88. Naylor, M., & Sinclair, H. D. (2008). Pro‐ vs. retro‐foreland basins. Basin Research, 20, 285–303. https://doi.org/10.1111/j.1365-2117.2008.00366.x
    [Google Scholar]
  89. Nie, S., Yin, A., Rowley, D. B., & Jin, Y. (1994). Exhumation of the Dabie Shan ultra‐high‐pressure rocks and accumulation of the Songpan‐Ganzi flysch sequence, central China. Geology, 22, 999–1002. https://doi.org/10.1130/0091-7613(1994)022<0999:EOTDSU>2.3.CO;2
    [Google Scholar]
  90. O’Sullivan, P. B., & Parrish, R. R. (1995). The importance of apatite composition and single‐grain ages when interpreting fission track data from plutonic rocks: a case study from the Coast Ranges, British Columbia. Earth and Planetary Science Letters, 132, 213–224. https://doi.org/10.1016/0012-821X(95)00058-K
    [Google Scholar]
  91. Ogg, J. G., Ogg, G., & Gradstein, F. M. (2008). The concise geologic time scale. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  92. Ou, Q., Wang, Q., Wyman, D. A., Zhang, H. X., Yang, J. H., Zeng, J. P., … Qi, Y. (2017). Eocene adakitic porphyries in the central‐northern qiangtang block, Central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau. Journal of Geophysical Research: Solid Earth, 122, 1025–1053.
    [Google Scholar]
  93. Pearce, J. A., & Houjun, M. (1988). Volcanic rocks of the 1985 Tibet geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 327, 169–201. https://doi.org/10.1098/rsta.1988.0125
    [Google Scholar]
  94. Persano, C., Stuart, F. M., Bishop, P., & Dempster, T. J. (2005). Deciphering continental breakup in eastern Australia using low‐temperature thermochronometers. Journal of Geophysical Research: Solid Earth, 110, B12405. https://doi.org/10.1029/2004JB003325
    [Google Scholar]
  95. Pullen, A., & Kapp, P. (2014). Mesozoic tectonic history and lithospheric structure of the Qiangtang Terrane: Insights from the Qiangtang Metamorphic Belt, Central Tibet. Geological Society of America Special Papers, 507.
  96. Pullen, A., Kapp, P., Gehrels, G. E., Vervoort, J. D., & Ding, L. (2008). Triassic continental subduction in central Tibet and Mediterranean‐style closure of the Paleo‐Tethys Ocean. Geology, 36, 351–354. https://doi.org/10.1130/G24435A.1
    [Google Scholar]
  97. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419–466.
    [Google Scholar]
  98. Ren, Z. L., Cui, J. P., Liu, C. Y., Li, T. J., Chen, G., Dou, S., … Luo, Y. T. (2015). Apatite fission track evidence of uplift cooling in the Qiangtang basin and constraints on the Tibetan Plateau uplift. Acta Geologica Sinica – English Edition, 89, 467–484. https://doi.org/10.1111/1755-6724.12441
    [Google Scholar]
  99. Roger, F., Jolivet, M., Cattin, R., & Malavieille, J. (2011). Mesozoic‐Cenozoic tectonothermal evolution of the eastern part of the Tibetan Plateau (Songpan‐Garzê, Longmen Shan area): insights from thermochronological data and simple thermal modelling. Geological Society, London, Special Publications, 353, 9–25. https://doi.org/10.1144/SP353.2
    [Google Scholar]
  100. Rohrmann, A., Kapp, P., Carrapa, B., Reiners, P. W., Guynn, J., Ding, L., & Heizler, M. (2012). Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40, 187–190. https://doi.org/10.1130/G32530.1
    [Google Scholar]
  101. Rowley, D. B., & Currie, B. S. (2006). Palaeo‐altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439, 677–681. https://doi.org/10.1038/nature04506
    [Google Scholar]
  102. Sciunnach, D., & Garzanti, E. (2012). Subsidence history of the Tethys Himalaya. Earth‐Science Reviews, 111, 179–198. https://doi.org/10.1016/j.earscirev.2011.11.007
    [Google Scholar]
  103. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post‐mid‐cretaceous subsidence of the central north sea basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739.
    [Google Scholar]
  104. Silvia, O. S., Ramon, S., Joan, G., Robert, O., Ramon, M., José, A., … Luis, M. (2017). Subsidence and thermal history of an inverted Late Jurassic‐Early Cretaceous extensional basin (Cameros, North‐central Spain) affected by very low‐ to low‐grade metamorphism. Basin Research, 29, 156–174. https://doi.org/10.1111/bre.12142
    [Google Scholar]
  105. Sinclair, H. D., & Naylor, M. (2012). Foreland basin subsidence driven by topographic growth versus plate subduction. Geological Society of America Bulletin, 124, 368–379.
    [Google Scholar]
  106. Sobel, E. R., & Seward, D. (2010). Influence of etching conditions on apatite fission‐track etch pit diameter. Chemical Geology, 271, 59–69.
    [Google Scholar]
  107. Song, C. Y. (2012). Evolution of Mesozoic sedimentary basin in Qiangtang and its significance in petroleum geology. Beijing, China: Chinese Academy of Geological Sciences (in Chinese with English abstract).
    [Google Scholar]
  108. Song, C., Zeng, Y., Yan, M., Fang, X., Feng, Y., Pan, J., … Zhong, S. (2017). Sedimentary conditions of evaporites in the Late Jurassic Xiali Formation, Qiangtang basin: Evidence from geochemistry records. Acta Geologica Sinica – English Edition, 91, 156–174. https://doi.org/10.1111/1755-6724.13069
    [Google Scholar]
  109. Song, P., Ding, L., Li, Z., Lippert, P. C., & Yue, Y. (2017). An early bird from Gondwana: Paleomagnetism of lower Permian lavas from northern Qiangtang (Tibet) and the geography of the paleo‐tethys. Earth and Planetary Science Letters, 475, 119–133. https://doi.org/10.1016/j.epsl.2017.07.023
    [Google Scholar]
  110. Stapel, G., Cloetingh, S., & Pronk, B. (1996). Quantitative subsidence analysis of the Mesozoic evolution of the Lusitanian basin (western Iberian margin). Tectonophysics, 266, 493–507. https://doi.org/10.1016/S0040-1951(96)00203-X
    [Google Scholar]
  111. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41, 754–13.
    [Google Scholar]
  112. Tang, M., Liu‐Zeng, J., Hoke, G. D., Xu, Q., Wang, W., Li, Z., … Wang, W. (2017). Paleoelevation reconstruction of the Paleocene‐Eocene Gonjo Basin, Se‐Central Tibet. Tectonophysics, 712–713, 170–181. https://doi.org/10.1016/j.tecto.2017.05.018
    [Google Scholar]
  113. Tian, Y., Kohn, B. P., Hu, S., & Gleadow, A. J. W. (2014). Postorogenic rigid behavior of the eastern Songpan‐Ganze terrane: Insights from low‐temperature thermochronology and implications for intracontinental deformation in central Asia. Geochemistry, Geophysics, Geosystems, 15, 453–474. https://doi.org/10.1002/2013GC004951
    [Google Scholar]
  114. Tozer, B., Watts, A. B., & Daly, M. C. (2017). Crustal structure, gravity anomalies, and subsidence history of the Parnaíba cratonic basin, Northeast Brazil. Journal of Geophysical Research: Solid Earth, 122, 5591–5621. https://doi.org/10.1002/2017JB014348
    [Google Scholar]
  115. U.S. Geological Survey
    U.S. Geological Survey (2006). FGDC digital cartographic standard for geologic map symbolization (postscript implementation). U.S. Geological Survey Techniques and Methods 11–A2. Retrieved from http://pubs.usgs.gov/tm/2006/11A02/
  116. Vergés, J., Marzo, M., Santaeulària, T., Serra‐Kiel, J., Burbank, D. W., Muñoz, J. A., & Giménez‐Montsant, J. (1998). Quantified vertical motions and tectonic evolution of the Se Pyrenean Foreland Basin. In A.Mascle, C.Puigdefàbregas, H. P.Luterbacher, & M.Fernàndez (Eds.), Cenozoic foreland basins of Western Europe 134 (pp. 107–134). Special Publications, Geological Society of London.
    [Google Scholar]
  117. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  118. Wang, C., Dai, J., Zhao, X., Li, Y., Graham, S. A., He, D., … Meng, J. (2014). Outward‐growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621, 754–43. https://doi.org/10.1016/j.tecto.2014.01.036
    [Google Scholar]
  119. Wang, C., Yin, H., Li, Y., Deng, B., Liu, D., Wang, G., … Lin, J. (2001). The geological evolution and prospective oil and gas assessment of the Qiangtang basin in northern Tibetan plateau. Beijing, China: Geological Publishing House.
    [Google Scholar]
  120. Wang, C. S., Zhao, X. X., Liu, Z. F., Lippert, P. C., Graham, S. A., Coe, R. S., … Li, Y. L. (2008). Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 105, 4987–4992. https://doi.org/10.1073/pnas.0703595105
    [Google Scholar]
  121. Wang, J., Fu, X., Chen, W., & Wang, Z. (2007). The Late Triassic paleo‐weathering crust in the Qiangtang basin, northern Tibet: Geology, geochemistry and significance. Acta Sedimentologica Sinica, 25, 487 (in Chinese with English abstract).
    [Google Scholar]
  122. Wang, J., Fu, X. G., Chen, W. X., Wang, Z. J., Tan, F. W., Chen, M., & Zhuo, J. W. (2008). Chronology and geochemistry of the volcanic rocks in Woruo Mountain region, northern Qiangtang depression: Implications to the late Triassic volcanic‐sedimentary events. Science in China Series D: Earth Sciences, 51, 194–205. https://doi.org/10.1007/s11430-008-0010-y
    [Google Scholar]
  123. Wang, J., Tan, F., Li, Y., Li, Y., Chen, M., Wang, C., … Zhu, Z. (2004). The potential of the oil and gas resources in major sedimentary basins on the Qinghai‐Xizang Plateau. Beijing, China: Geological Publishing House.
    [Google Scholar]
  124. Wang, J., Tan, F., Wang, X., Du, B., & Chen, M. (2004). The sedimentary and tectonic characteristics of Qiangtang Basin in the early Jurassic in Northern Xizang (Tibet). Acta Sedimentologica Sinica, 22, 198–205 (in Chinese with English abstract).
    [Google Scholar]
  125. Wang, L. C., & Wei, Y. S. (2013). Apatite fission track thermochronology evidence for the mid‐cretaceous tectonic event in the Qiangtang basin, Tibet. Acta Petrologica Sinica, 29, 1039–1047 (in Chinese with English abstract).
    [Google Scholar]
  126. Wang, L. B., Zhang, Y. Q., Cai, J. J., & Han, G. Z. (2013). Characteristics of the Upper Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin, Tibet. Journal of Earth Science, 24, 815–829. https://doi.org/10.1007/s12583-013-0375-5
    [Google Scholar]
  127. Wang, Q., Wyman, D. A., Li, Z. X., Sun, W., Chung, S. L., Vasconcelos, P. M., … Pearson, N. (2010). Eocene north–south trending dikes in central Tibet: New constraints on the timing of east–west extension with implications for early plateau uplift?Earth and Planetary Science Letters, 298, 205–216. https://doi.org/10.1016/j.epsl.2010.07.046
    [Google Scholar]
  128. Wang, Z., Wang, J., Fu, X., Feng, X., Wang, D., Song, C., … Yu, F. (2017). Provenance and tectonic setting of the Quemoco sandstones in the North Qiangtang Basin, North Tibet: Evidence from geochemistry and detrital zircon geochronology. Geological Journal, 53(4), 1465–1481. https://doi.org/10.1002/gj.2967
    [Google Scholar]
  129. Wang, Z., Wang, J., Fu, X., Zhan, W., Yu, F., Feng, X., … Zeng, S. (2017). Organic material accumulation of carnian mudstones in the north Qiangtang depression, eastern Tethys: Controlled by the paleoclimate, paleoenvironment, and provenance. Marine and Petroleum Geology, 88, 440–457.
    [Google Scholar]
  130. Watts, A. B., Karner, G. D., & Steckler, M. S. (1982). Lithospheric flexure and the evolution of sedimentary basins. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 305, 249–281. https://doi.org/10.1098/rsta.1982.0036
    [Google Scholar]
  131. Watts, A. B., & Ryan, W. B. F. (1976). Flexure of the lithosphere and continental margin basins. Tectonophysics, 36, 25–44. https://doi.org/10.1016/0040-1951(76)90004-4
    [Google Scholar]
  132. Weislogel, A. L., Graham, S. A., Chang, E. Z., Wooden, J. L., Gehrels, G. E., & Yang, H. (2006). Detrital zircon provenance of the Late Triassic Songpan‐Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 34, 97–100. https://doi.org/10.1130/G21929.1
    [Google Scholar]
  133. Wu, Z., Wu, X., Zhao, Z., Lu, L., Ye, P., & Zhang, Y. (2014). Shrimp U‐Pb isotopic dating of the late cretaceous volcanic rocks and its chronological constraint on the red‐beds in southern Qiangtang block. Acta Geoscientica Sinica, 35, 567–572 (in Chinese with English abstract).
    [Google Scholar]
  134. Xu, Q., Ding, L., Zhang, L. Y., Cai, F. L., Lai, Q. Z., Yang, D., & Jing, L. Z. (2013). Paleogene high elevations in the Qiangtang Terrane, Central Tibetan Plateau. Earth and Planetary Science Letters, 362, 31–42.
    [Google Scholar]
  135. Yan, M., Zhang, D., Fang, X., Ren, H., Zhang, W., Zan, J., … Zhang, T. (2016). Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo‐ and Meso‐Tethys. Gondwana Research, 39, 25. https://doi.org/10.1016/j.gr.2016.01.012
    [Google Scholar]
  136. Yang, R., Cao, J., Hu, G., Bian, L., Hu, K., & Fu, X. (2017). Marine to brackish depositional environments of the Jurassic–Cretaceous Suowa Formation, Qiangtang Basin (Tibet), China. Palaeogeography, Palaeoclimatology, Palaeoecology, 473, 41–56. https://doi.org/10.1016/j.palaeo.2017.02.031
    [Google Scholar]
  137. Yao, X., Liu, S., Bai, Y., & Ji, H. (2017). Neogene residual subsidence and its response to a sinking slab in the deep mantle of eastern China. Journal of Asian Earth Sciences, 143, 269–282.
    [Google Scholar]
  138. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280.
    [Google Scholar]
  139. Yin, J. (2016). Bathonian–Callovian (Middle Jurassic) ammonites from northwestern Qiangtang Block, Tibet, and the revised age of the Suowa Formation. Proceedings of the Geologists’ Association, 127, 245–263. https://doi.org/10.1016/j.pgeola.2016.02.005
    [Google Scholar]
  140. Yin, J., & Chandler, R. B. (2016). Aalenian to Lower Bajocian ammonites from the Qiangtang block (North Tibet). Proceedings of the Geologists' Association, 127, 172–188. https://doi.org/10.1016/j.pgeola.2015.11.001
    [Google Scholar]
  141. Zeng, S., Hu, X., Li, J., Xu, S., Fang, H., & Cai, J. (2015). Detection of the deep crustal structure of the Qiangtang terrane using magnetotelluric imaging. Tectonophysics, 661, 180–189. https://doi.org/10.1016/j.tecto.2015.08.038
    [Google Scholar]
  142. Zhai, Q. G., Jahn, B. M., Su, L., Wang, J., Mo, X. X., Lee, H. Y., … Tang, S. H. (2013). Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U–Pb ages, geochemical and Sr–Nd–Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 63, 162–178. https://doi.org/10.1016/j.jseaes.2012.08.025
    [Google Scholar]
  143. Zhai, Q. G., Jahn, B. M., Wang, J., Hu, P. Y., Chuang, S. L., Lee, H. Y., … Tang, Y. (2015). Oldest Paleo‐Tethyan ophiolitic mélange in the Tibetan Plateau. GSA Bulletin, 128, 355–373. https://doi.org/10.1130/B31296.1
    [Google Scholar]
  144. Zhai, Q., & Li, C. (2007). Zircon shrimp dating of volcanic rock from nadigangri formation in Juhuashan, Qiangtang, Northern Tibet and its geological significance. Acta Geologica Sinica, 81, 795–800 (in Chinese with English abstract).
    [Google Scholar]
  145. Zhang, K. J. (2000). Cretaceous palaeogeography of Tibet and adjacent areas (China): Tectonic implications. Cretaceous Research, 21, 23–33. https://doi.org/10.1006/cres.2000.0199
    [Google Scholar]
  146. Zhang, K. J., & Tang, X. C. (2009). Eclogites in the interior of the Tibetan Plateau and their geodynamic implications. Chinese Science Bulletin, 54, 2556–2567. https://doi.org/10.1007/s11434-009-0407-9
    [Google Scholar]
  147. Zhang, K. J., Tang, X. C., Wang, Y., & Zhang, Y. X. (2011). Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China: Constraints on the exhumation of the central Qiangtang metamorphic belt. Lithos, 121, 167–175. https://doi.org/10.1016/j.lithos.2010.10.015
    [Google Scholar]
  148. Zhang, K. J., Xia, B. D., Wang, G. M., Li, Y. T., & Ye, H. F. (2004). Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. GSA Bulletin, 116, 1202–1222. https://doi.org/10.1130/B25388.1
    [Google Scholar]
  149. Zhang, K. J., Zhang, Y. X., Li, B., Zhu, Y. T., & Wei, R. Z. (2006). The blueschist‐bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: Evidence from geochemical comparison with the Jinsa suture. Geology, 34, 493–496. https://doi.org/10.1130/G22404.1
    [Google Scholar]
  150. Zhang, K. J., Zhang, Y. X., Tang, X. C., & Xia, B. (2012). Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo‐Asian collision. Earth‐Science Reviews, 114, 236–249. https://doi.org/10.1016/j.earscirev.2012.06.001
    [Google Scholar]
  151. Zhang, X. R., Shi, R. D., Huang, Q. S., Liu, D. L., Gong, X. H., Chen, S. S., … Ding, L. (2014). Early Jurassic high‐pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U–Pb geochronology of mafic granulites. Gondwana Research, 26, 975–985. https://doi.org/10.1016/j.gr.2013.08.003
    [Google Scholar]
  152. Zhao, Z., Bons, P. D., Stübner, K., Wang, G.‐H., & Ehlers, T. A. (2017). Early Cretaceous exhumation of the Qiangtang Terrane during collision with the Lhasa Terrane, Central Tibet. Terra Nova, 29, 382–391. https://doi.org/10.1111/ter.12298
    [Google Scholar]
  153. Zhao, Z. B., Bons, P. D., Wang, G. H., Liu, Y., & Zheng, Y. L. (2014). Origin and pre‐Cenozoic evolution of the south Qiangtang basement, Central Tibet. Tectonophysics, 623, 52–66. https://doi.org/10.1016/j.tecto.2014.03.016
    [Google Scholar]
  154. Zhao, Z., Bons, P. D., Wang, G., Soesoo, A., & Liu, Y. (2015). Tectonic evolution and high‐pressure rock exhumation in the Qiangtang terrane, central Tibet. Solid Earth, 6, 457–473. https://doi.org/10.5194/se-6-457-2015
    [Google Scholar]
  155. Zhu, D. C., Li, S. M., Cawood, P. A., Wang, Q., Zhao, Z. D., Liu, S. A., & Wang, L. Q. (2016). Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245, 11. https://doi.org/10.1016/j.lithos.2015.06.023
    [Google Scholar]
  156. Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Hou, Z. Q., & Mo, X. X. (2013). The origin and pre‐Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23, 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002
    [Google Scholar]
  157. Zhu, T. X., Qin, J. H., Zhang, Z. G., Wang, X. L., Luo, J. L., & Zhuang, Z. H. (1996).The geological multi‐engineering of west Qiangtang Basin (Qt96yz‐01), Managing Department of Tibet Oil and Gas Exploration Project, CNPC.
  158. Zhu, T. X., Yu, Q., Yong, Y. Y., Jia, B. J., Qin, J. H., Zhang, Z. G., …Feng, X. C. (1997).The Tibet petroleumgeological survey report (Qz‐97‐102101), managing Department of Tibet Oil and Gas Exploration Project, CNPC.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12343
Loading
/content/journals/10.1111/bre.12343
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): apatite fission track , crustal thickening , Qiangtang and subsidence
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error