1887
Volume 31, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Complex arrays of faults in extensional basins are potentially influenced by pre‐existing zones of weakness in the underlying basement, such as faults, shear zones, foliation, and terrane boundaries. Separating the influence of such basement heterogeneities from far‐field tectonics proves to be challenging, especially when the timing and character of deformation cannot be interpreted from seismic reflection data. Here we aim to determine the influence of basement heterogeneities on fault patterns in overlying cover rocks using interpretations of potential field geophysical data and outcrop‐scale observations. We mapped >1 km to meter scale fractures in the western onshore Gippsland Basin of southeast Australia and its underlying basement. Overprinting relationships between fractures and mafic intrusions are used to determine the sequence of faulting and reactivation, beginning with initial Early Cretaceous rifting. Our interpretations are constrained by a new Early Cretaceous U‐Pb zircon isotope dilution thermal ionization mass spectrometry age (116.04 ± 0.15 Ma) for an outcropping subvertical, NNW‐SSE striking dolerite dike hosted in Lower Cretaceous Strzelecki Group sandstone. NW‐SE to NNW‐SSE striking dikes may have signaled the onset of Early Cretaceous rifting along the East Gondwana margin at ca. 105–100 Ma. Our results show that rift faults can be oblique to their expected orientation when pre‐existing basement heterogeneities are present, and they are orthogonal to the extension direction where basement structures are less influential or absent. NE‐SW to ENE‐WSW trending Early Cretaceous rift‐related normal faults traced on unmanned aerial vehicle orthophotos and digital aerial images of outcrops are strongly oblique to the inferred Early Cretaceous N‐S to NNE‐SSW regional extension direction. However, previously mapped rift‐related faults in the offshore Gippsland Basin (to the east of the study area) trend E‐W to WNW‐ESE, consistent with the inferred regional extension direction. This discrepancy is attributed to the influence of NNE‐SSW trending basement faults underneath the onshore part of the basin, which caused local re‐orientation of the Early Cretaceous far‐field stress above the basement during rifting. Two possible mechanisms for inheritance are discussed—reactivation of pre‐existing basement faults or local re‐orientation of extension vectors. Multiple stages of extension with rotated extension vectors are not required to achieve non‐parallel fault sets observed at the rift basin scale. Our findings demonstrate the importance of (1) using integrated, multi‐scale datasets to map faults and (2) mapping basement geology when investigating the structural evolution of an overlying sedimentary basin.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12344
2019-03-26
2024-04-24
Loading full text...

Full text loading...

References

  1. Agostini, A., Corti, G., Zeoli, A., & Mulugeta, G. (2009). Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric‐scale centrifuge models. Geochemistry, Geophysics, Geosystems, 10. https://doi.org/10.1029/2009GC002676
    [Google Scholar]
  2. Bache, F., Mortimer, N., Sutherland, R., Collot, J., Rouillard, P., Stagpoole, V., & Nicol, A. (2014). Seismic stratigraphic record of transition from Mesozoic subduction to continental breakup in the Zealandia sector of eastern Gondwana. Gondwana Research, 26, 1060–1078. https://doi.org/10.1016/j.gr.2013.08.012
    [Google Scholar]
  3. Bernecker, T. & Partridge, A.D. (2001). Emperor and Golden Beach subgroups: the onset of Late Cretaceous sedimentation in the Gippsland Basin, SE Australia. In: Hill, K. C. & Bernecker, T. (eds.) Eastern Australasian Basins Symposium (pp. 391–402).
    [Google Scholar]
  4. Bernecker, T., Smith, M. A., Hill, K. A., & Constantine, A. E. (2003). Oil and Gas, fuelling Victoria’s economy. In W. D.Birch (Ed.), Geology of Victoria, GSA Special Publication 23, 469–487.
    [Google Scholar]
  5. Birch, G. F. (1987). Igneous Rocks of the Gippsland Basin. Esso Australia Ltd.
  6. Bryan, S. E., Constantine, A. E., Stephens, C. J., Ewart, A., Schön, R. W., & Parianos, J. (1997). Early Cretaceous volcano‐sedimentary successions along the eastern Australian continental margin: Implications for the break‐up of eastern Gondwana. Earth and Planetary Science Letters, 153, 85–102. https://doi.org/10.1016/S0012-821X(97)00124-6
    [Google Scholar]
  7. Bryan, S. E., & Ernst, R. E. (2008). Revised definition of Large Igneous Provinces (LIPs). Earth‐Science Reviews, 86, 175–202. https://doi.org/10.1016/j.earscirev.2007.08.008
    [Google Scholar]
  8. Cayley, R. A., Taylor, D. H., VandenBerg, A. H. M., & Moore, D. H. (2002). Proterozoic – Early Palaeozoic rocks and the Tyennan Orogeny in central Victoria: The Selwyn Block and its tectonic implications. Australian Journal of Earth Sciences, 49, 225–254. https://doi.org/10.1046/j.1440-0952.2002.00921.x
    [Google Scholar]
  9. Chantraprasert, S., McClay, K.R. & Elders, C. (2001). 3D Rift Fault Systems of the Western Otway Basin, SE Australia. In: Hill, K. C. & Bernecker, T. (eds.) Eastern Australasian Basins Symposium (pp. 435–446).
    [Google Scholar]
  10. Constantine, A. (2001). Sedimentology, Stratigraphy and Palaeoenvironment of the Upper Jurassic‐Lower Cretaceous Non‐Marine Strzelecki Group, Gippsland Basin, Southeastern Australia. Monash University. PhD Thesis.
  11. Corti, G. (2012). Evolution and characteristics of continental rifting: Analog modeling‐inspired view and comparison with examples from the East African Rift System. Tectonophysics, 522–523, 782–33. https://doi.org/10.1016/j.tecto.2011.06.010
    [Google Scholar]
  12. Corti, G., van Wijk, J., Cloetingh, S., & Morley, C. K. (2007). Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system. Tectonics, 26, 782–13. https://doi.org/10.1029/2006TC002086
    [Google Scholar]
  13. Deng, C., Gawthorpe, R. L., Finch, E., & Fossen, H. (2017). Influence of a pre‐existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, https://doi.org/10.1016/j.jsg.2017.11.005
    [Google Scholar]
  14. Duddy, I.R. & Green, P.F. (1992). Tectonic development of the Gippsland Basin and environs: identification of key episodes using Apatite Fission Track Analysis (AFTA). In: Barton, C. M., Hill, K., Abele, C., Foster, J. & Kempton, N. (eds.) Gippsland Basin Symposium 22-23 June 1992, Melbourne (pp. 111–120).
    [Google Scholar]
  15. Dumitru, T. A., Hill, K. C., Coyle, D. A., Duddy, I. R., Foster, D. A., Gleadow, A. J. W., … O'Sullivan, A. B. (1991). Fission track thermochronology: Application to continental rifting of south‐eastern Australia. The APEA Journal, 31, 131–142.
    [Google Scholar]
  16. Etheridge, M. A., Branson, J. C., & Stuart‐Smith, P. G. (1985). Extensional basin‐forming structures in Bass Strait and their importance for hydrocarbon exploration. The APEA Journal, 25, 344–361.
    [Google Scholar]
  17. Finlayson, D. M., Johnstone, D. W., Owen, A. J., & Wake‐Dyster, K. D. (1996). Deep seismic images and the tectonic framework of early rifting in the Otway Basin, Australian Southern Margin. Tectonophysics, 264, 137–152. https://doi.org/10.1016/S0040-1951(96)00123-0
    [Google Scholar]
  18. Foster, D. A., & Gleadow, A. J. W. (1992). Reactivated tectonic boundaries and implications for the reconstruction of southeastern Australia and northern Victoria Land, Antarctica. Geology, 20, 267–270. https://doi.org/10.1130/0091-7613(1992)020<0267:RTBAIF>2.3.CO;2
    [Google Scholar]
  19. Foster, D. A., & Gray, D. R. (2000). Evolution and structure of the Lachlan Fold Belt (Orogen) of eastern Australia. Annual Review of Earth and Planetary Sciences, 28, 47–80. 0084-6597/00/0515-0047
    [Google Scholar]
  20. Gardner, T., Webb, J., Pezzia, C., Amborn, T., Tunnell, R., Flanagan, S., … Cupper, M. L. (2009). Episodic intraplate deformation of stable continental margins: Evidence from Late Neogene and Quaternary marine terraces, Cape Liptrap, Southeastern Australia. Quaternary Science Reviews, 28, 39–53. https://doi.org/10.1016/j.quascirev.2008.10.004
    [Google Scholar]
  21. Geoscience Australia
    Geoscience Australia (2001). GSV West Gippsland VIMP Vic magnetic grid geodetic. https://doi.org/10.4225/25/5625A59767D4A
  22. Geoscience Australia
    Geoscience Australia (2018a). Geophysical Archive Data Delivery System. Retrieved from http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse
  23. Geoscience Australia
    Geoscience Australia (2018b). Otway Basin. Retrieved from http://www.ga.gov.au/scientific-topics/energy/province-sedimentary-basin-geology/petroleum/offshore-southern-australia/otway
  24. Geoscience Australia
    Geoscience Australia (2018c). Sorell Basin. Retrieved from http://www.ga.gov.au/scientific-topics/energy/province-sedimentary-basin-geology/petroleum/offshore-southern-australia/sorell
  25. Gray, D. R. (1997). Tectonics of the southeastern Australian Lachlan Fold Belt: Structural and thermal aspects. Geological Society, London, Special Publications, 121, 149–177. https://doi.org/10.1144/GSL.SP.1997.121.01.07
    [Google Scholar]
  26. Gray, D. R., Foster, D. A., Morand, V. J., Willman, C. E., Cayley, R. A., Spaggiari, C. V., … Wilson, C. J. L. (2003). Chapter 2 – Structure, metamorphism, geochronology and tectonics of Palaeozoic rocks. In: W. D.Birch (ed.) Geology of Victoria, GSA Special Publication 23, 15–70.
    [Google Scholar]
  27. Gray, D. R., Janssen, C., & Vapnik, Y. (1999). Deformation character and palaeo‐fluid flow across a wrench fault within a Palaeozoic subduction‐accretion system: Waratah Fault Zone, southeastern Australia. Journal of Structural Geology, 21, 191–214. https://doi.org/10.1016/S0191-8141(98)00115-1
    [Google Scholar]
  28. Healy, D., Blenkinsop, T. G., Timms, N. E., Meredith, P. G., Mitchell, T. M., & Cooke, M. L. (2014). Polymodal faulting: Time for a new angle on shear failure. Journal of Structural Geology, 80, 57–71. https://doi.org/10.1016/j.jsg.2015.08.013
    [Google Scholar]
  29. Heath, P. J. (2007). Analysis of Potential Field Gradient Tensor Data: Forward Modelling, Inversion and near‐Surface Exploration. University of Adelaide. PhD Thesis.
  30. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2011). How do the properties of a pre‐existing normal‐fault population influence fault development during a subsequent phase of extension?Journal of Structural Geology, 33, 1312–1324. https://doi.org/10.1016/j.jsg.2011.06.010
    [Google Scholar]
  31. Hill, K. A., Cooper, G. T., Richardson, M. J., & Lavin, C. J. (1994). Structural framework of the Eastern Otway basin: Inversion and interaction between two major structural provinces. Exploration Geophysics, 25, 79–87. https://doi.org/10.1071/EG994079
    [Google Scholar]
  32. Hill, K. C., Hill, K. A., Cooper, G. T., O’Sullivan, A. J., O’Sullivan, P. B., & Richardson, M. J. (1995). Inversion around the Bass Basin, SE Australia. Geological Society, London, Special Publications, 88, 525–547. https://doi.org/10.1144/GSL.SP.1995.088.01.27
    [Google Scholar]
  33. Hill, K. C., Hill, K. A., Cooper, G. T., O’Sullivan, A. J., O’Sullivan, P. B., & Richardson, M. J. (1995). Inversion around the Bass Basin, SE Australia. Geological Society, London, Special Publications, 88, 525–547, https://doi.org/10.1144/GSL.SP.1995.088.01.27
    [Google Scholar]
  34. Hillis, R. R., & Reynolds, S. D. (2000). The Australian Stress Map. Journal of the Geological Society, 157, 915–921. https://doi.org/10.1144/jgs.157.5.915
    [Google Scholar]
  35. Holdgate, G. R. & McNicol, M. D. (1992). New directions ‐ old ideas: Hydrocarbon prospects of the Strzelecki Group onshore Gippsland Basin. In Gippsland Basin Symposium 22–23 June 1992. Melbourne (pp. 121–132).
    [Google Scholar]
  36. Holdgate, G. R., & Gallagher, S. J. (2003). Tertiary, a period of transition to marine basin environments. In: W. D.Birch (Ed.) Geology of Victoria, GSA Special Publication 23. 289–335.
    [Google Scholar]
  37. Holdsworth, R. E., Butler, C. A., & Roberts, A. M. (1997). The recognition of reactivation during continental deformation. Journal of the Geological Society, 154, 73–78. https://doi.org/10.1144/gsjgs.154.1.0073
    [Google Scholar]
  38. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision measurement of half‐lives and specific activities of 235U and 238U. Physical Review C, 4, 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889
    [Google Scholar]
  39. Kirkpatrick, J. D., Bezerra, F. H. R., Shipton, Z. K., Do Nascimento, A. F., Pytharouli, S. I., Lunn, R. J., & Soden, A. M. (2013). Scale‐dependent influence of pre‐existing basement shear zones on rift faulting: A case study from NE Brazil. Journal of the Geological Society, 170, 237–247. https://doi.org/10.1144/jgs2012-043
    [Google Scholar]
  40. Krantz, R. W. (1988). Multiple fault sets and three‐dimensional strain: Theory and application. Journal of Structural Geology, 10, 225–237. https://doi.org/10.1016/0191-8141(88)90056-9
    [Google Scholar]
  41. Krassay, A. A., Cathro, D. L., & Ryan, D. J. (2004). A regional tectonostratigraphic framework for the Otway Basin. Eastern Australasian Basins Symposium II, 97–116.
  42. Ludwig, K. R. (2012). Isoplot/Ex, v. 3.75. Berkeley Geochronology Center Special Publication, 5.
  43. Maerten, L., Gillespie, P., & Pollard, D. D. (2002). Effects of local stress perturbation on secondary fault development. Journal of Structural Geology, 24, 145–153. https://doi.org/10.1016/S0191-8141(01)00054-2
    [Google Scholar]
  44. Matthews, K. J., Seton, M., & Müller, R. D. (2012). A global‐scale plate reorganization event at 105–100 Ma. Earth and Planetary Science Letters, 355–356, 283–298. https://doi.org/10.1016/j.epsl.2012.08.023
    [Google Scholar]
  45. Mattinson, J. M. (2005). Zircon U‐Pb chemical abrasion (“CA‐TIMS”) method: Combined annealing and multi‐step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011
    [Google Scholar]
  46. McPhail, A. (2000). A Petrographic and Geochemical Study of Gippsland Basin Volcanics (PhD Thesis). Adelaide, Australia: University of Adelaide.
    [Google Scholar]
  47. Meeuws, F. J. E., Holford, S. P., Foden, J. D., & Schofield, N. (2016). Distribution, chronology and causes of Cretaceous – Cenozoic magmatism along the magma‐poor rifted southern Australian margin: Links between mantle melting and basin formation. Marine and Petroleum Geology, 73, 271–298. https://doi.org/10.1016/j.marpetgeo.2016.03.003
    [Google Scholar]
  48. Miller, J. M. L., Norvick, M. S., & Wilson, C. J. L. (2002). Basement controls on rifting and the associated formation of ocean transform faults – Cretaceous continental extension of the southern margin of Australia. Tectonophysics, 359, 131–155. https://doi.org/10.1016/S0040-1951(02)00508-5
    [Google Scholar]
  49. Morley, C. K. (2010). Stress re‐orientation along zones of weak fabrics in rifts: An explanation for pure extension in “oblique” rift segments?Earth and Planetary Science Letters, 297, 667–673. https://doi.org/10.1016/j.epsl.2010.07.022
    [Google Scholar]
  50. Muirhead, J. D., & Kattenhorn, S. A. (2018). Activation of preexisting transverse structures in an evolving magmatic rift in East Africa. Journal of Structural Geology, 106, 782–18. https://doi.org/10.1016/j.jsg.2017.11.004
    [Google Scholar]
  51. Müller, R. D., Dyksterhuis, S., & Rey, P. (2012). Australian paleo‐stress fields and tectonic reactivation over the past 100 Ma. Australian Journal of Earth Sciences, 59, 13–28. https://doi.org/10.1080/08120099.2011.605801
    [Google Scholar]
  52. Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., … Cannon, J. (2016). Ocean Basin Evolution and Global‐Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44, 107–138. https://doi.org/10.1146/annurev-earth-060115-012211
    [Google Scholar]
  53. Nakamura, A. (2016). Isostatic Residual Gravity Anomaly Grid of Onshore Australia 2016, https://doi.org/10.4225/25/589c606cbaf50
  54. Nearmap
    Nearmap (2018). PhotoMaps by Nearmap. Retrieved from http://maps.au.nearmap.com/
  55. Norvick, M. S., & Smith, M. S. (2001). Mapping the plate tectonic reconstruction of southern and southeastern Australia and implications for petroleum systems. The APPEA Journal, 41, 15–35.
    [Google Scholar]
  56. Norvick, M. S., Smith, M. A., & Power, M. R.2001. The Plate Tectonic Evolution of Eastern Australasia Guided by the Stratigraphy of the Gippsland Basin. In: Eastern Australasian Basins Symposium. Hill, K.C. Bernecker, T., 15–23.
    [Google Scholar]
  57. O’Brien, G. W., Reeves, C. V., Milligan, P. R., Morse, M. P., Alexander, E. M., Willcox, J. B., … Brodie, R. C. (1994). New ideas on the rifting history and structural architecture of the western Otway Basin: Evidence from the integration of aeromagnetic, gravity and seismic data. The APPEA Journal, 34, 529–554. http://doi.org/https://doi.org/10.1071/AJ93042
    [Google Scholar]
  58. O’Halloran, G. J., & Johnstone, E. M. (2001). Late Cretaceous Rift Volcanics of the Gippsland Basin, SE Australia - New Insights from 3D Seismic. In HillK. C., & BerneckerT. (Eds.), Eastern Australasian Basins Symposium. Melbourne, 353–361.
    [Google Scholar]
  59. Peace, A., McCaffrey, K., Imber, J., van Hunen, J., Hobbs, R., & Wilson, R. (2017). The role of pre‐existing structures during rifting, continental breakup and transform system development, offshore West Greenland. Basin Research, 30, 373–394. https://doi.org/10.1111/bre.12257
    [Google Scholar]
  60. Perincek, D., & Cockshell, C. D. (1995). The Otway Basin: Early Cretaceous rifting to Neogene inversion. The APPEA Journal, 35, 451–466.
    [Google Scholar]
  61. Perincek, D., Simons, B., & Pettifer, G. R. (1994). The tectonic framework and associated play types of the western Otway Basin, Victoria, Australia. The APPEA Journal, 34, 460–478. https://doi.org/10.1071/AJ93038
    [Google Scholar]
  62. Philippon, M., Willingshofer, E., Sokoutis, D., Corti, G., Sani, F., Bonini, M., & Cloetingh, S. (2015). Slip re‐orientation in oblique rifts. Geology, 43, 147–150. https://doi.org/10.1130/G36208.1
    [Google Scholar]
  63. Philit, S., Soliva, R., Labaume, P., Gout, C., & Wibberley, C. (2015). Relations between shallow cataclastic faulting and cementation in porous sandstones: First insight from a groundwater environmental context. Journal of Structural Geology, 81, 89–105. https://doi.org/10.1016/j.jsg.2015.10.001
    [Google Scholar]
  64. Phillips, T. B., Jackson, C. A. L., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008
    [Google Scholar]
  65. Power, M.R., Hill, K.C. & Hoffman, N. (2003). Structural inheritance, stress rotation, overprinting and compressional reactivation in the Gippsland Basin - Tuna 3D seismic dataset. The APPEA Journal, 43, 197–221. https://doi.org/https://doi.org/10.1071/AJ02010
    [Google Scholar]
  66. Power, M. R., Hill, K. C., Hoffman, N., Bernecker, T., & Norvick, M. (2001). The Structural and Tectonic Evolution of the Gippsland Basin: Results from 2D Section Balancing and 3D Structural Modelling. In: Hill, K. C. & Bernecker, T. (eds.) Eastern Australasian Basins Symposium (pp. 373–384).
    [Google Scholar]
  67. Price, R. C., Gray, C. M., Nicholls, I. A., & Day, A. (1988). Cainozoic volcanic rocks. In J. G.Douglas, & J. A.Ferguson (Eds.), Geology of Victoria (pp. 439–451). Melbourne, Australia: Geological Society of Victoria, Victorian Division.
    [Google Scholar]
  68. QGIS Development Team
    QGIS Development Team . (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Retrieved from http://qgis.osgeo.org
  69. Rahmanian, V. D., Moore, P. S., Mudge, W. J., & Spring, D. E. (1990). Sequence stratigraphy and the habitat of hydrocarbons, Gippsland Basin, Australia. Geological Society, London, Special Publications, 50, 525–544. https://doi.org/10.1144/GSL.SP.1990.050.01.32
    [Google Scholar]
  70. Reeve, M. T., Bell, R. E., Duffy, O. B., Jackson, C. A. L., & Sansom, E. (2015). The growth of non‐colinear normal fault systems; What can we learn from 3D seismic reflection data?Journal of Structural Geology, 70, 141–155. https://doi.org/10.1016/j.jsg.2014.11.007
    [Google Scholar]
  71. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., … Andresen, A. (2018). Structural inheritance and rapid rift‐length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry. Tectonics, 37, 1858–1875. https://doi.org/10.1029/2018TC005018
    [Google Scholar]
  72. Sandiford, M. (2003). Neotectonics of southeastern Australia: Linking the Quaternary faulting record with seismicity and in situ stress. Geological Society of Australia Special Publication, 22, 101–113. https://doi.org/10.1130/0-8137-2372-8.107
    [Google Scholar]
  73. Sandwell, D. T., & Smith, W. H. F. (2009). Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research: Solid Earth, 114, 782–18, https://doi.org/10.1029/2008JB006008
    [Google Scholar]
  74. Smith, M. A., Bernecker, T., Liberman, N., Moore, D. H., & Wong, D. (2000). Petroleum prospectivity of the deep‐water gazettal areas V00‐3 & V00‐4, southeastern Gippsland Basin, Victoria, Australia. Victorian Initiative for Minerals and Petroleum Report 65.
  75. Swallow, E. J., Wilson, C. J. N., Charlier, B. L. A., & Gamble, J. A. (2018). Mafic inputs into the rhyolitic magmatic system of the 2.08 Ma Huckleberry Ridge eruption, Yellowstone. American Mineralogist, 103, 757–775. https://doi.org/10.2138/am-2018-6273
    [Google Scholar]
  76. Tosolini, A.-M. P., McLoughlin, S., & Drinnan, A. N. (1999). Stratigraphy and fluvial sedimentary facies of the Neocomian lower Strzelecki Group, Gippsland Basin, Victoria. Australian Journal of Earth Sciences, 46, 951–970. https://doi.org/10.1046/j.1440-0952.1999.00757.x
    [Google Scholar]
  77. Totterdell, J., Blevin, J., Struckmeyer, H., Bradshaw, B., Colwell, J., & Kennard, J. (2000). A new sequence framework for the Great Australian Bight: Starting with a clean slate. The APPEA Journal, 40, 95–118. https://doi.org/https://doi.org/10.1071/AJ99007
    [Google Scholar]
  78. Tveite, H. (2015). The QGIS Line Direction Histogram Plugin. Retrieved from http://arken.nmbu.no/~havatv/gis/qgisplugins/LineDirectionHistogram/
    [Google Scholar]
  79. VandenBerg, A. H. M., Willman, C. E., Maher, S., Simons, B. A., Cayley, R. A., Taylor, D. H., … Radojkovic, A. (2000). The Tasman Fold Belt System in Victoria. Geological Survey of Victoria Special Publication, 462.
  80. Veevers, J. J., Powell, C. M., & Roots, S. R. (1991). Review of seafloor spreading around Australia. I. synthesis of the patterns of spreading. Australian Journal of Earth Sciences, 38, 373–389. https://doi.org/10.1080/08120099108727979
    [Google Scholar]
  81. Victorian Department of State Development Business and Innovation
    Victorian Department of State Development Business and Innovation (2014). Bioregional Assessment Source Dataset. Retrieved from https://data.bioregionalassessments.gov.au/datastore/dataset/2872d02e-66cb-42b6-9e5a-63abc8ad871b
  82. Vollgger, S. A., & Cruden, A. R. (2016). Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. Journal of Structural Geology, 85, 168–187. https://doi.org/10.1016/j.jsg.2016.02.012
    [Google Scholar]
  83. Watkins, H., Bond, C. E., Healy, D., & Butler, R. W. H. (2015). Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop. Journal of Structural Geology, 72, 67–82. https://doi.org/10.1016/j.jsg.2015.02.001
    [Google Scholar]
  84. Whipp, P. S., Jackson, C. A. L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26, 523–549. https://doi.org/10.1111/bre.12050
    [Google Scholar]
  85. Willcox, J. B., & Stagg, H. M. J. (1990). Australia’s southern margin: A product of oblique extension. Tectonophysics, 173, 269–281, https://doi.org/10.1016/0040-1951(90)90223-U
    [Google Scholar]
  86. Willcox, J. B., Colwell, J. B., & Constantine, A. E. (1992). New ideas on Gippsland Basin regional tectonics. In Gippsland Basin Symposium 22-23 June 1992, Melbourne (pp. 93–110).
    [Google Scholar]
  87. Williams, I. S., Tetley, N. W., Compston, W., & Mcdougall, I. (1982). A comparison of K‐Ar and Rb‐Sr ages of rapidly cooled igneous rocks: Two points in the Palaeozoic time scale re‐evaluated. Journal of the Geological Society, 139, 557–568. https://doi.org/10.1144/gsjgs.139.5.0557
    [Google Scholar]
  88. Williamson, P. E., Swift, M. G., O’Brien, G. W., & Falvey, D. A. (1990). Two-stage Early Cretaceous rifting of the Otway Basin margin of southeastern Australia: Implications for rifting of the Australian southern margin. Geology, 18, 75–78. https://doi.org/10.1130/0091-7613(1990)018<0075:TSECRO>2.3.CO;2
    [Google Scholar]
  89. Wilson, R. W., Holdsworth, R. E., Wild, L. E., McCaffrey, K. J. W., England, R. W., Imber, J., & Strachan, R. A. (2010). Basement‐influenced rifting and basin development: A reappraisal of post‐Caledonian faulting patterns from the North Coast Transfer Zone, Scotland. Geological Society, London, Special Publications, 335, 795–826. https://doi.org/10.1144/SP335.32
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12344
Loading
/content/journals/10.1111/bre.12344
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fracture; geochronology; inheritance; reactivation; rift basins

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error