1887
Volume 31, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Several important aspects of the Messinian salinity crisis (MSC) are still subject to controversy and debate after more than 40 years of studies. Recent work from the eastern Mediterranean have provided a renewed stratigraphic framework for the basin that is inconsistent with previous interpretation studies in the area. This study presents a description of the evolution of the depositional environment in the northern Levant Basin in a time interval surrounding the end of the famous event, from Late Messinian to the Pliocene. Through seismic mapping, we have identified a sediment package overlying the intra‐Messinian truncation surface (IMTS). This package is interpreted as an axial fluvial system running along the Levant Margin in stage 3 of the salinity crisis, likely composed of redeposited evaporites and clastic material. The system was fed primarily from a large fan system building out from the basin margin during a time of sea‐level low stand following a major erosional event, and presumably also from similar systems along the Latakia Ridge and Syria. Our interpretation also lends weight to the theory of a subaerial origin for the truncation surface after a catastrophic desiccation event succeeding the deposition of the halite‐dominated Messinian evaporite succession, based on differences in maximum erosional depth throughout the basin. After the deposition of the post‐IMTS package, deep marine settings were restored in the basin, and hemipelagic sediments from the Nile Delta and the Levant Margin have dominated the sediment deposition since.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12347
2019-03-22
2020-08-04
Loading full text...

Full text loading...

References

  1. Almogi‐Labin, A., Buchbinder, B., Siman Tov, R., Grossowicz, L., Eshet, Y., & Rosenfeld, A. (2001). Stratigraphy and environmental analysis of the Romi‐1 borehole, offshore Israel. Confidential Report, Geological Survey of Israel, 24, 24.
    [Google Scholar]
  2. Ben‐Avraham, Z. (1989). Multiple opening and closing of the eastern Mediterranean and south China basins. Tectonics, 8(2), 351–362. https://doi.org/10.1029/TC008i002p00351
    [Google Scholar]
  3. Ben‐Avraham, Z., & Ginzburg, A. (1990). Displaced terranes and crustal evolution of the Levant and the eastern Mediterranean. Tectonics, 9(4), 613–622. https://doi.org/10.1029/TC009i004p00613
    [Google Scholar]
  4. Ben‐Avraham, Z., Ginzburg, A., Makris, J., & Eppelbaum, L. (2002). Crustal structure of the Levant Basin, eastern Mediterranean. Tectonophysics, 346(1–2), 23–43. https://doi.org/10.1016/S0040-1951(01)00226-8
    [Google Scholar]
  5. Ben‐Gai, Y., Ben‐Avraham, Z., Buchbinder, B., & Kendall, C. G. S. C. (2005). Post‐messinian evolution of the Southeastern levant basin based on two‐dimensional stratigraphic simulation. Marine Geology, 221(1), 359–379. https://doi.org/10.1016/j.margeo.2005.03.003
    [Google Scholar]
  6. Bertoni, C., & Cartwright, J. A. (2005). 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. Journal of the Geological Society, 162(6), 909–926. https://doi.org/10.1144/0016-764904-126
    [Google Scholar]
  7. Bertoni, C., & Cartwright, J. A. (2006). Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sedimentary Geology, 188–189, 93–114. https://doi.org/10.1016/j.sedgeo.2006.03.019
    [Google Scholar]
  8. Bertoni, C., & Cartwright, J. (2007). Major erosion at the end of the Messinian salinity crisis: Evidence from the Levant Basin, Eastern Mediterranean. Basin Research, 19(1), 1–18. https://doi.org/10.1111/j.1365-2117.2006.00309.x
    [Google Scholar]
  9. Cartwright, J. A., & Jackson, M. P. A. (2008). Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Bulletin of the Geological Society of America, 120(3–4), 399–413. https://doi.org/10.1130/B26081X.1
    [Google Scholar]
  10. Cartwright, J., Jackson, M., Dooley, T., & Higgins, S. (2012). Strain partitioning in gravity‐driven shortening of a thick, multilayered evaporite sequence. Geological Society, London, Special Publications, 363(1), 449–470. https://doi.org/10.1144/SP363.21
    [Google Scholar]
  11. Cohen, A. (1993). Halite‐clay interplay in the Israeli Messinian. Sedimentary Geology, 86(3–4), 211–228. https://doi.org/10.1016/0037-0738(93)90023-X
    [Google Scholar]
  12. Derin, B. (2000). Stratigraphic and environments of deposition of or South 1075–2090 m: Ramat Gan. Israel, Drerin Consulting & Micropaleontological Services LTD, Internal Isramco Consultant Report, 2, 9‐10.
    [Google Scholar]
  13. Druckman, Y., Buchbinder, B., Martinotti, G., Tov, R. S., & Aharon, P. (1995). The buried Afiq Canyon (eastern Mediterranean, Israel): A case study of a Tertiary submarine canyon exposed in late Messinian times. Marine Geology, 123(3), 167–185. https://doi.org/10.1016/0025-3227(94)00127-7
    [Google Scholar]
  14. Eyal, Y., & Reches, Z. (1983). Tectonic analysis of the dead sea rift region since the late‐cretaceous based on mesostructures. Tectonics, 2(2), 167–185. https://doi.org/10.1029/TC002i002p00167
    [Google Scholar]
  15. Fabricius, F., Heimann, K., & Braune, K. (1978). Comparison of site 374 with circum‐Ionian land sections: Implications for the Messinian salinity crisis on the basis of a dynamic model. Initial Reports of the Deep Sea Drilling Project, 42(part 1), 927–942.
    [Google Scholar]
  16. Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118–131. https://doi.org/10.1016/j.margeo.2016.04.004
    [Google Scholar]
  17. Gardosh, M. A., & Druckman, Y. (2006). Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. Geological Society, London, Special Publications, 260, 201–227. https://doi.org/10.1144/GSL.SP.2006.260.01.09
    [Google Scholar]
  18. Gardosh, M., Druckman, Y., Buchbinder, B., & Calvo, R. (2008). The Oligo‐Miocene deepwater system of the Levant Basin. Geophysical Institute of Israel – GII 446/426/08 – Prepared for the Petroleum Commissioner, The Ministry of National Infrastructures
    [Google Scholar]
  19. Gardosh, M. A., Garfunkel, Z., Druckman, Y., & Buchbinder, B. (2010). Tethyan rifting in the levant region and its role in early mesozoic crustal evolution. Geological Society, London, Special Publications, 341(1), 9–36. https://doi.org/10.1144/SP341.2
    [Google Scholar]
  20. Garfunkel, Z. (1984). Large‐scale submarine rotational slumps and growth faults in the eastern Mediterranean. Marine Geology, 55(3), 305–324. https://doi.org/10.1016/0025-3227(84)90074-4
    [Google Scholar]
  21. Garfunkel, Z. (1998). Constrains on the origin and history of the Eastern Mediterranean basin. Tectonophysics, 298(1), 5–35. https://doi.org/10.1016/S0040-1951(98)00176-0
    [Google Scholar]
  22. Garfunkel, Z., & Almagor, G. (1984). Geology and structure of the continental margin off northern Israel and the adjacent part of the Levantine Basin. Marine Geology, 62(1–2), 105–131. https://doi.org/10.1016/0025-3227(84)90057-4
    [Google Scholar]
  23. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., & Rossi, M. (2013). Late miocene‐middle pleistocene sequences in the Po Plain‐Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology, 42, 50–81. https://doi.org/10.1016/j.marpetgeo.2012.11.007
    [Google Scholar]
  24. Gorini, C., Montadert, L., & Rabineau, M. (2015). New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean. Marine and Petroleum Geology, 66, 278–294. https://doi.org/10.1016/j.marpetgeo.2015.01.009
    [Google Scholar]
  25. Gvirtzman, Z., Manzi, V., Calvo, R., Gavrieli, I., Gennari, R., Lugli, S., … Roveri, M. (2017). Intra‐Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. Geology, 45(10), 915–918. https://doi.org/10.1130/G39113.1
    [Google Scholar]
  26. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., & Ben‐Avraham, Z. (2013). Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth and Planetary Science Letters, 379, 108–119. https://doi.org/10.1016/j.epsl.2013.07.018
    [Google Scholar]
  27. Gvirtzman, Z., & Steinberg, J. (2012). Inland jump of the Arabian northwest plate boundary from the Levant continental margin to the Dead Sea Transform. Tectonics, 31(4). https://doi.org/10.1029/2011TC002994.
    [Google Scholar]
  28. Hardy, C., Homberg, C., Eyal, Y., Barrier, É., & Müller, C. (2010). Tectonic evolution of the southern Levant margin since Mesozoic. Tectonophysics, 494(3–4), 211–225. https://doi.org/10.1016/j.tecto.2010.09.007
    [Google Scholar]
  29. Hawie, N., Gorini, C., Deschamps, R., Nader, F. H., Montadert, L., Granjeon, D., & Baudin, F. (2013). Tectono‐stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410. https://doi.org/10.1016/j.marpetgeo.2013.08.004
    [Google Scholar]
  30. Hsü, K. J. (1974). The Miocene desiccation of the Mediterranean and its climatical and zoogeographical implications. Naturwissenschaften, 61(4), 137–142. https://doi.org/10.1007/BF00602586
    [Google Scholar]
  31. Hsü, K., Ryan, W., & Cita, M. (1973). Late Miocene desiccation of the Mediterranean. Nature, 242(5395), 240–244. https://doi.org/10.1038/242240a0
    [Google Scholar]
  32. Hübscher, C., Betzler, C., & Reiche, S. (2016). Seismo‐stratigraphic evidences for deep base level control on middle to late Pleistocene drift evolution and mass wasting along southern Levant continental slope (Eastern Mediterranean). Marine and Petroleum Geology, 77, 526–534. https://doi.org/10.1016/j.marpetgeo.2016.07.008
    [Google Scholar]
  33. Kartveit, K. H., Omosanya, K. O., Johansen, S. E., Eruteya, O., Reshef, M., & Waldmann, N. D. (2018). Multiphase structural evolution and geodynamic implications of Messinian salt‐related structures, levant basin, offshore Israel. Tectonics, 37(5), 1210–1230. https://doi.org/10.1029/2017TC004794
    [Google Scholar]
  34. Krenkel, E. (1924). Der Syrische Bogen. Zentralblatt Mineralogie, 9(10), 274–281.
    [Google Scholar]
  35. Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F., & Wilson, D. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400(6745), 652–655. https://doi.org/10.1038/23231
    [Google Scholar]
  36. Krijgsman, W., & Meijer, P. T. (2008). Depositional environments of the Mediterranean "Lower Evaporites" of the Messinian salinity crisis: Constraints from quantitative analyses. Marine Geology, 253(3–4), 73–81. https://doi.org/10.1016/j.margeo.2008.04.010
    [Google Scholar]
  37. Lang, G., Lazar, M., & Schattner, U. (2018). Structural implications of strain localization towards a continental transform fault: The example of the shift between the Levant margin and the Dead Sea Fault plate boundary. Marine and Petroleum Geology, 89, 402–414. https://doi.org/10.1016/j.marpetgeo.2017.10.009
    [Google Scholar]
  38. Lazar, M., Lang, G., & Schattner, U. (2016). Coincidence or not? Interconnected gas/fluid migration and ocean–atmosphere oscillations in the Levant Basin. Geo‐Marine Letters, 36(4), 293–306. https://doi.org/10.1007/s00367-016-0447-5
    [Google Scholar]
  39. Leila, M., Kora, M. A., Ahmed, M. A., & Ghanem, A. (2016). Sedimentology and reservoir characterization of the Upper Miocene Qawasim Formation, El‐Tamad Oil Field onshore Nile Delta, Egypt. Arabian Journal of Geosciences, 9(1), 17. https://doi.org/10.1007/s12517-015-2088-9
    [Google Scholar]
  40. Lofi, J., Sage, F., Deverchere, J., Loncke, L., Maillard, A., Gaullier, V., … Gorini, C. (2011). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi‐site seismic analysis. Bulletin De La Société Géologique De France, 182(2), 163–180. https://doi.org/10.2113/gssgfbull.182.2.163
    [Google Scholar]
  41. Lugli, S., Manzi, V., Roveri, M., & Schreiber, B. C. (2015). The deep record of the Messinian salinity crisis: Evidence of a non‐desiccated Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 433, 201–218. https://doi.org/10.1016/j.palaeo.2015.05.017
    [Google Scholar]
  42. Madof, A. S., Bertoni, C., & Lofi, J. (2019). Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology, 47(2), 171–174. https://doi.org/10.1130/G45873.1
    [Google Scholar]
  43. Madof, A., & Connell, S. (2017). Northern levant basin (Seismic stratigraphy of a previously unidentified messinian fluvio‐deltaic succession: Implications for pre‐Zanclean lacustrine flooding in the eastern Mediterranean), In Seismic atlas of the "Messinian Salinity crisis" markers in the Mediterranean and Black Seas, 2, Chapter: 17
    [Google Scholar]
  44. Meilijson, A., Steinberg, J., Hilgen, F., Bialik, O. M., Waldmann, N. D., & Makovsky, Y. (2018). Deep‐basin evidence resolves a 50‐year‐old debate and demonstrates synchronous onset of Messinian evaporite deposition in a non‐desiccated Mediterranean. Geology, 46(3), 243–246. https://doi.org/10.1130/G39868.1
    [Google Scholar]
  45. Micallef, A., Camerlenghi, A., Garcia‐Castellanos, D., Cunarro Otero, D., Gutscher, M.‐A., Barreca, G., … Urlaub, M. (2018). Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Scientific Reports, 8(1), 1078. https://doi.org/10.1038/s41598-018-19446-3
    [Google Scholar]
  46. Netzeband, G., Hübscher, C., & Gajewski, D. (2006). The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230(3), 249–273. https://doi.org/10.1016/j.margeo.2006.05.004
    [Google Scholar]
  47. Ottes, W., Lambregts, P., & El Barkooky, A. (2008). The Messinian salinity crisis in the nile delta: Chasing shallow marine reservoirs in a deep‐water basin. CIESM, CIESM Workshop Monographs n°33, 107–109.
    [Google Scholar]
  48. Papadimitriou, N., Gorini, C., Nader, F., Deschamps, R., Symeou, V., & Lecomte, J. (2018). Tectono‐stratigraphic evolution of the western margin of the Levant Basin (offshore Cyprus). Marine and Petroleum Geology, 91, 683–705. https://doi.org/10.1016/j.marpetgeo.2018.02.006
    [Google Scholar]
  49. Pérez‐Asensio, J. N., Aguirre, J., Jiménez‐Moreno, G., Schmiedl, G., & Civis, J. (2013). Glacioeustatic control on the origin and cessation of the Messinian salinity crisis. Global and Planetary Change, 111, 1–8. https://doi.org/10.1016/j.gloplacha.2013.08.008
    [Google Scholar]
  50. Polonia, A., Camerlenghi, A., Davey, F., & Storti, F. (2002). Accretion, structural style and syn‐contractional sedimentation in the Eastern Mediterranean Sea. Marine Geology, 186(1), 127–144. https://doi.org/10.1016/S0025-3227(02)00176-7
    [Google Scholar]
  51. Rouchy, J. M., & Caruso, A. (2006). The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sedimentary Geology, 188, 35–67. https://doi.org/10.1016/j.sedgeo.2006.02.005
    [Google Scholar]
  52. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … Stoica, M. (2014a). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  53. Roveri, M., Lugli, S., Manzi, V., Gennari, R., & Schreiber, B. C. (2014b). High‐resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: Implications for marginal to central basins correlation. Marine Geology, 349, 113–125. https://doi.org/10.1016/j.margeo.2014.01.002
    [Google Scholar]
  54. Ryan, W. B. (2008). Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis. Stratigraphy, 5(1), 227–243.
    [Google Scholar]
  55. Ryan, W. B. (2011). Geodynamic responses to a two‐step model of the Messinian salinity crisis. Bulletin De La Société Géologique De France, 182(2), 73–78. https://doi.org/10.2113/gssgfbull.182.2.73
    [Google Scholar]
  56. Ryan, W. B. F., & Cita, M. B. (1978). The nature and distribution of Messinian erosional surfaces ‐ Indicators of a several‐kilometer‐deep Mediterranean in the Miocene. Marine Geology, 27(3–4), 193–230. https://doi.org/10.1016/0025-3227(78)90032-4
    [Google Scholar]
  57. Ryan, W. B. F., Hsü, K. J., Cita, M. B., Dumitrica, R., Loft, J., Maync, W.,…Wezel, E. (1973). Valencia Trough Sites 122 and 123. Init. Reports of the Deep Sea Drilling Project, XIlI (Leg 13), 13(U.S. Printing Office, Washington), 91–123.
  58. Safadi, M., Meilijson, A., & Makovsky, Y. (2017). Internal deformation of the southeast Levant margin through continued activity of buried mass transport deposits. Tectonics, 36(3), 559–581. https://doi.org/10.1002/2016TC004342
    [Google Scholar]
  59. Schattner, U., Ben‐Avraham, Z., Lazar, M., & Hüebscher, C. (2006). Tectonic isolation of the Levant basin offshore Galilee‐Lebanon ‐ effects of the Dead Sea fault plate boundary on the Levant continental margin, eastern Mediterranean. Journal of Structural Geology, 28(11), 2049–2066. https://doi.org/10.1016/j.jsg.2006.06.003
    [Google Scholar]
  60. Skiple, C., Sortemos, T., Lie, O., Lowrey, C. J., & Semb, P. H. (2011). Regional geological understanding of offshore Cyprus and Lebanon from interpretation of dual‐sensor streamer data. Paper presented at the SPE Middle East Oil and Gas Show and Conference.
  61. Solem, H. B. (2014). Seismic Interpretation of the Messinian Salinity Crisis in the Levant Basin, Eastern Mediterranean Sea. Retrieved from http://hdl.handle.net/11250/240417
  62. Tibor, G., & Ben‐Avraham, Z. (2005). Late Tertiary paleodepth reconstruction of the Levant margin off Israel. Marine Geology, 221(1), 331–347. https://doi.org/10.1016/j.margeo.2005.03.005
    [Google Scholar]
  63. Tibor, G., Ben‐Avraham, Z., Steckler, M., & Fligelman, H. (1992). Late Tertiary subsidence history of the southern Levant Margin, eastern Mediterranean Sea, and its implications to the understanding of the Messinian Event. Journal of Geophysical Research, 97(B12), 17593–517614. https://doi.org/10.1029/92JB00978
    [Google Scholar]
  64. Urgeles, R., Camerlenghi, A., Garcia‐Castellanos, D., De Mol, B., Garcés, M., Vergés, J., … Hardman, M. (2011). New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research, 23(2), 123–145. https://doi.org/10.1111/j.1365-2117.2010.00477.x
    [Google Scholar]
  65. Vasiliev, I., Mezger, E. M., Lugli, S., Reichart, G.‐J., Manzi, V., & Roveri, M. (2017). How dry was the Mediterranean during the Messinian salinity crisis?Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 120–133. https://doi.org/10.1016/j.palaeo.2017.01.032
    [Google Scholar]
  66. Vidal, L., Bickert, T., Wefer, G., & Röhl, U. (2002). Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: Relation to Messinian events. Marine Geology, 180(1), 71–85. https://doi.org/10.1016/S0025-3227(01)00206-7
    [Google Scholar]
  67. Vidal, N., Alvarez‐Marron, J., & Klaeschen, D. (2000). Internal configuration of the Levantine Basin from seismic reflection data (eastern Mediterranean). Earth and Planetary Science Letters, 180(1), 77–89. https://doi.org/10.1016/S0012-821X(00)00146-1
    [Google Scholar]
  68. Walley, C. D. (1998). Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics, 298(1–3), 37–62. https://doi.org/10.1016/S0040-1951(98)00177-2
    [Google Scholar]
  69. Wescott, W. A., & Boucher, P. J. (2000). Imaging submarine channels in the western Nile Delta and interpreting their paleohydraulic characteristics from 3‐D seismic. The Leading Edge, 19(6), 580–591. https://doi.org/10.1190/1.1438662
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12347
Loading
/content/journals/10.1111/bre.12347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error