1887
Volume 31, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

In this study, measured outcrop sections and geolocated photomosaics are integrated with areal mapping of channel dimensions, degree of amalgamation, calculations of channel‐to‐floodplain ratios and sedimentary facies variability to study and quantify the channel and floodplain deposits in the Sunnyside Delta Interval of the Lower Eocene Green River Formation in the Uinta Basin, Utah. Vertically, sand content and bed thickness increases, due to an increase in the channel‐to‐floodplain ratio, channel size and the degree of channel amalgamation. Laterally, the channel‐to‐floodplain ratio, channel size, the degree of channel amalgamation and the sand content in channel facies decreases in the paleo‐downstream direction. Such vertical and lateral transitions identify the Sunnyside Delta Interval as a fluvial fan (or distributive fluvial system). However, the vertical and lateral transitions occur at multiple spatial scales, demonstrating considerable stratigraphic complexity as compared to the existing facies and architectural models suggested for fluvial megafans and distributive fluvial systems. The smallest‐scale transitions are identified as avulsion‐related packages that form the building blocks of the stratigraphy, whereas the intermediate‐ and largest‐scale transitions are suggested to be related to lobe and whole fan progradation respectively. This documented complexity indicates the significance of self‐organization in building fluvial fan stratigraphy, and demonstrates that changes in the degree of channel amalgamation or in channel‐to‐floodplain ratio are not linked to accommodation changes. On facies scale, an abundance of Froude supercritical‐flow and high‐deposition‐rate facies, in‐channel mud deposits, and in‐channel bioturbation and desiccation indicate deposition in rivers with highly variable discharge. Such discharge conditions suggest seasonally and inter‐annually variable precipitation conditions in the US Western Interior in the Early Eocene.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12350
2019-03-13
2020-03-28
Loading full text...

Full text loading...

References

  1. Abdullatif, O. M. (1989). Channel‐fill and sheet‐flood facies sequences in the ephemeral terminal River Gash, Kassala, Sudan. Sedimentary Geology, 63, 171–184. https://doi.org/10.1016/0037-0738(89)90077-8
    [Google Scholar]
  2. Alexander, J., Bridge, J. S., Cheel, R. J., & Leclair, S. F. (2001). Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology, 48, 133–152.
    [Google Scholar]
  3. Allen, J. P., Fielding, C. R., Gibling, M. R., & Rygel, M. C. (2011). Fluvial response to paleo‐equatorial climate fluctuations during the late Paleozoic ice age. Bulletin of the Geological Society of America, 123, 1524–1538. https://doi.org/10.1130/B30197.1
    [Google Scholar]
  4. Allen, J. P., Fielding, C. R., Rygel, M. C., & Gibling, M. R. (2013). Deconvolving signals of tectonic and climatic controls from continental basins: An example from the late paleozoic Cumberland Basin, Atlantic Canada. Journal of Sedimentary Research, 83, 847–872. https://doi.org/10.2110/jsr.2013.58
    [Google Scholar]
  5. Allen, P. A., Cabrera, L., Colombo, F., & Matter, A. (1983). Variations in fluvial style on the Eocene‐Oligocene alluvial fan of the Scala Dei Group, SE Ebro Basin, Spain. Journal of the Geological Society, 140, 133–146. https://doi.org/10.1144/gsjgs.140.1.0133
    [Google Scholar]
  6. Alonso‐Zarza, A. M. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth‐Science Reviews, 60, 261–298. https://doi.org/10.1016/S0012-8252(02)00106-X
    [Google Scholar]
  7. Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology, 70, 357–371. https://doi.org/10.1016/j.geomorph.2005.02.013
    [Google Scholar]
  8. Assine, M. L., Corradini, F. A., Pupim, F. N., & McGlue, M. M. (2014). Channel arrangements and depositional styles in the São Lourenço fluvial megafan, Brazilian Pantanal wetland. Sedimentary Geology, 301, 172–184. https://doi.org/10.1016/j.sedgeo.2013.11.007
    [Google Scholar]
  9. Assine, M. L., & Silva, A. (2009). Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil. Geomorphology, 113, 189–199. https://doi.org/10.1016/J.GEOMORPH.2009.03.012
    [Google Scholar]
  10. Barros, P., Campos, H. J., Pedersen, G., Plink‐Björklund, P., Moscariello, A., & Morettini, E. (2016). New insights into the cretaceous rayoso formation: A regional overview of a large fluvial fan and implications for reservoir prediction [Abstract]. American Association of Petroleum Geologists, Annual Convention and Exhibition, AAPG Datapages.
  11. Bashforth, A. R., Cleal, C. J., Gibling, M. R., Falcon‐Lang, H. J., & Miller, R. F. (2014). Paleoecology of Early Pennsylvanian vegetation on a seasonally dry tropical landscape (Tynemouth Creek Formation, New Brunswick, Canada). Review of Palaeobotany and Palynology, 200, 229–263. https://doi.org/10.1016/j.revpalbo.2013.09.006
    [Google Scholar]
  12. Bhattacharyya, P., Scuderi, L. A., Weissmann, G. S., Hartley, A. J., Davidson, S. K., & Nichols, G. J. (2011). Satellite imagery evaluation of soil moisture variability in the Ganges Basin, India [Abstract]. American Geophysical Union, Fall Meeting 2011, San Francisco, California.
  13. Billi, P. (2007). Morphology and sediment dynamics of ephemeral stream terminal distributary systems in the Kobo Basin (northern Welo, Ethiopia). Geomorphology, 85, 98–113. https://doi.org/10.1016/j.geomorph.2006.03.012
    [Google Scholar]
  14. Birgenheier, L. P., Vanden Berg, M. D., Plink‐Björklund, P., Gall, R. D., Rosencrans, E., Rosenberg, M. J., … Morris, J. (in press). Climate impact on fluvial‐lake system evolution, Eocene Green River Formation, Uinta Basin, Utah. Geological Society of America Bulletin.
    [Google Scholar]
  15. Birkett, C. M. (1995). The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. Journal of Geophysical Research, 100, 25179–25204. https://doi.org/10.1029/95JC02125
    [Google Scholar]
  16. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64, 450–489. https://doi.org/10.1306/D4267DDE-2B26-11D7-8648000102C1865D
    [Google Scholar]
  17. Bramble, M. S., Goudge, T. A., Milliken, R. E., & Mustard, J. F. (2019). Testing the deltaic origin of fan deposits at Bradbury Crater, Mars. Icarus, 319, 363–366. https://doi.org/10.1016/J.ICARUS.2018.09.024
    [Google Scholar]
  18. Bromley, M. H. (1992). Variations in fluvial style as revealed by architectural elements, Kayenta Formation, Mesa Creek, Colorado, USA: Evidence for both Ephemeral and Perennial Fluvial Processes. The Three Dimensional Facies Architecture of Terrigenous Clastic Sediments and Its Implications for Hydrocarbon Discovery and Recovery, 94–102.https://doi.org/10.2110/csp.91.03.0080
  19. Bryant, M., Falk, P., & Paola, C. (1995). Experimental study of avulsion frequency and rate of deposition. Geology, 23, 365–368.
    [Google Scholar]
  20. Buehler, H. A., Weissmann, G. S., Scuderi, L. A., & Hartley, A. J. (2011). Spatial and temporal evolution of an avulsion on the Taquari river distributive fluvial system from satellite image analysis. Journal of Sedimentary Research, 81, 630–640. https://doi.org/10.2110/jsr.2011.040
    [Google Scholar]
  21. Carmichael, M. J., Pancost, R. D., & Lunt, D. J. (2018). Changes in the occurrence of extreme precipitation events at the Paleocene‐Eocene thermal maximum. Earth and Planetary Science Letters, 501, 24–36. https://doi.org/10.1016/J.EPSL.2018.08.005
    [Google Scholar]
  22. Cartigny, M. J. B., & Postma, G. (2010). Experiments on internal hydraulic jumps in stratified turbidity currents and their relation to structureless sands. EGU General Assembly Conference Abstracts, Vienna, Austria, 12, 4952.
  23. Cartigny, M. J. B., Ventra, D., Postma, G., & van Den Berg, J. H. (2014). Morphodynamics and sedimentary structures of bedforms under supercritical‐flow conditions: New insights from flume experiments. Sedimentology, 61, 712–748. https://doi.org/10.1111/sed.12076
    [Google Scholar]
  24. Cashion, W. B. (1967). Geology and fuel resources of the Green River Formation, southeastern Uinta basin, Utah and Colorado. U.S. Geological Survey Professional Paper, 548, 48.
    [Google Scholar]
  25. Chakraborty, T., & Ghosh, P. (2010). The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes. Geomorphology, 115, 252–266. https://doi.org/10.1016/j.geomorph.2009.06.035
    [Google Scholar]
  26. Chakraborty, T., Kar, R., Ghosh, P., & Basu, S. (2010). Kosi megafan: Historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International, 227, 143–160. https://doi.org/10.1016/j.quaint.2009.12.002
    [Google Scholar]
  27. Cheel, R. J. (1990). Horizontal lamination and the sequence of bed phases and stratification under upper‐flow‐regime conditions. Sedimentology, 37, 517–529. https://doi.org/10.1111/j.1365-3091.1990.tb00151.x
    [Google Scholar]
  28. Chesley, J. T., & Leier, A. L. (2018). Sandstone‐body variability in the medial‐distal part of an ancient distributive fluvial system, salt wash member of the Morrison Formation, Utah, U.S.A. Journal of Sedimentary Research, 88, 568–582. https://doi.org/10.2110/jsr.2018.32
    [Google Scholar]
  29. Croke, J. C., Magee, J. M., & Price, D. M. (1998). Stratigraphy and sedimentology of the lower Neales River, West Lake Eyre, Central Australia: From Palaeocene to Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 331–350. https://doi.org/10.1016/S0031-0182(98)00125-4
    [Google Scholar]
  30. Davis, S. J., Dickinson, W. R., Gehrels, G. E., Spencer, J. E., Lawton, T. F., & Carroll, A. R. (2010). The Paleogene California River: Evidence of Mojave‐Uinta paleodrainage from U‐Pb ages of detrital zircons. Geology, 38, 931–934. https://doi.org/10.1130/G31250.1
    [Google Scholar]
  31. De Gibert, J. M., & Sáez, A. (2009). Paleohydrological significance of trace fossil distribution in Oligocene fluvial‐fan‐to‐lacustrine systems of the Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 162–175. https://doi.org/10.1016/j.palaeo.2008.10.030
    [Google Scholar]
  32. DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. American Journal of Science, 304, 105–168. https://doi.org/10.2475/ajs.304.2.105
    [Google Scholar]
  33. DeCelles, P. G., & Cavazza, W. (1999). A comparison of fluvial megafans in the Cordilleran (Upper Cretaceous) and modern Himalayan foreland basin systems. Bulletin of the Geological Society of America, 111, 1315–1334.
    [Google Scholar]
  34. Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R., Mckittrick, M. A., & Olivares, M. D. (1988). Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geological Society of America Bulletin, 100, 1023–1039. https://doi.org/10.1130/0016-7606(1990)102<0256
    [Google Scholar]
  35. Dickinson, W. R., Lawton, T. F., & Inman, K. F. (1986). Sandstone detrital modes, central Utah foreland region: Stratigraphic record of cretaceous ‐paleocene tectonic evolution. Journal of Sedimentary Petrology, 56, 276–293.
    [Google Scholar]
  36. Dickinson, W. R., Lawton, T. F., Pecha, M., Davis, S. J., Gehrels, G. E., & Young, R. A. (2012). Provenance of the Paleogene Colton Formation (Uinta Basin) and Cretaceous‐Paleogene provenance evolution in the Utah foreland: Evidence from U‐Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere, 8, 854–880. https://doi.org/10.1130/GES00763.1
    [Google Scholar]
  37. Donselaar, M. E., Cuevas Gozalo, M. C., & Moyano, S. (2013). Avulsion processes at the terminus of low‐gradient semi‐arid fluvial systems: Lessons from the Río Colorado, Altiplano endorheic basin, Bolivia. Sedimentary Geology, 283, 1–14. https://doi.org/10.1016/j.sedgeo.2012.10.007
    [Google Scholar]
  38. Fielding, C. R. (2006). Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190, 227–240. https://doi.org/10.1016/j.sedgeo.2006.05.009
    [Google Scholar]
  39. Fielding, C. R., Allen, J. P., Alexander, J., & Gibling, M. G. (2009). Facies model for fluvial systems in the seasonal tropics and subtropics. Geology, 37, 623–626. https://doi.org/10.1130/G25727A.1
    [Google Scholar]
  40. Fielding, C. R., Ashworth, P. J., Best, J. L., Prokocki, E. W., & Smith, G. H. S. (2012). Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record?Sedimentary Geology, 261–262, 15–32. https://doi.org/10.1016/j.sedgeo.2012.03.004
    [Google Scholar]
  41. Fisher, J. A., Krapf, C. B. E., Lang, S. C., Nichols, G. J., & Payenberg, T. H. D. (2008). Sedimentology and architecture of the Douglas Creek terminal splay, Lake Eyre, central Australia. Sedimentology, 55, 1915–1930. https://doi.org/10.1111/j.1365-3091.2008.00974.x
    [Google Scholar]
  42. Foley, M. G. (1978). Scour and fill in steep, sand‐bed ephemeral streams. Geological Society of America Bulletin, 89, 559.
    [Google Scholar]
  43. Fontana, A., Mozzi, P., & Marchetti, M. (2014). Alluvial fans and megafans along the southern side of the Alps. Sedimentary Geology, 301, 150–171. https://doi.org/10.1016/j.sedgeo.2013.09.003
    [Google Scholar]
  44. Ford, G. L., Dechesne, M., & Pyles, D. R. (2016). Stratigraphic architecture of a fluvial‐lacustrine basin‐fill succession at Desolation Canyon, Uinta Basin, Utah: Reference to Walthers' Law and implications for the petroleum industry. The Mountain Geologist, 53, 5–28.
    [Google Scholar]
  45. Fouch, T. D. (1975).Lithofacies and related hydrocarbon accumulations in Tertiary strata of the western and central Uinta Basin, Utah. Rocky Mountain Association of Geologists, Symposium, 163–173.
  46. Fouch, T. D., Cashion, W. B., Ryder, R. T., & Campbell, J. H. (1976). Field guide to lacustrine and related nonmarine depositional environments in Tertiary rocks, Uinta Basin, Utah.
  47. Fouch, T. D., Hanley, J. H., Forester, R. M., Keighin, C. W., Pitman, J. K., & Nichols, D. J. (1987a). Chart showing lithology, mineralogy, and paleontology of the nonmarine North Horn Formation and Flagstaff Member of the Green River Formation, Price Canyon, central Utah: A principal reference section. U.S. Geological Survey, Miscellaneous Investigation Series, Map I‐1797‐A, 1 sheet.
  48. Fouch, T. D., Hanley, J. H., Forester, R. M., Keighin, C. W., Pitman, J. K., & Nichols, D. J. (1987b). Chart showing lithology, mineralogy, and paleontology of the nonmarine North Horn Formation and Flagstaff Member of the Green River Formation, Price Canyon, central Utah a principal reference section. Retrieved from https://pubs.usgs.gov/imap/1797a/report.pdf
  49. Fouch, T. D., Nuccio, V. F., Anders, D. E., Rice, D. D., Pitman, J. K., & Mast, R. F. (1994). Green River (!) Petroleum System, Uinta Basin, Utah, U.S.A. In L. B.Magoon, & W. G.Dow (Eds.), The petroleum system—From source to trap: American Association of Petroleum Geologists, Memoir (vol. 60, pp. 399–421).
    [Google Scholar]
  50. Frostick, L. E., & Reid, I. (1977). The origin of horizontal laminae in ephemeral stream channel‐fill. Sedimentology, 24, 1–9. https://doi.org/10.1111/j.1365-3091.1977.tb00116.x
    [Google Scholar]
  51. Gall, R. D., Birgenheier, L. P., & Vanden Berg, M. D. (2017). Highly seasonal and perennial fluvial facies: Implications for climatic control on the douglas creek and parachute creek members, green river formation, Southeastern Uinta Basin, Utah, U.S.A. Journal of Sedimentary Research, 87, 1019–1047. https://doi.org/10.2110/jsr.2017.54
    [Google Scholar]
  52. Hajek, E. A., & Edmonds, D. A. (2014). Is river avulsion style controlled by floodplain morphodynamics?Geology, 42, 199–202. https://doi.org/10.1130/G35045.1
    [Google Scholar]
  53. Hajek, E. A., & Wolinsky, M. A. (2012). Simplified process modeling of river avulsion and alluvial architecture: Connecting models and field data. Sedimentary Geology, 257–260, 1–30. https://doi.org/10.1016/j.sedgeo.2011.09.005
    [Google Scholar]
  54. Hansford, M. R., & Plink-Björklund, P. (2017). Climate control on discharge variability in fluvial systems around the globe [Abstract]. 11th International Conference on Fluvial Sedimentology 2017, Calgary, Canada.
  55. Hartley, A. J., Weissmann, G. S., Bhattacharayya, P., Nichols, G., Scuderi, L. A., Davidson, S. K., …Ghosh, P. (2013). Soil development on modern distributive fluvial systems: Preliminary observations with implications for interpretation of paleosols in the rock record. SEPM Special Publication No. 104, 149–158.
  56. Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167–183. https://doi.org/10.2110/jsr.2010.016
    [Google Scholar]
  57. Hinds, D. J., Aliyeva, E., Allen, M. B., Davies, C. E., Kroonenberg, S. B., Simmons, M. D., & Vincent, S. J. (2004). Sedimentation in a discharge dominated fluvial‐lacustrine system: The Neogene Productive Series of the South Caspian Basin, Azerbaijan. Marine and Petroleum Geology, 21, 613–638. https://doi.org/10.1016/j.marpetgeo.2004.01.009
    [Google Scholar]
  58. Hirst, J. P. P. (1991). Variations in alluvial architecture across the Oligo‐Miocene Huesca fluvial system, Ebro Basin, Spain. In A. D.Miall, & N.Tyler (Eds.), Three dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery. SEPM, Concepts in Sedimentology and Paleontology, 3, 111–121.
    [Google Scholar]
  59. Horton, B. K., & Decelles, P. G. (2001). Modern and ancient fuvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐ thrust belts. Basin Research, 13, 43–63.
    [Google Scholar]
  60. Jacob, F. (1969). Delta facies of the Green River Formation (Eocene): Carbon and Duchesne Counties, Utah. University of Colorado, 364 p.
  61. Jain, V., & Sinha, R. (2003). Geomorphological manifestations of the flood hazard: A remote sensing based approach. Geocarto International, 18, 51–60. https://doi.org/10.1080/10106040308542289
    [Google Scholar]
  62. Jain, V., & Sinha, R. (2004). Fluvial dynamics of an anabranching river system in Himalayan foreland basin, Baghmati River, north Bihar plains, India. Geomorphology, 60, 147–170. https://doi.org/10.1016/j.geomorph.2003.07.008
    [Google Scholar]
  63. Jerolmack, D. J., & Mohrig, D. (2007). Conditions for branching in depositional rives. Geology, 35, 463–466. https://doi.org/10.1130/G23308A.1
    [Google Scholar]
  64. Jones, C. M. (1977). Effects of varying discharge regimes on bed‐form sedimentary structures in modern rivers. Geology, 5, 567.
    [Google Scholar]
  65. Jones, E. R. (2017). Probabilistic source‐to‐sink analysis of the provenance of the California paleoriver: Implications for the early eocene paleogeography of western North America. Unpublished Doctoral Dissertation, Colorado School of Mines, 183 p.
  66. Jones, H. L., & Hajek, E. A. (2007). Characterizing avulsion stratigraphy in ancient alluvial deposits. Sedimentary Geology, 202, 124–137. https://doi.org/10.1016/j.sedgeo.2007.02.003
    [Google Scholar]
  67. Jones, L. S., & Schumm, S. A. (1999). Causes of avulsion: An overview. In N. D.Smith, & J.Rogers (Eds.), Fluvial sedimentology VI (pp. 169–178). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  68. Keighley, D., Flint, S., Howell, J., & Moscariello, A. (2003). Sequence stratigraphy in lacustrine basins: A model for part of the Green River Formation (Eocene), Southwest Uinta Basin, Utah, USA. Journal of Sedimentary Research, 73, 987–1006. https://doi.org/10.1306/050103730987
    [Google Scholar]
  69. Kelly, S. B., & Olsen, H. (1993). Terminal fans‐a review with reference to Devonian examples. Sedimentary Geology, 85, 339–374. https://doi.org/10.1016/0037-0738(93)90092-J
    [Google Scholar]
  70. Kezer, K., & Matsuyama, H. (2006). Decrease of river runoff in the Lake Balkhash basin in Central Asia. Hydrological Processes, 20, 1407–1423. https://doi.org/10.1002/hyp.6097
    [Google Scholar]
  71. Kostic, S., Sequeiros, O., Spinewine, B., & Parker, G. (2010). Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean. Journal of Hydro‐Environment Research, 3, 167–172. https://doi.org/10.1016/j.jher.2009.10.002
    [Google Scholar]
  72. Kraus, M. J., & Aslan, A. (1996). Eocene hydromorphic paleosols: Significance for interpreting ancient floodplain processes. Journal of Sedimentary Research, 63, 453–463.
    [Google Scholar]
  73. Kraus, M. J., & Wells, T. M. (1999). Recognizing avulsion deposits in the ancient stratigraphical record. In N. D.Smith, & J.Rogers (Eds.), Fluvial sedimentology VI (pp. 251–268). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  74. Kukulski, R. B., Hubbard, S. M., Moslow, T. F., & Raines, M. K. (2013). Basin‐scale stratigraphic architecture of upstream fluvial deposits: Jurassic‐Cretaceous foredeep, Alberta Basin, Canada. Journal of Sedimentary Research, 83, 704–722. https://doi.org/10.2110/jsr.2013.53
    [Google Scholar]
  75. Latrubesse, E. M., Stevaux, J. C., Cremon, E. H., May, J. H., Tatumi, S. H., Hurtado, M. A., … Argollo, J. B. (2012). Late Quaternary megafans, fans and fluvio‐aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 75–88. https://doi.org/10.1016/j.palaeo.2012.04.003
    [Google Scholar]
  76. Leckie, D. A. (2003). Modern environments of the Canterbury Plains and adjacent offshore areas, New Zealand: An analog for ancient conglomeratic depositional systems in nonmarine and coastal zone settings. Bulletin of Canadian Petroleum Geology, 51, 389–425. https://doi.org/10.2113/51.4.389
    [Google Scholar]
  77. Leckie, D., Fox, C., & Tarnocai, C. (1989). Multiple paleosols of the late Albian Boulder Creek Formation, British Columbia, Canada. Sedimentology, 36, 307–323.
    [Google Scholar]
  78. Legarreta, L., & Uliana, M. A. (1998). Anatomy of hinterland depositional sequences: Upper cretaceous fluvial strata, Neuquen Basin, West‐Central Argentina. In Relative role of eustasy, climate, and tectonism in continental rocks. Special Publications of SEPM No. 59, 83–92.
  79. Leier, A. L., DeCelles, P. G., & Pelletier, J. D. (2005). Mountains, monsoons, and megafans. Geology, 33, 289–292. https://doi.org/10.1130/G21228.1
    [Google Scholar]
  80. Littler, K., Röhl, U., Westerhold, T., & Zachos, J. C. (2014). A high‐resolution benthic stable‐isotope record for the South Atlantic: Implications for orbital‐scale changes in Late Paleocene‐Early Eocene climate and carbon cycling. Earth and Planetary Science Letters, 401, 18–30. https://doi.org/10.1016/J.EPSL.2014.05.054
    [Google Scholar]
  81. Makaske, B. (2001). Anastomosing rivers: A review of their classification, origin and sedimentary products. Earth‐Science Reviews, 53, 149–196. https://doi.org/10.1016/S0012-8252(00)00038-6
    [Google Scholar]
  82. McInerney, F. A., & Wing, S. L. (2011). The paleocene‐eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39, 489–516. https://doi.org/10.1146/annurev-earth-040610-133431
    [Google Scholar]
  83. Mckee, E. D., Crosby, E. J., & Berryhill, H. L. (1967). Flood deposits, Bijou Creek, Colorado, June 1965. Journal of Sedimentary Petrology, 37, 829–851.
    [Google Scholar]
  84. Mohrig, D., Heller, P., Paola, C., & Lyons, W. (2000). Interpreting avulsion process from ancient alluvial sequences: Guadalope‐Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geological Society of America Bulletin, 112, 1787–1803.
    [Google Scholar]
  85. Moore, J., Taylor, A., Johnson, C., Ritts, B. D., & Archer, R. (2012). Facies analysis, reservoir characterization, and LIDAR modeling of an eocene lacustrine delta, green river formation, southwest Uinta Basin, Utah. In O. W.Baganz, Y.Bartov, K. M.Bohacs, & D.Nummedal (Eds.), Acustrine sandstone reservoirs and hydrocarbon systems. American Association of Petroleum Geologists, Memoir 95, 183–208.
    [Google Scholar]
  86. Morgan, C. D. (2003). Geologic guide and road logs of the willow creek, Indian, soldier creek, nine mile, gate, and desolation canyons, Uinta basin, Utah. Utah Geological Survey, Open File Report 407, Salt Lake City, Utah, 57.
  87. Moscariello, A. (2017). Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo‐energy exploration and development. In D.Ventra, & L. E.Clarke (Eds.), Geology and geomorphology of alluvial and fluvial fans: Terrestrial and planetary perspectives (p. 440). Geological Society, London, Special Publications.
    [Google Scholar]
  88. Nakayama, K., & Ulak, P. D. (1999). Evolution of fluvial style in the Siwalik Group in the foothills of the Nepal Himalaya. Sedimentary Geology, 125, 205–224. https://doi.org/10.1016/S0037-0738(99)00012-3
    [Google Scholar]
  89. Naqshband, S., Hoitink, A. J. F., McElroy, B., Hurther, D., & Hulscher, S. J. M. H. (2017). A sharp view on river dune transition to upper stage plane bed. Geophysical Research Letters, 44, 11437–11444. https://doi.org/10.1002/2017GL075906
    [Google Scholar]
  90. Nichols, G. J., & Fisher, J. A. (2007). Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195, 75–90. https://doi.org/10.1016/j.sedgeo.2006.07.004
    [Google Scholar]
  91. Nichols, G. J., & Hirst, J. P. (1998). Alluvial fans and fluvial distributary systems, Oligo‐Miocene, northern Spain; contrasting processes and products. Journal of Sedimentary Research, 68, 879–889. https://doi.org/10.2110/jsr.68.879
    [Google Scholar]
  92. North, C. P., & Taylor, K. S. (1996). Ephemeral‐fluvial deposits: Integrated outcrop and simulation studies reveal complexity. AAPG Bulletin, 80, 811–830. https://doi.org/10.1306/64ED88D6-1724-11D7-8645000102C1865D
    [Google Scholar]
  93. Owen, A., Jupp, P. E., Nichols, G. J., Hartley, A. J., Weissmann, G. S., & Sadykova, D. (2015). Statistical estimation of the position of an apex: Application to the geological record. Journal of Sedimentary Research, 85, 142–152. https://doi.org/10.2110/jsr.2015.16
    [Google Scholar]
  94. Owen, A., Nichols, G. J., Hartley, A. J., & Weissmann, G. S. (2017). Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States. Basin Research, 29, 64–80. https://doi.org/10.1111/bre.12165
    [Google Scholar]
  95. Owen, A., Nichols, G. J., Hartley, A. J., Weissmann, G. S., & Scuderi, L. A. (2015). Quantification of a distributive fluvial system: The salt wash DFS of the Morrison Formation, SW USA. Journal of Sedimentary Research, 85, 544–561. https://doi.org/10.2110/jsr.2015.35
    [Google Scholar]
  96. Paola, C. (1989). A simple basin‐filling model for coarse‐grained alluvial systems. In T.Cross (Ed.), Quantitative dynamic stratigraphy (pp. 363–374). Englewood Cliffs, NJ: Prentice Hall.
    [Google Scholar]
  97. Picard, M. D., & High, L. R. (1973). Sedimentary structures of ephemeral streams. In Developments in sedimentology (Vol. 17, p. 223). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  98. Pitman, J. K., & Fouch, T. D. (1982). Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah. AAPG Bulletin, 66, 1581–1596.
    [Google Scholar]
  99. Plink‐Björklund, P. (2015). Morphodynamics of rivers strongly affected by monsoon precipitation: Review of depositional style and forcing factors. Sedimentary Geology, 323, 110–147. https://doi.org/10.1016/j.sedgeo.2015.04.004
    [Google Scholar]
  100. Plink‐Björklund, P., & Birgenheier, L. P. (2013). Effects of extreme monsoon precipitation on river systems form and function, an early Eocene perspective [Abstract]. American Geophysical Union, Fall Meeting 2013, San Francisco, California.
  101. Plink‐Björklund, P., Birgenheier, L. P., & Jones, E. R. (2014). Extremely bad early Eocene weather: evidence for extreme precipitation from river deposits [Abstract]. CBEP Climatic and Biotic Events of the Paleogene 2014, Ferrara, Italy, 175–176.
  102. Postma, G., Kleverlaan, K., & Cartigny, M. J. B. (2014). Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology, 61, 2268–2290. https://doi.org/10.1111/sed.12135
    [Google Scholar]
  103. Propastin, P. (2012). Patterns of Lake Balkhash water level changes and their climatic correlates during 1992–2010 period. Lakes & Reservoirs: Research & Management, 17, 161–169. https://doi.org/10.1111/j.1440-1770.2012.00508.x
    [Google Scholar]
  104. Pusca, V. A.(2003). Wet/dry, terminal fan‐dominated sequence architecture: A new, outcrop‐based model for the lower Green River Formation, Utah. Unpublished doctoral dissertation, University of Wyoming, 175 p.
  105. Radebaugh, J., Ventra, D., Lorenz, R. D., Farr, T., Kirk, R., Hayes, A., … Paillou, P. (2018). Alluvial and fluvial fans on Saturn's moon Titan reveal processes, materials and regional geology. Geological Society, London, Special Publications, 440, 281–305. https://doi.org/10.1144/SP440.6
    [Google Scholar]
  106. Reid, I., & Frostick, L. E. (1997). Channel forms, flows and sediments in deserts. In D. S. G.Thomas (Ed.), Arid zone geomorphology: Process, form and change in drylands (pp. 205–230). Chichester, UK: Wiley.
    [Google Scholar]
  107. Remy, R. R. (1992). Stratigraphy of the Eocene part of the green river formation in the South‐Central Part of the Uinta Basin, Utah. US Geological Survey Bulletin, 1787‐BB, 79.
    [Google Scholar]
  108. Retallack, G. J. (1988). Field recognition of paleosols. In J.Reinhardt, & W. R.Sigleo (Eds.), Paleosols and weathering through geologic time: Principles and applications, Reston, Virginia. Geological Society of America Special Paper 216, 1–20.
    [Google Scholar]
  109. Rittersbacher, A., Howell, J. A., & Buckley, S. J. (2014). Analysis of fluvial architecture in the Blackhawk Formation, Wasatch Plateau, Utah, U.S.A., using large 3D Photorealistic models. Journal of Sedimentary Research, 84, 72–87. https://doi.org/10.2110/jsr.2014.12
    [Google Scholar]
  110. Rosenberg, M. J., Birgenheier, L. P., & Vanden Berg, M. D. (2015). Facies, stratigraphic architecture, and lake evolution of the oil shale bearing green river formation, eastern Uinta Basin, Utah. In M. E.Smith, & A. R.Carroll (Eds.), Stratigraphy and paleolimnology of the green river formation, western USA, Syntheses in limnogeology (Vol. 1, pp. 211–249). Dordrecht, the Netherlands: Springer Netherlands.
    [Google Scholar]
  111. Ryder, R. T., Fouch, T. D., & Elison, J. H. (1976). Early Tertiary sedimentation in the western Uinta Basin, Utah. Geological Society of America Bulletin, 87, 496.
    [Google Scholar]
  112. Sato, T., & Chan, M. A. (2014). Fluvial Facies Architecture and Sequence Stratigraphy of the Tertiary Duchesne River Formation, Uinta Basin, Utah, U.S.A. Journal of Sedimentary Research, 85, 1438–1454. https://doi.org/10.2110/jsr.2015.90
    [Google Scholar]
  113. Schomacker, E. R., Kjemperud, A. V., Nystuen, J. P., & Jahren, J. S. (2010). Recognition and significance of sharp‐based mouth‐bar deposits in the Eocene Green River Formation, Uinta Basin, Utah. Sedimentology, 57, 1069–1087. https://doi.org/10.1111/j.1365-3091.2009.01136.x
    [Google Scholar]
  114. Sendziak, K. L. (2012). Stratigraphic architecture and avulsion deposits in a low net‐sand‐content fluvial succession: Lower Wasatch Formation, Uinta Basin. Colorado School of Mines, 53 p.
  115. Shukla, U. K., Singh, I. B., Sharma, M., & Sharma, S. (2001). A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology, 144, 243–262. https://doi.org/10.1016/S0037-0738(01)00060-4
    [Google Scholar]
  116. Singh, A., & Bhardwaj, B. D. (1991). Fluvial facies model of the Ganga River sediments, India. Sedimentary Geology, 72, 135–146. https://doi.org/10.1016/0037-0738(91)90127-Y
    [Google Scholar]
  117. Singh, H., Parkash, B., & Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85, 87–113. https://doi.org/10.1016/0037-0738(93)90077-I
    [Google Scholar]
  118. Singh, M., Singh, I. B., & Müller, G. (2007). Sediment characteristics and transportation dynamics of the Ganga River. Geomorphology, 86, 144–175. https://doi.org/10.1016/j.geomorph.2006.08.011
    [Google Scholar]
  119. Sinha, R. (2009). The Great avulsion of Kosi on 18 August 2008. Current Science, 97, 429–433. https://doi.org/10.2307/24112012
    [Google Scholar]
  120. Sinha, R., Ahmad, J., Gaurav, K., & Morin, G. (2014). Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sedimentary Geology, 301, 133–149. https://doi.org/10.1016/j.sedgeo.2013.06.008
    [Google Scholar]
  121. Sinha, R., Gaurav, K., Chandra, S., & Tandon, S. K. (2013). Exploring the channel connectivity structure of the August 2008 avulsion belt of the Kosi River, India: Application to flood risk assessment. Geology, 41, 1099–1102. https://doi.org/10.1130/G34539.1
    [Google Scholar]
  122. Sinha, R., Latrubesse, E. M., & Nanson, G. C. (2012). Quaternary fluvial systems of tropics: Major issues and status of research. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 1–15. https://doi.org/10.1016/j.palaeo.2012.07.024
    [Google Scholar]
  123. Sinha, R., & Sarkar, S. (2009). Climate‐induced variability in the Late Pleistocene‐Holocene fluvial and fluvio‐deltaic successions in the Ganga plains, India: A synthesis. Geomorphology, 113, 173–188. https://doi.org/10.1016/j.geomorph.2009.03.011
    [Google Scholar]
  124. Smith, M. E.
    , & A. R.Carroll (Eds.) (2015). Stratigraphy and paleolimnology of the green river formation, western USA, Syntheses in Limnogeology, 1. Dordrecht, the Netherlands: Springer Netherlands.
    [Google Scholar]
  125. Smith, M. E., Chamberlain, K. R., Singer, B. S., & Carroll, A. R. (2010). Eocene clocks agree: Coeval 40Ar/39Ar, U‐Pb, and astronomical ages from the Green River Formation. Geology, 38, 527–530. https://doi.org/10.1130/G30630.1
    [Google Scholar]
  126. Sneh, A. (1983). Desert stream sequences in the Sinai Peninsula. Journal of Sedimentary Research, 53, 1271–1279. https://doi.org/10.1306/212F835F-2B24-11D7-8648000102C1865D
    [Google Scholar]
  127. Stear, W. M. (1985). Comparison of the bedform distribution and dynamics of modern and ancient sandy ephemeral flood deposits in the southwestern Karoo Region, South Africa. Sedimentary Geology, 45, 209–230.
    [Google Scholar]
  128. Stouthamer, E., & Berendsen, H. J. A. (2001). Avulsion frequency, avulsion duration, and interavulsion period of Holocene channel belts in the Rhine‐Meuse Delta, The Netherlands. Journal of Sedimentary Research, 71, 589–598. https://doi.org/10.1306/112100710589
    [Google Scholar]
  129. Taylor, A. W., & Ritts, B. D. (2004). Mesoscale heterogeneity of fluvial‐lacustrine reservoir analogues: Examples from the Eocene green river and Colton formations, Uinta Basin, Utah, USA. Journal of Petroleum Geology, 27, 3–26. https://doi.org/10.1111/j.1747-5457.2004.tb00042.x
    [Google Scholar]
  130. Trendell, A. M., Atchley, S. C., & Nordt, L. C. (2013). Facies analysis of a probable large‐fluvial‐fan depositional system: The upper triassic chinle formation at petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 83, 873–895. https://doi.org/10.2110/jsr.2013.55
    [Google Scholar]
  131. Tunbridge, I. P. (1981). Sandy high‐energy flood sedimentation: Some criteria for recognition, with an example from the Devonian of S.W. England. Sedimentary Geology, 28, 79–95.
    [Google Scholar]
  132. Turner, B. R. (1986). Tectonic and climatic controls on continental depositional facies in the Karoo Basin of Northern Natal, South Africa. Sedimentary Geology, 46, 231–257.
    [Google Scholar]
  133. Uba, C. E., Heubeck, C., & Hulka, C. (2005). Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia. Sedimentary Geology, 180, 91–123. https://doi.org/10.1016/j.sedgeo.2005.06.013
    [Google Scholar]
  134. Ventra, D., & Clarke, L. E. (2018). Geology and geomorphology of alluvial and fluvial fans: Current progress and research perspectives. Geological Society, London, Special Publications, 440(1), 1–21. https://doi.org/10.1144/SP440.16
    [Google Scholar]
  135. Wang, J. (2018). Fluvial Fan Architecture, Facies, and Interaction with Lake: Lessons Learned from the Sunnyside Delta Interval of the Green River Formation, Uinta Basin, Utah. Unpublished Doctoral dissertation, Colorado School of Mines, 150 p.
  136. Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., & Banteah, R. (2010). Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38, 39–42. https://doi.org/10.1130/G30242.1
    [Google Scholar]
  137. Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Davidson, S. K., Owen, A., …Tabor, N. J. (2013). Prograding distributive fluvial systems—Geomorphic models and ancient exampless. SEPM Special Publication No. 104, 131–147. https://doi.org/10.2110/sepmsp.104.16
  138. Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Owen, A., Wright, S., … Anaya, F. M. L. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187–219. https://doi.org/10.1016/j.geomorph.2015.09.005
    [Google Scholar]
  139. Williams, G. E. (1971). Flood deposits of the sand‐bed ephemeral streams of central Australia. Sedimentology, 17, 1–40.
    [Google Scholar]
  140. Willis, B. (1993). Evolution of Miocene fluvial systems in the himalayan foredeep through a two kilometer‐thick succession in northern Pakistan. Sedimentary Geology, 88, 77–121. https://doi.org/10.1016/0037-0738(93)90152-U
    [Google Scholar]
  141. Wilson, A., Flint, S., Payenberg, T., Tohver, E., & Lanci, L. (2014). Architectural styles and sedimentology of the fluvial lower Beaufort group, Karoo Basin, South Africa. Journal of Sedimentary Research, 84, 326–348. https://doi.org/10.2110/jsr.2014.28
    [Google Scholar]
  142. Wright, V. P. (1992). Paleosol recognition: A guide to early diagenesis in terrestrial settings. Developments in Sedimentology, 47, 591–619. https://doi.org/10.1016/S0070-4571(08)70574-0
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12350
Loading
/content/journals/10.1111/bre.12350
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fluvial fan , Green River Formation , sedimentology and stratigraphy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error