1887
Volume 31, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

Exhumed basin margin‐scale clinothems provide important archives for understanding process interactions and reconstructing the physiography of sedimentary basins. However, studies of coeval shelf through slope to basin‐floor deposits are rarely documented, mainly due to outcrop or subsurface dataset limitations. Unit G from the Laingsburg depocentre (Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem (>60 km long, 200 m‐high), with >10 km of depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition over a ca. 1,200 km2 area. Sand‐prone, wave‐influenced topset deposits close to the shelf‐edge rollover zone can be physically mapped down dip for ca. 10 km as they thicken and transition into heterolithic foreset/slope deposits. These deposits progressively fine and thin over tens of km farther down dip into sand‐starved bottomset/basin‐floor deposits. Only a few km along strike, the coeval foreset/slope deposits are bypass‐dominated with incisional features interpreted as minor slope conduits/gullies. The margin here is steeper, more channelized and records a stepped profile with evidence of sand‐filled intraslope topography, a preserved base‐of‐slope transition zone and sand‐rich bottomset/basin‐floor deposits. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated shelf with limited sand supply to the slope and basin floor. The change in margin style is accompanied with decreased clinoform height/slope and increased shelf width. This is interpreted to reflect a transition in subsidence style from regional sag, driven by dynamic topography/inherited basement configuration, to early foreland basin flexural loading. Results of this study caution against reconstructing basin margin successions from partial datasets without accounting for temporal and spatial physiographic changes, with potential implications on predictive basin evolution models.

,

Unit G from the Laingsburg depocentre (Permian Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem, with depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated clinoforms with limited sand supply to slope and basin‐floor.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12351
2019-05-22
2020-05-29
Loading full text...

Full text loading...

References

  1. Ainsworth, R. B., Vakarelov, B. K., & Nanson, R. A. (2011). Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: Toward improved subsurface uncertainty reduction and management. American Association of Petroleum Geologists, Bulletin, 95, 267–297. https://doi.org/10.1306/06301010036
    [Google Scholar]
  2. Andersson, P. O. D., Worden, R. H., Hodgson, D. M., & Flint, S. (2004). Provenance evolution and chemostratigraphy of a palaeozoic submarine fan‐complex: Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology, 21, 555–577. https://doi.org/10.1016/j.marpetgeo.2004.01.004
    [Google Scholar]
  3. Anell, I., Midtkandal, I., & Braathen, A. (2014). Trajectory analysis and inferences on geometric relationships of an early triassic prograding clinoform succession on the northern barents shelf. Marine and Petroleum Geology, 54, 167–179. https://doi.org/10.1016/j.marpetgeo.2014.03.005
    [Google Scholar]
  4. Bhattacharya, J. P., & MacEachern, J. A. (2009). Hyperpycnal rivers and prodeltaic shelves in the cretaceous seaway of North America. Journal of Sedimentary Research, 79, 184–209. https://doi.org/10.2110/jsr.2009.026
    [Google Scholar]
  5. Blewett, S. C., & Phillips, D. (2016). An overview of cape fold belt geochronology: Implications for sediment provenance and the timing of orogenesis. In B.Linol, & M. J.de Wit (Eds.), Origin and evolution of the cape mountains and Karoo Basin (pp. 45–55). Cham, Switzerland: Springer International Publishing.
    [Google Scholar]
  6. Brooks, H. L., Hodgson, D. M., Brunt, R. L., Peakall, J., Hofstra, M., & Flint, S. S. (2018). Deep‐water channel‐lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa. Geological Society of America Bulletin, 130, 1723–1746. https://doi.org/10.1130/B31714.1
    [Google Scholar]
  7. Brooks, H. L., Hodgson, D. M., Brunt, R. L., Peakall, J., Poyatos‐Moré, M., & Flint, S. S. (2018). Disconnected submarine lobes as a record of stepped slope evolution over multiple sea‐level cycles. Geosphere, 14, 1753–1779. https://doi.org/10.1130/GES01618.1
    [Google Scholar]
  8. Brunt, R. L., Di Celma, C., Hodgson, D. M., Flint, S. S., Kavanagh, J. P., & van der Merwe, W. C. (2013). Driving a channel through a levee when the levee is high: An outcrop example of submarine down‐dip entrenchment. Marine and Petroleum Geology, 41, 134–145. https://doi.org/10.1016/j.marpetgeo.2012.02.016
    [Google Scholar]
  9. Brunt, R. L., Hodgson, D. M., Flint, S. S., Pringle, J. K., Di Celma, C., Prélat, A., & Grecula, M. (2013). Confined to unconfined: Anatomy of a base of slope succession, Karoo Basin, South Africa. Marine and Petroleum Geology, 41, 206–221. https://doi.org/10.1016/j.marpetgeo.2012.02.007
    [Google Scholar]
  10. Bullimore, S., Henriksen, S., Liestøl, F. M., & Helland‐Hansen, W. (2005). Clinoform stacking patterns, shelf‐edge trajectories and facies associations in Tertiary coastal deltas, offshore Norway: Implications for the prediction of lithology in prograding systems. Norwegian Journal of Geology, 85, 169–187.
    [Google Scholar]
  11. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27, 351–365. https://doi.org/10.1111/bre.12082
    [Google Scholar]
  12. Carvajal, C., & Steel, R. (2009). Shelf‐edge architecture and bypass of sand to deep water: Influence of shelf‐edge processes, sea level, and sediment supply. Journal of Sedimentary Research, 79, 652–672. https://doi.org/10.2110/jsr.2009.074
    [Google Scholar]
  13. Carvajal, C., Steel, R., & Petter, A. (2009). Sediment supply: The main driver of shelf‐margin growth. Earth‐Science Reviews, 96, 221–248. https://doi.org/10.1016/j.earscirev.2009.06.008
    [Google Scholar]
  14. Cobain, S. L., Hodgson, D. M., Peakall, J., & Shiers, M. N. (2017). An integrated model of clastic injectites and basin floor lobe complexes: Implications for stratigraphic trap plays. Basin Research, 29, 816–835. https://doi.org/10.1111/bre.12229
    [Google Scholar]
  15. Cobain, S. L., Peakall, J., & Hodgson, D. M. (2015). Indicators of propagation direction and relative depth in clastic injectites: Implications for laminar versus turbulent flow processes. Geological Society of America Bulletin, 127, 1816–1830. https://doi.org/10.1130/B31209.1
    [Google Scholar]
  16. Cosgrove, G. I., Hodgson, D. M., Poyatos‐Moré, M., Mountney, N. P., & McCaffrey, W. D. (2018). Filter or conveyor? Establishing relationships between clinoform rollover trajectory, sedimentary process regime, and grain character within intrashelf clinothems, Offshore New Jersey, USA. Journal of Sedimentary Research, 88, 917–941. https://doi.org/10.2110/jsr.2018.44
    [Google Scholar]
  17. Daniels, B. G., Auchter, N. C., Hubbard, S. M., Romans, B. W., Matthews, W. A., & Stright, L. (2017). Timing of deep‐water slope evolution constrained by large‐N detrital and volcanic ash zircon geochronology, cretaceous Magallanes Basin, Chile. GSA Bulletin, 130, 438–454. https://doi.org/10.1130/B31757.1
    [Google Scholar]
  18. De Wit, M., & Ransome, I. D. G. (1992). Regional inversion tectonics along the southern margin of Gondwana. In M. J.De Wit, & I. D. G.Ransome (Eds.), Inversion tectonics of the cape fold belt. Karoo and Cretaceous basins of South Africa (pp. 15–21). Rotterdam: A.A. Balkema.
    [Google Scholar]
  19. Deptuck, M. E., Sylvester, Z., & O'Byrne, C. (2012). Pleistocene seascape evolution above a “simple” stepped slope profile‐ western Niger Delta. In B. E.Prather, M. E.Deptuck, D.Mohrig, B.Van Hoorn & R. B.Wynn (Eds.). Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues (Vol. 99, pp. 199–222). Tulsa, OK: SEPM (Society for Sedimentary Geology) Special Publication, 99.
    [Google Scholar]
  20. Dixon, J. F., Steel, R. J., & Olariu, C. (2012a). River‐dominated, shelf‐edge deltas: Delivery of sand across the shelf break in the absence of slope incision. Sedimentology, 59, 1133–1157. https://doi.org/10.1111/j.1365-3091.2011.01298.x
    [Google Scholar]
  21. Dixon, J. F., Steel, R. J., & Olariu, C. (2012b). Shelf‐edge delta regime as a predictor of deep‐water deposition. Journal of Sedimentary Research, 82, 681–687. https://doi.org/10.2110/jsr.2012.59
    [Google Scholar]
  22. Figueiredo, J. J. P., Hodgson, D. M., Flint, S. S., & Kavanagh, J. P. (2010). Depositional environments and sequence stratigraphy of an exhumed permian mudstone‐dominated submarine slope succession, Karoo Basin, South Africa. Journal of Sedimentary Research, 80, 97–118. https://doi.org/10.2110/jsr.2010.002
    [Google Scholar]
  23. Flint, S. S., Hodgson, D. M., Sprague, A. R., Brunt, R. L., Van der Merwe, W. C., Figueiredo, J., … Kavanagh, J. P. (2011). Depositional architecture and sequence stratigraphy of the Karoo Basin floor to shelf edge succession, Laingsburg depocentre, South Africa. Marine and Petroleum Geology, 28, 658–674. https://doi.org/10.1016/j.marpetgeo.2010.06.008
    [Google Scholar]
  24. Fongngern, R., Olariu, C., Steel, R. J., & Krézsek, C. (2016). Clinoform growth in a Miocene, para‐tethyan deep lake basin: Thin topsets, irregular foresets and thick bottomsets. Basin Research, 28, 770–795. https://doi.org/10.1111/bre.12132
    [Google Scholar]
  25. Fongngern, R., Olariu, C., Steel, R., Mohrig, D., Krézsek, C., & Hess, T. (2018). Subsurface and outcrop characteristics of fluvial‐dominated deep‐lacustrine clinoforms. Sedimentology, 65, 1447–1481. https://doi.org/10.1111/sed.12430
    [Google Scholar]
  26. Gomis‐Cartesio, L. E., Poyatos‐Moré, M., Flint, S. S., Hodgson, D. M., Brunt, R. L., & Wickens, H.D. (2016). Anatomy of a mixed‐influence shelf edge Delta, Karoo Basin, South Africa. In G. J.Hampson, A. D.Reynolds, B.Kostic & M. R.Wells (Eds.), Sedimentology of paralic reservoirs: Recent advances (Vol. 444, pp. SP444–SP445. London: Geological Society, Special Publications.
    [Google Scholar]
  27. Gomis‐Cartesio, L. E., Poyatos‐Moré, M., Hodgson, D. M., & Flint, S. S. (2018). Shelf‐margin clinothem progradation, degradation and readjustment: Tanqua depocentre, Karoo Basin (South Africa). Sedimentology, 65, 809–841. https://doi.org/10.1111/sed.12406
    [Google Scholar]
  28. Gong, C., Wang, Y., Pyles, D. R., Steel, R. J., Xu, S., Xu, Q., & Li, D. (2015). Shelf‐edge trajectories and stratal stacking patterns: Their sequence‐stratigraphic significance and relation to styles of deep‐water sedimentation and amount of deep‐water sandstoneshelf‐edge trajectories. AAPG Bulletin, 99, 1211–1243. https://doi.org/10.1306/01311513229
    [Google Scholar]
  29. Grecula, M., Flint, S., Potts, G., Wickens, D., & Johnson, S. (2003). Partial ponding of turbidite systems in a basin with subtle growth‐fold topography: Laingsburg‐Karoo, South Africa. Journal of Sedimentary Research, 73, 603–620. https://doi.org/10.1306/120402730603
    [Google Scholar]
  30. Grundvåg, S. A., Helland‐Hansen, W., Johannessen, E. P., Olsen, A. H., & Stene, S. A. (2014). The depositional architecture and facies variability of shelf deltas in the Eocene Battfjellet Formation, Nathorst Land, Spitsbergen. Sedimentology, 61, 2172–2204. https://doi.org/10.1111/sed.12131
    [Google Scholar]
  31. Gulliford, A. R., Flint, S. S., & Hodgson, D. M. (2014). Testing applicability of models of distributive fluvial systems or trunk rivers in ephemeral systems: Reconstructing 3‐D fluvial architecture in the Beaufort group, South Africa. Journal of Sedimentary Research, 84, 1147–1169. https://doi.org/10.2110/jsr.2014.88
    [Google Scholar]
  32. Hadler‐Jacobsen, F., Johannessen, E. P., Ashton, N., Henriksen, S., Johnson, S. D., & Kristensen, J. B. (2005). Submarine fan morphology and lithology distribution: A predictable function of sediment delivery, gross shelf‐to‐basin relief, slope gradient and basin topography. In Geological Society, London, Petroleum Geology Conference series (Vol. 6, pp. 1121–1145), Geological Society of London .
  33. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483. https://doi.org/10.1111/j.1365-2117.2009.00425.x
    [Google Scholar]
  34. Henriksen, S., Hampson, G. J., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Shelf edge and shoreline trajectories, a dynamic approach to stratigraphic analysis. Basin Research, 21, 445–453. https://doi.org/10.1111/j.1365-2117.2009.00432.x
    [Google Scholar]
  35. Hodgson, D. M., Browning, J. V., Miller, K. G., Hesselbo, S., Poyatos‐Moré, M., Mountain, G. S., & Proust, J.‐N. (2017). Sedimentology, stratigraphic context, and implications of Miocene intrashelf bottomset deposits, offshore New Jersey. Geosphere, 14, 95–114.
    [Google Scholar]
  36. Hodgson, D. M., Kane, I. A., Flint, S. S., Brunt, R. L., & Ortiz‐Karpf, A. (2016). Time‐transgressive confinement on the slope and the progradation of basin‐floor fans: Implications for the sequence stratigraphy of deep‐water deposits. Journal of Sedimentary Research, 86, 73–86. https://doi.org/10.2110/jsr.2016.3
    [Google Scholar]
  37. Hubbard, S. M., Fildani, A., Romans, B. W., Covault, J. A., & McHargue, T. R. (2010). High‐relief slope clinoform development: Insights from outcrop, Magallanes Basin, Chile. Journal of Sedimentary Research, 80, 357–375. https://doi.org/10.2110/jsr.2010.042
    [Google Scholar]
  38. Johnson, M. R., , van Vuuren, C. J., Visser, J. N. J., Cole, D. I., Wickens, H. D. V., Christie, A. D. M., … Brandl, G. (2006). Sedimentary rocks of the Karoo supergroup. In M. R.Johnson, C. R.Anhaeusser & R. J.Thomas (Eds). The geology of South Africa (pp. 461–499). Pretoria: Geological Society of South Africa and Council for Geoscience.
    [Google Scholar]
  39. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2013). Contrast in the process response of stacked clinothems to the shelf‐slope rollover. Geosphere, 9, 299–316. https://doi.org/10.1130/GES00796.1
    [Google Scholar]
  40. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2015). Lateral variability in clinoform trajectory, process regime, and sediment dispersal patterns beyond the shelf‐edge rollover in exhumed basin margin‐scale clinothems. Basin Research, 27, 657–680. https://doi.org/10.1111/bre.12092
    [Google Scholar]
  41. Koo, W. M., Olariu, C., Steel, R. J., Olariu, M. I., Carvajal, C. R., & Kim, W. (2016). Coupling between shelf‐edge architecture and submarine‐fan growth style in a supply‐dominated margin. Journal of Sedimentary Research, 86, 613–628. https://doi.org/10.2110/jsr.2016.42
    [Google Scholar]
  42. Laugier, F. J., & Plink‐Björklund, P. (2016). Defining the shelf edge and the three‐dimensional shelf edge to slope facies variability in shelf‐edge deltas. Sedimentology, 63, 1280–1320. https://doi.org/10.1111/sed.12263
    [Google Scholar]
  43. Leever, K. A., Matenco, L., Garcia‐Castellanos, D., & Cloetingh, S. A. P. L. (2011). The Evolution of the Danube Gateway between Central and Eastern Paratethys (Se Europe): Insight from numerical modelling of the causes and effects of connectivity between basins and its expression in the sedimentary record. Tectonophysics, 502, 175–195. https://doi.org/10.1016/j.tecto.2010.01.003
    [Google Scholar]
  44. Linol, B., Chere, N., Muedi, T., Nengovhela, V., & de Wit, M. J. (2016). Deep borehole lithostratigraphy and basin structure of the southern Karoo Basin re‐visited. In B.Linol, & M. J.de Wit (Eds.), Origin and evolution of the cape mountains and Karoo Basin (pp. 3–16). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-40859-0
    [Google Scholar]
  45. López‐Gamundí, O. R., & Rossello, E. A. (1998). Basin fill evolution and paleotectonic patterns along the Samfrau Geosyncline: The Sauce Grande basin‐Ventana Foldbelt (Argentina) and Karoo Basin ‐Cape Foldbelt (South Africa) revisited. Geologische Rundschau, 86, 819–834.
    [Google Scholar]
  46. Loss, M. L., Brinkworth, W., Vocaturo, G., Olariu, C., & Steel, R. (2018). Morphology and evolution of basin‐margin clinoform growth, cuyo group, neuquen basin; seismic examples enhanced by outcrop observations. EGU General Assembly 2018, 8–13 April, Vienna, Austria, Geophysical Research Abstracts. 20.
  47. Madof, A. S., Harris, A. D., & Connell, S. D. (2016). Nearshore along‐strike variability: Is the concept of the systems tract unhinged?Geology, 44, 315–318. https://doi.org/10.1130/G37613.1
    [Google Scholar]
  48. Martinsen, O. J., & Helland‐Hansen, W. (1995). Strike variability of clastic depositional systems: Does it matter for sequence‐stratigraphic analysis?Geology, 23, 439–442. https://doi.org/10.1130/0091-7613(1995)023<0439:SVOCDS>2.3.CO;2
    [Google Scholar]
  49. Matenco, L., & Andriessen, P. (2013). Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the Danube basin‐black sea system. Global and Planetary Change, 103, 1–18. https://doi.org/10.1016/j.gloplacha.2013.01.003
    [Google Scholar]
  50. Miller, K. G., Mountain, G. S., Browning, J. V., Katz, M. E., Monteverde, D., Sugarman, P. J., … Rabineau, M. (2013). Testing sequence stratigraphic models by drilling miocene foresets on the New Jersey shallow shelf. Geosphere, 9, 1236–1256. https://doi.org/10.1130/GES00884.1
    [Google Scholar]
  51. Morris, E. A., Hodgson, D. M., Brunt, R. L., & Flint, S. S. (2014). Origin, evolution and anatomy of silt‐prone submarine external levées. Sedimentology, 61, 1734–1763. https://doi.org/10.1111/sed.12114
    [Google Scholar]
  52. Mountain, G. S., Proust, J.‐N., McInroy, D., & Cotterill, C. (2010). Proceedings of the integrated ocean drilling program, Volume 313. Tokyo: Integrated Ocean Drilling Program Management International, Inc.
    [Google Scholar]
  53. Mulder, T., Syvitski, J. P. M., Migeon, S., Faugères, J. C., & Savoye, B. (2003). Hyperpycnal turbidity currents: Initiation, behavior and related deposits: A review. Marine and Petroleum Geology, 20, 861–882. https://doi.org/10.1016/j.marpetgeo.2003.01.003
    [Google Scholar]
  54. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett, & G. G.Zuffa (Eds.), Marine clastic sedimentology: Concept and case studies (pp. 1–38). London: Graham & Trotman.
    [Google Scholar]
  55. Mutti, E., & Normark, W. R. (1991). An integrated approach to the study of turbidite systems. In P.Weimer, & H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–107). New York: Springer‐Verlag. https://doi.org/10.1007/978-1-4684-8276-8
    [Google Scholar]
  56. Olariu, M. I., Carvajal, C. R., Olariu, C., & Steel, R. J. (2012). Deltaic process and architectural evolution during cross‐shelf transits, Maastrichtian Fox Hills Formation, Washakie Basin, Wyoming. American Association of Petroleum Geologists, Bulletin, 96, 1931–1956. https://doi.org/10.1306/03261211119
    [Google Scholar]
  57. Olariu, C., & Steel, R. J. (2009). Influence of point‐source sediment‐supply on modern shelf‐slope morphology: Implications for interpretation of ancient shelf margins. Basin Research, 21, 484–501. https://doi.org/10.1111/j.1365-2117.2009.00420.x
    [Google Scholar]
  58. Pángaro, F., Ramos, V. A., & Pazos, P. J. (2016). The Hesperides basin: A continental‐scale upper Palaeozoic to Triassic Basin in southern Gondwana. Basin Research, 28, 685–711. https://doi.org/10.1111/bre.12126
    [Google Scholar]
  59. Patruno, S., Hampson, G. J., & Jackson, C. A. L. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119. https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  60. Pellegrini, C., Asioli, A., Bohacs, K. M., Drexler, T. M., Feldman, H. R., Sweet, M. L., … Dalla Valle, G. (2018). The late Pleistocene Po River lowstand wedge in the Adriatic sea: Controls on architecture variability and sediment partitioning. Marine and Petroleum Geology, 96, 16–50. https://doi.org/10.1016/j.marpetgeo.2018.03.002
    [Google Scholar]
  61. Plink‐Björklund, P., & Steel, R. J. (2004). Initiation of turbidity currents: Outcrop evidence for eocene hyperpycnal flow turbidites. Sedimentary Geology, 165, 29–52. https://doi.org/10.1016/j.sedgeo.2003.10.013
    [Google Scholar]
  62. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326. https://doi.org/10.1016/S0012-8252(02)00161-7
    [Google Scholar]
  63. Porębski, S. J., & Steel, R. J. (2006). Deltas and sea‐level change. Journal of Sedimentary Research, 76, 390–403. https://doi.org/10.2110/jsr.2006.034
    [Google Scholar]
  64. Poyatos‐Moré, M., Jones, G. D., Brunt, R. L., Hodgson, D. M., Wild, R. J., & Flint, S. S. (2016). Mud‐dominated basin‐margin progradation: Processes and implications. Journal of Sedimentary Research, 86, 863–878. https://doi.org/10.2110/jsr.2016.57
    [Google Scholar]
  65. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. AAPG Bulletin, 82, 701–728.
    [Google Scholar]
  66. Prather, B. E., O'Byrne, C., Pirmez, C., & Sylvester, Z. (2017). Sediment partitioning, continental slopes and base‐of‐slope systems. Basin Research, 29, 394–416. https://doi.org/10.1111/bre.12190
    [Google Scholar]
  67. Prélat, A., & Hodgson, D. M. (2013). The full range of turbidite bed thickness patterns in submarine lobes: Controls and implications. Journal of the Geological Society, 170, 209–214. https://doi.org/10.1144/jgs2012-056
    [Google Scholar]
  68. Prélat, A., Pankhania, S. S., Jackson, C. A. L., & Hodgson, D. M. (2015). Slope gradient and lithology as controls on the initiation of submarine slope gullies; Insights from the North Carnarvon Basin, Offshore NW Australia. Sedimentary Geology, 329, 12–17. https://doi.org/10.1016/j.sedgeo.2015.08.009
    [Google Scholar]
  69. Proust, J.‐N., Pouderoux, H., Ando, H., Hesselbo, S. P., Hodgson, D. M., Lofi, J., … Sugarman, P. J. (2018). facies architecture of miocene subaqueous clinothems of the New Jersey passive margin: Results from Iodp‐Icdp expedition 313. Geosphere, 14, 1564–1591. https://doi.org/10.1130/GES01545.1
    [Google Scholar]
  70. Pyles, D. R., & Slatt, R. M. (2007). Applications to understanding shelf edge to base‐of‐slope changes in stratigraphic architecture of prograding basin margins: Stratigraphy of the Lewis Shale, Wyoming, USA. In T. H.Nilsen, R. D.Shew, G. S.Steffens & J. R. J.Studlick (Eds.), Atlas of Deepwater Outcrops (pp. 485–489). Tulsa, OK: AAPG Studies in Geology 56.
    [Google Scholar]
  71. Pysklywec, R. N., & Mitrovica, J. X. (1999). the role of subduction‐induced subsidence in the evolution of the Karoo Basin. Journal of Geology, 107, 155–164. https://doi.org/10.1086/314338
    [Google Scholar]
  72. Rubidge, B. S., Hancox, P. J., & Catuneanu, O. (2000). Sequence analysis of the Ecca‐Beaufort contact in the Southern Karoo of South Africa. South African Journal of Geology, 1, 81–96. https://doi.org/10.2113/103.1.81
    [Google Scholar]
  73. Ryan, M. C., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Erosional vs. accretionary shelf margins: The influence of margin type on deepwater sedimentation: An example from the Porcupine Basin, Offshore Western Ireland. Basin Research, 21, 676–703.
    [Google Scholar]
  74. Sanchez, C. M., Fulthorpe, C. S., & Steel, R. J. (2012). Miocene shelf‐edge deltas and their impact on deepwater slope progradation and morphology, northwest shelf of Australia. Basin Research, 24, 683–698. https://doi.org/10.1111/j.1365-2117.2012.00545.x
    [Google Scholar]
  75. Scheffler, K., Buehmann, D., & Schwark, L. (2006). Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies – response to climate evolution and sedimentary environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 184–203. https://doi.org/10.1016/j.palaeo.2006.03.059
    [Google Scholar]
  76. Sinclair, H., & Tomasso, M. (2002). Depositional evolution of intra‐slope turbidite sub‐basins. Journal of Sedimentary Research, 72, 452–457.
    [Google Scholar]
  77. Sixsmith, P. J., Flint, S. S., Wickens, H. D. V., & Johnson, S. D. (2004). Anatomy and stratigraphic development of a basin floor turbidite system in the laingsburg formation, main Karoo Basin, South Africa. Journal of Sedimentary Research, 74, 239–254. https://doi.org/10.1306/082903740239
    [Google Scholar]
  78. Smith, R. (2004a). Turbidite systems influenced by structurally induced topography in the multi‐sourced Welsh Basin. In S. A.Lomas & P.Joseph (Eds.). Confined turbidite systems (pp. 209–228). London: Geological Society, Special Publications.
    [Google Scholar]
  79. Smith, R. (2004b). Silled sub‐basins to connected tortuous corridors: Sediment distribution systems on topographically complex sub‐aqueous slopes. In S. A.Lomas & P.Joseph (Eds.), Confined turbidite systems (Vol. 222, pp. 23–43). London: Geological Society, Special Publications.
    [Google Scholar]
  80. Spychala, Y. T., Hodgson, D. M., Flint, S. S., & Mountney, N. P. (2015). Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sedimentary Geology, 322, 67–81. https://doi.org/10.1016/j.sedgeo.2015.03.013
    [Google Scholar]
  81. Steel, R., & Olsen, T. (2002). Clinoforms, Clinoform Trajectories and Deepwater Sands. Gulf Coast Section SEPM Foundation, 22nd Annual Research Conference Special Publication, SEPM, CD‐ROM.
  82. Steel, R. J., Porebski, S. J., Plink‐Bjorklund, P., Mellere, D., & Schellpeper, M. (2003). Shelf‐edge delta types and their sequence‐stratigraphic relationships. Shelf margin deltas and linked down slope petroleum systems: Global significance and future exploration potential. Houston, Texas. December 7–10, 205–230.
  83. Stevenson, C. J., Jackson, C. A.‐L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2015). Deep‐Water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081. https://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  84. Tankard, A., Welsink, H., Aukes, P., Newton, R., & Stettler, E. (2009). Tectonic evolution of the cape and Karoo basins of South Africa. Marine and Petroleum Geology, 26, 1379–1412. https://doi.org/10.1016/j.marpetgeo.2009.01.022
    [Google Scholar]
  85. Tankard, A., Welsink, H., Aukes, P., Newton, R., & Stettler, E. (2012). Chapter 23: Geodynamic Interpretation of the Cape and Karoo Basins, South Africa. In D. G.Rioberts, & A. W.Bally (Eds.), Phanerozoic passive margins, cratonic basins and global tectonic maps (pp. 869–945). Amsterdam: Elsevier.
    [Google Scholar]
  86. van der Merwe, W. C., Flint, S. S., & Hodgson, D. M. (2010). sequence stratigraphy of an argillaceous, deepwater basin‐plain succession: Vischkuil Formation (Permian), Karoo Basin, South Africa. Marine and Petroleum Geology, 27, 321–333. https://doi.org/10.1016/j.marpetgeo.2009.10.007
    [Google Scholar]
  87. van der Merwe, W. C., Hodgson, D. M., Brunt, R. L., & Flint, S. S. (2014). Depositional architecture of sand‐attached and sand‐detached channel‐lobe transition zones on an exhumed stepped slope mapped over a 2500 Km2 area. Geosphere, 10, 1076–1093. https://doi.org/10.1130/GES01035.1
    [Google Scholar]
  88. van der Merwe, W. C., Hodgson, D. M., & Flint, S. S. (2009). Widespread syn‐sedimentary deformation on a muddy deep‐water basin‐floor: The Vischkuil Formation (Permian), Karoo Basin, South Africa. Basin Research, 21, 389–406. https://doi.org/10.1111/j.1365-2117.2009.00396.x
    [Google Scholar]
  89. van der Merwe, W. C., Hodgson, D. M., & Flint, S. S. (2011). Origin and terminal architecture of a submarine slide: A case study from the permian Vischkuil Formation, Karoo Basin, South Africa. Sedimentology, 58, 2012–2038. https://doi.org/10.1111/j.1365-3091.2011.01249.x
    [Google Scholar]
  90. Van Lente, B. (2004). Chemostratigraphic trends and provenance of the Permian Tanqua and Laingsburg depocentres, South Western Karoo Basin, South Africa. Unpublished Ph.D. Thesis, University of Stellenbosch, South Africa.
  91. Veevers, J. J., Cole, D. I., & Cowan, E. J. (1994). Southern Africa: Karoo Basin and cape fold belt. In J. J.Veevers & C. M.Powell (Eds.). Permian‐triassic pangean basins and foldbelts along the panthalassan margin of Gondwanaland (pp. 223–279). Boulder, CO: Geological Society America, Memoir 184.
    [Google Scholar]
  92. Viljoen, J. (1994). Sedimentology of the Collingham Formation, Karoo supergroup. South African Journal of Geology, 97, 167–183.
    [Google Scholar]
  93. Vorster, C. (2013). Laser ablation Icp‐Ms age determination of detrital zircon populations in the phanerozoic cape and lower karoo supergroups (South Africa) and correlatives in Argentina. Phd Thesis, University of Johannesburg, South Africa.
  94. Wild, R., Flint, S. S., & Hodgson, D. M. (2009). Stratigraphic evolution of the upper slope and shelf edge in the Karoo Basin, South Africa. Basin Research, 21, 502–527. https://doi.org/10.1111/j.1365-2117.2009.00409.x
    [Google Scholar]
  95. Wilson, A., Flint, S., Payenberg, T., Tohver, E., & Lanci, L. (2014). Architectural styles and sedimentology of the fluvial lower Beaufort Group, Karoo Basin, South Africa. Journal of Sedimentary Research, 84, 326–348. https://doi.org/10.2110/jsr.2014.28
    [Google Scholar]
  96. Winker, C., & Booth, J. R. (2000). Sedimentary dynamics of the salt‐dominated continental slope, Gulf of Mexico: Integration of observations from the seafloor, near‐surface, and deep subsurface. Deep‐Water Reservoirs of the World: Proc. GCSSEPM 20th Annu. Res. Conf, 1059–2086.
  97. Wynn, R. B., Kenyon, N. H., Masson, D. G., Stow, D. A. V., & Weaver, P. P. E. (2002). Characterization and recognition of deep‐water channel‐lobe transition zones. AAPG Bulletin, 86, 1441–1462.
    [Google Scholar]
  98. Wynn, R. B., Piper, D. J. W., & Gee, M. J. R. (2002). Generation and migration of coarse‐grained sediment waves in turbidity current channels and channel‐lobe transition zones. Marine Geology, 192, 59–78. https://doi.org/10.1016/S0025-3227(02)00549-2
    [Google Scholar]
  99. Zavala, C., Arcuri, M., Gamero, H., Contreras, C., & Di Meglio, M. (2011). A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In R. M.Slatt & C.Zavala (Eds.), Sediment transfer from shelf to deep water ‐ revisiting the delivery system (pp. 31–51). Tulsa, OK: Aapg Studies in Geology 61.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12351
Loading
/content/journals/10.1111/bre.12351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error