1887
Volume 31, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

A new compilation of data from 436 drill cores using decompaction and backstripping techniques was used to reconstruct the basin filling history from the Pliocene until the present day in the Palma, Inca and Sa Pobla Basins on the island of Mallorca (Spain). Calcareous rocks dominate the source area and provide a limited amount of clastic input to the basins that has resulted in an average accumulation rate of between 5 and 20 m/Ma during the last 5.3 Ma. Carbonate sediment production dominated the basin filling history during early‐mid Pliocene, but during the Quaternary, the sedimentation processes in the Palma Basin were probably enhanced by an evolution in the drainage network that increased the sediment supply and the accumulated thickness caused by stream capture. However, the maximum sedimentation rate filling the depocentres of the three basins has been decreasing since the Pliocene, showing that not only the catchment transport efficiency but also the relative sea level have been controlling the sediment accumulation in these carbonate basins. The isopach cross‐sections support the idea that a palaeorelief was generated during the Messinian sea level drop and that heterogeneities were filled in from the Pliocene to the Quaternary. We conclude that the central basins of Mallorca were filled heterogeneously due to tectonic and geomorphic processes that controlled sediment transport and production, resulting in different average sedimentation thicknesses that decreased since the Pliocene as the accommodation space became filled and the relative sea level dropped.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12352
2019-03-22
2024-03-29
Loading full text...

Full text loading...

References

  1. Aldega, L., Corrado, S., Di Paolo, L., Somma, R., Maniscalco, R., & Balestrieri, M. L. (2011). Shallow burial and exhumation of the Peloritani Mts. (NE Sicily, Italy): Insight from paleo‐thermal and structural indicators. Geological Society of America Bulletin, 123, 132–149. https://doi.org/10.1130/B30093.1
    [Google Scholar]
  2. Allen, P. (2008). From landscapes into geological history. Nature, 451(7176), 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  3. Allen, P. A., & Allen, J. R. (2005). Basin analysis: Principles and applications, 2nd ed. Malden, MA: Blackwell Pub.
    [Google Scholar]
  4. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and applications to Petroleum Play Assessment, 3rd ed. Oxford: Department of Earth Science & Engineering, Imperial College London & John R. Allen.
    [Google Scholar]
  5. Angevine, C., Heller, P., & Paola, C. (1990). Quantitative Sedimentary Basin Modelling. A.A.P.G. Education Course Note Series, 32.
  6. Ayala, C. (2013). A new compilation of gravity data over the Iberian Peninsula and surrounding areas. Internal Report TopoIberia project (Consolider‐ Ingenio). IGME, 20 pp., 3 figures.
  7. Ayala, C., Bohoyo, F., Maestro, A., Reguera, M. I., Torne, M., Rubio, F., … Garcia‐Lobon, J. L. (2016). Updated Bouguer anomalies of the Iberian Peninsula: A new perspective to interpret the regional geology. Journal of Maps, 12(5), 1089–1092. https://doi.org/10.1080/17445647.2015.1126538
    [Google Scholar]
  8. Barón, A., & González, C. (1984). Distribución espacial del mioplioceno en la isla de Mallorca. I Congreso español de Geología (pp. 137–148; Vol. 1). Segovia, Spain: Colegio Oficial de Geólogos de Madrid.
    [Google Scholar]
  9. Barón, A., & Pomar, L. (1978). Recent distribution of Neogene sedimentation areas of the Mediterranean; area 405: Balearic depression. IGCP project nº 25 (UNESCO, IUGS).
  10. Beaumont, C., Kooi, H., & Willett, S. (2000). Coupled tectonic‐surface process models with applications to rifted margins and collisional orogens. In M. A.Summerfield (Ed.), Geomorphology and Global Tectonics (pp. 29–55). New York: John Wiley and Sons.
    [Google Scholar]
  11. Benedicto, A., Ramos‐Guerrero, E., Casas, A., Sabat, F., & Baron, A. (1993). Evolución tectonosedimentaria de la cubeta neógena de Inca (Mallorca). Revista ‐ Sociedad Geológica de España, 6, 167–176.
    [Google Scholar]
  12. Bishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19(4), 449–473. https://doi.org/10.1177/030913339501900402
    [Google Scholar]
  13. Chockroune, P., & ECORS Team . (1989). The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics, 8, 23–39. https://doi.org/10.1029/TC008i001p00023
    [Google Scholar]
  14. Colom, G. (1975). Geología de Mallorca. Dip. Prov. Baleares. Inst. Est. Bal. CSIC 522 p., 2v.
  15. Covault, J. A., Romans, B. W., & Fildani, A. (2010). Rapid climate signal propagation from source to sink in a southern California sediment routing system. Journal of Geology, 118, 247–259. https://doi.org/10.1086/651539
    [Google Scholar]
  16. Crowell, J. C. (1974). Sedimentation along the San Andreas fault, California. In R. H.Dott & R. H.Shaver (Eds.), Modern and ancient geosynclinal sedimentation (pp. 292–303). Tulsa, Oklahoma: Society of Economic Paleontologists and Mineralogists Special Publication 19. https://doi.org/10.2110/pec.74.19
    [Google Scholar]
  17. Damanti, J. F. (1993). Geomorphic and structural controls on facies patterns and sediment composition in a modern foreland basin. In: M. Marzo and C. Puigdefabregas (Eds.), Alluvial sedimentation. Special Publication International Association of Sedimentologistss, 17, 221–233.
    [Google Scholar]
  18. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  19. Devlin, W. J., Rudolph, K. W., Shaw, C. A., & Ehman, K. D. (1993). The Effect of Tectonic and Eustatic Cycles on Accommodation and Sequence‐Stratigraphic Framework in the Upper Cretaceous Foreland Basin of Southwestern Wyoming. In H. W.Posamentier, C. P.Summerhayes, B. U.Haq, & G. P.Allen (Eds.), Sequence stratigraphy and facies associations (pp. 501–520). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  20. Doglioni, C., Harabaglia, P., Merlini, S., Mongelli, F., Peccerillo, A., & Piromallo, C. (1999). Orogens and slabs vs their direction of subduction. Earth Science Reviews, 45, 167–208.
    [Google Scholar]
  21. Doglioni, C., Gueguen, E., Sàbat, F., & Fernandez, M. (1997). The Western Mediterranean extensional basins and the alpine orogen. Terra Nova, 9, 109–112.
    [Google Scholar]
  22. Di Croce, J., Bally, A. W., & Vail, P. (1999). Sequence stratigraphy of the eastern Venezuelan Basin. In P.Mann (Ed.), Sedimentary basins of the world (pp. 419–476, Vol. 4). Elsevier.
    [Google Scholar]
  23. Dickinson, W. R. (1974). Plate tectonics and sedimentation. SEPM Special Publication, 72, 1–27.
    [Google Scholar]
  24. Estcutia, C., & Maldonado, A. (1992). Paleogeographic implications of the Messinian surface in the Valencia Trough, northwestern Mediterranean Sea. Tectonophysics, 203, 263–284. https://doi.org/10.1016/0040-1951(92)90227-W
    [Google Scholar]
  25. Flemings, P. B., & Jordan, T. E. (1989). A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research, 94, 3851–3866. https://doi.org/10.1029/JB094iB04p03851
    [Google Scholar]
  26. Fornós, J.J., Marzo, M., Pomar, L., Ramos-Guerrero, E., Rodríguez-Perea, A. (1991). Evolución tectono-sedimentaria y análisis estratigráfico del Terciario de la Isla de Mallorca. I Congreso Grupo Español del Terciario. Vic, Spain. Libro-guía Excursión 2.
  27. Fornós, J. J., Barón, A., & Pons, G. X. (1996). Evolució neógena de la zona de s'Albufera d'Alcúdia (Mallorca, IIles Balears): 1. Descripció de la serie estratigrafica (sondatge 1) i facies sedimentaries. Bolletí de la Societat d'Història Natural de Les Balears, 39, 139–154.
    [Google Scholar]
  28. Fornós, J. J., & Pomar, L. (1983). Mioceno Superior de Mallorca: Unidad Calizas de Santanyí (Complejo Terminal). In L.Pomar, A.Obrador, J. J.Fornós, & A.Rodríguez‐Perea (Eds.), El Terciario de las Baleares (Mallorca–Menorca) (pp. 177–206). Palma de Mallorca: Guía de las Excursiones del X Congreso Nacional de Sedimentología. Institut d'Estudis Baleàrics & Universitat de Palma de Mallorca.
    [Google Scholar]
  29. Frey‐Martinez, J., Burgess, P. M., & Bravo, J. V. (2004). 3D seismic interpretation of the messinian unconformity in the Valencia Basin, Spain. Geological Society, London, Memoirs, 29, 91–100. https://doi.org/10.1144/GSL.MEM.2004.029.01.10
    [Google Scholar]
  30. Fuster, J. (1973). Estudio de las reservas hidráulicas totales de Baleares. Informe de síntesis general: Ministerio de Obras Públicas, Industria y Agricultura, 2. tomos.
  31. Galloway, W. E., Ganey‐Curry, P. E., Xiang, L., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico basin. American Association of Petroleum Geologists Bulletin, 84(11), 1743–1774.
    [Google Scholar]
  32. Garcia, C., Amengual, A., Homar, V., & Zamora, A. (2017). Losing water in temporary streams on a Mediterranean island: Effects of climate and land‐cover changes. Global and Planetary Change, 148, 139–152. https://doi.org/10.1016/j.gloplacha.2016.11.010
    [Google Scholar]
  33. García‐Yagüe, A., & Muntaner, A. (1968). Estudio hidrogeológico del Llano de Palma. Min. Obras Públicas, D.G.O.H.‐ S.G.O.P.
  34. Gargani, J. (2004). Modelling of the erosion in the Rhone valley. Quaternary International, 121, 13–22. https://doi.org/10.1016/j.quaint.2004.01.020
    [Google Scholar]
  35. Gelabert, B. (1997). L'estructura Geològica de la meitat occidental de l'illa de Majorca. Ph. D. Thesis. Universitat de Barcelona. 168 pp.
  36. Gelabert, B., Sàbat, F., & Rodríguez‐Perea, A. (1992). A structural outline of the Serra the Tramontana of Majorca (Balearic Islands). Tectonophysics, 203, 167–183. https://doi.org/10.1016/0040-1951(92)90222-R
    [Google Scholar]
  37. Giménez, J. (2003). Nuevos datos sobre la actividad post‐Neógena en la Isla de Mallorca. Geogaceta, 33, 79–82.
    [Google Scholar]
  38. Gobo, K., Ghinassi, M., Nemec, W., & Sjursen, E. (2014). Development of an incised valley‐fill at an evolving rift margin: Pleistocene eustasy and tectonics on the southern side of the Gulf of Corinth, Greece. Sedimentology, 61, 1086–1119. https://doi.org/10.1111/sed.12089
    [Google Scholar]
  39. Gómez‐Pujol, L., Orfila, A., Cañellas, B., Álvarez‐Ellacuría, A., Méndez, F. J., Medina, R., & Tintoré, J. (2007). Morphodynamic classification of sandy beaches in low energetic marine environment. Marine Geology, 242, 235–246. https://doi.org/10.1016/j.margeo.2007.03.008
    [Google Scholar]
  40. Hinsch, R., Decker, K., & Peresson, H. (2005). 3‐D seismic interpretation and structural modelling in the Vienna Basin: Implications for Miocene to recent kinematics. Austrian Journal of Earth Sciences, 97, 38–50.
    [Google Scholar]
  41. Johannessen, E. P., & Steel, R. J. (2005). Clinoforms and their exploration significance for deepwater sands. Basin Research, 17(4), 521–550. https://doi.org/10.1111/j.1365-2117.2005.00278.x
    [Google Scholar]
  42. Mas, G., & Fornós, J. J. (2012). La Crisis de Salinidad del Messiniense en la cuenca sedimentaria de Palma (Mallorca, Islas Baleares). Geogaceta, 52, 57–60.
    [Google Scholar]
  43. Mateos, R. M., & Azañón, J. M. (2005). Los movimientos de ladera en la Sierra de Tramontana de la Isla de Mallorca: tipos, características y factores desencadenantes. Revista de la Sociedad Geológica de España, 18(1–2), 87–97.
    [Google Scholar]
  44. Mateos, R. M., Ferrer, M., & González de Vallejo, L.I. (2002). Los materiales rocosos de la Sierra de Tramuntana (Mallorca). Caracterización geomecánica y clasificación geotécnica. Boletín Geológico y Minero, 113(4), 415–427.
    [Google Scholar]
  45. Métivier, F., Gaudemer, Y., Tapponier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137, 280–318.
    [Google Scholar]
  46. Ochoa, D., Sierro, F. J., Lofi, J., Maillard, A., Flores, J. A., & Suárez, M. (2015). Synchronous onset of the Messinian evaporite precipitation: First Mediterranean offshore evidence. Earth and Planetary Science Letters, 427, 112–124. https://doi.org/10.1016/j.epsl.2015.06.059
    [Google Scholar]
  47. Pomar, L. (2001). Types of carbonate platforms: A genetic approach. Basin Research, 13, 313–334. https://doi.org/10.1046/j.0950-091x.2001.00152.x
    [Google Scholar]
  48. Pomar, L., & Haq, B. U. (2016). Decoding depositional sequences in carbonate systems: Concepts vs experience. Global and Planetary Change, 146, 190–225. https://doi.org/10.1016/j.gloplacha.2016.10.001
    [Google Scholar]
  49. Pomar, L., Marzo, M., & Barón, A. (1983). El Terciario de Mallorca. In L.Pomar, A.Obrador, J. J.Fornós, & A.Rodríguez‐Perea (Eds.), El Terciario de las Baleares (Mallorca–Menorca) (pp. 21–44) Guía de las Excursiones del X Congreso Nacional de Sedimentología. Palma de Mallorca: Institut d'Estudis Baleàrics and Universitat de Palma de Mallorca.
    [Google Scholar]
  50. Pomar, L., Ward, W. C., & Green, D. G. (1996). Upper Miocene Reef Complex of the Llucmajor area, Mallorca, Spain. In E. K.Franseen, M.Esteban, W. C.Ward, & J. M.Rouchy (Eds.), Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean regions (pp. 191–225). SEPM Concepts in Sedimentology and Palentology, 5. SEPM Publications: Tulsa, OK, USA. https://doi.org/10.2110/csp.96.05
    [Google Scholar]
  51. Roca, E., Desegaulx, P., Fernandez‐Ortigosa, F., Roure, F., & Pinet, B. (1990). Subsidence study and deep structure of the Valencia Trough area. In B.Pinet, & C.Bois (Eds.), The potential of deep seismic profiling for hydrocarbons exploration (pp. 439–443). Paris: Technip.
    [Google Scholar]
  52. Rodríguez‐Fernández, J., & Sanz de Galdeano, C. (2006). Late orogenic intramontane basin development: The Granada basin, Betics (southern Spain). Basin Research, 18, 85–102. https://doi.org/10.1111/j.1365-2117.2006.00284.x
    [Google Scholar]
  53. Roca, E. (2001). The Northwest Mediterranean Basin (Valencia Trough, Gulf of Lions and Liguro- Provençal basins): structure and geodynamic evolution. In P. A.Ziegler, W.Cavazza, A. H. F.Roberston, & S.Crasquin-Soleau (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/ Wrench Basins and Passive Margins, Vol. 186 (pp. 671–706). Paris: Mém. Mus. Natn. Hist. Nat.
    [Google Scholar]
  54. Roca, E., Frizon de Lamotte, D., Mauffret, A., Bracène, R., Vergés, J., Benaouali, N., Fernández, M., Muñoz, J. A., & Zeyen, H. (2004). TRANSMED Transect II. In W.Cavazza, F.Roure, W.Spakman, G. M.Stampfli, & P. A.Ziegler (Eds.), The TRANSMED Atlas – The Mediterranean Region from Crust to Mantle. Heidelberg, Berlin: Springer.
    [Google Scholar]
  55. Ryan, W. B. F. (2009). Decoding the Mediterranean Salinity Crisis. Sedimentology, 56, 95–136. https://doi.org/10.1111/j.1365-3091.2008.01031.x
    [Google Scholar]
  56. Sàbat, F., Gelabert, B., Rodríguez‐Perea, A., & Giménez, J. (2011). Geological structure and evolution of Majorca: Implications for the origin of the Western Mediterranean. Tectonophysics, 510, 217–238. https://doi.org/10.1016/j.tecto.2011.07.005
    [Google Scholar]
  57. Sánchez‐Alzola, A., Sánchez, C., Giménez, J., Alfaro, P., Gelabert, B., Borque, M. J., & Gil, A. J. (2014). Crustal velocity and strain rate fields in the Balearic Islands based on continuous GPS time series from the XGAIB network (2010–2013). Journal of Geodynamics, 82, 78–86. https://doi.org/10.1016/j.jog.2014.05.005
    [Google Scholar]
  58. Soria, J., Viseras, C., & Fernández, J. (1998). Late Miocene‐Pleistocene tectono‐sedimentary evolution and subsidence history of the central Betic Cordillera (Spain): A case study in the Guadix intramontane basin. Geological Magazine, 135, 565–574. https://doi.org/10.1017/S0016756898001186
    [Google Scholar]
  59. Uba, C. E., Heubeck, C., & Hulka, C. (2006). Evolution of the late Cenozoic Chaco foreland basin, southern Bolivia. Basin Research, 18, 145–170. https://doi.org/10.1111/j.1365-2117.2006.00291.x
    [Google Scholar]
  60. Van Hinte, J. E. (1978). Geohistory analisis‐application of micropaleontology in Exploration Geology. AAPG Bulletin, 62, 201–222.
    [Google Scholar]
  61. Van Wagoner, J. C., & Bertram, G. T. (Eds.) (1995). Sequence stratigraphy of foreland basin deposits. AAPG Memoir, 64. Tulsa, Oklahoma, 490 p.
  62. Vergés, J., Sàbat, F., (1999). Constraints on the Neogene Mediterranean kinematic evolution along a 1000 km transect from Iberia to Africa. In: Durand, B., Jolivet, L., Horváth, F., Séranne, M. (Eds.), 1999. The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society London Special Publications 156, pp. 63–80.
  63. Watts, A. B., & Ryan, W. B. F. (1976). Flexure of the lithosphere and continental margin basins. Tectonophysics, 36(1–3), 25–44. https://doi.org/10.1016/0040-1951(76)90004-4
    [Google Scholar]
  64. Watts, A. B., & Torné, M. (1992). Subsidence history, crustal structure and thermal evolution of the Valencia Trough: A young extensional basin in the western Mediterranean. Journal of Geophysical Research, 97, 20021–20041. https://doi.org/10.1029/92JB00583
    [Google Scholar]
  65. Wu, X., & Galloway, W. E. (2002). Upper Miocene depositional history of the central Gulf of Mexico Basin. Gulf Coast Association of Geological Societies Transactions, 52, 1019–1030.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12352
Loading
/content/journals/10.1111/bre.12352
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): foreland basins; geodynamics; tectonics and sedimentation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error