1887
Volume 31, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO storage or hydrocarbon exploration in rift basins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12353
2019-04-24
2020-05-28
Loading full text...

Full text loading...

References

  1. Baudon, C., & Cartwright, J. (2008). The kinematics of reactivation of normal faults using high resolution throw mapping. Journal of Structural Geology, 30, 1072–1084. https://doi.org/10.1016/j.jsg.2008.04.008
    [Google Scholar]
  2. Blaich, O. A., Tsikalas, F., & Faleide, J. I. (2017). New insights into the tectono‐stratigraphic evolution of the southern Stappen High and its transition to Bjørnøya Basin, SW Barents Sea. Marine and Petroleum Geology, 85, 89–105. https://doi.org/10.1016/j.marpetgeo.2017.04.015
    [Google Scholar]
  3. Braathen, A., Maher, H. D., Haabet, T. E., Kristensen, S. E., Tørudbakken, B. O., & Worsley, D. (1999). Caledonian thrusting on Bjornoya: Implications for Palaeozoic and Mesozoic tectonism of the western Barents Shelf. Norsk Geologisk Tidsskrift, 79, 57–68. https://doi.org/10.1080/002919699433915
    [Google Scholar]
  4. Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (2002). The growth and propagation of synsedimentary faults. Journal of Structural Geology, 25, 633–648. https://doi.org/10.1016/S0191-8141(02)00054-8
    [Google Scholar]
  5. Corfield, S., & Sharp, I. R. (2000). Structural style and stratigraphic architecture of fault propagation folding in extensional settings: A seismic example from the Smorbukk area, Halten Terrace, Mid‐Norway. Basin Research, 12, 329–341. https://doi.org/10.1111/j.1365-2117.2000.00133.x
    [Google Scholar]
  6. Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of fault array evolution for synrift depocentre development: Insights from a numerical fault growth model. Basin Research, 12, 241–261. https://doi.org/10.1111/j.1365-2117.2000.00126.x
    [Google Scholar]
  7. Cutbill, J. L., & Challinor, A. (1965). Revision of the stratigraphical scheme for the Carboniferous and Permian Rocks of Spitsbergen and Bjørnøya. Geological Magazine, 102, 418–439. https://doi.org/10.1017/S0016756800053693
    [Google Scholar]
  8. Dalland, A., Worsley, D., & Ofstas, K. (1988). A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid‐ and northern Norway. Norwegian Petroleum Directorate Bulletin, 4, 1–65.
    [Google Scholar]
  9. Dawers, N. H., & Anders, M. H. (1995). Displacement‐length scaling and fault linkage. Journal of Structural Geology, 17, 607–614.
    [Google Scholar]
  10. Ezaki, Y., Kawamura, T., & Nakamura, K. (1994). Kapp Starostin formation in Spitsbergen: A sedimentary and Faunal record of Late Permian Palaeoenvironments in an Arctic Region. Memoir ‐ American Association of Petroleum Geologists, 17, 647–655.
    [Google Scholar]
  11. Faleide, J. I., Bjørlykke, K., & Gabrielsen, R. H. (2015). Geology of the Norwegian continental shelf. In K.Bjørlykke (Ed.), Petroleum geoscience: From sedimentary environments to rock physics (2nd ed., pp. 603–637). Berlin: Springer‐Verlag.
    [Google Scholar]
  12. Faleide, J. I., Solheim, A., Fiedler, A., Hjelstuen, B. O., Andersen, E. S., & Vanneste, K. (1996). Late Cenozoic evolution of the western Barents Sea‐Svalbard continental margin. Global and Planetary Change, 12, 53–74. https://doi.org/10.1016/0921-8181(95)00012-7
    [Google Scholar]
  13. Faleide, J. I., Tsikalas, F., Mjelde, R., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91.
    [Google Scholar]
  14. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993a). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10, 186–214. https://doi.org/10.1016/0264-8172(93)90104-Z
    [Google Scholar]
  15. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993b). Late Mesozoic‐Cenozoic evolution of the southwestern Barents Sea. Geological Society, London, Petroleum Geology Conference Series, 4, 933–950.
    [Google Scholar]
  16. Gabrielsen, R. H. (1997). Cretaceous and Tertiary inversion in the Barents Sea. Marine and Petroleum Geology, 14, 165–178.
    [Google Scholar]
  17. Gabrielsen, R. H., Færseth, R. B., Jensen, L. N., Kalheim, J. E., & Riis, F. (1990). Structural elements of the Norwegian continental shelf. Part 1: The Barents Sea Region. Norwegian Petroleum Directorate Bulletin, 6, 1–33.
    [Google Scholar]
  18. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264-8172(94)90021-3
    [Google Scholar]
  19. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
    [Google Scholar]
  20. Gawthorpe, R. L., Sharp, I., Underhill, J. R., & Gupta, S. (1997). Linked sequence stratigraphy and structural evolution of propagating normal faults. Geology, 25, 795–798. https://doi.org/10.1130/0091-7613(1997)025<0795
    [Google Scholar]
  21. Gernigon, L., & Brönner, M. (2012). Late Palaeozoic architecture and evolution of the southwestern Barents Sea : Insights from a new generation of aeromagnetic data. Journal of the Geological Society of London, 169, 1–11. https://doi.org/10.1144/0016-76492011-131
    [Google Scholar]
  22. Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., & Yamasaki, T. (2014). Crustal and basin evolution of the southwestern Barents Sea: From Caledonian orogeny to continental breakup. Tectonics, 33, 347–373. https://doi.org/10.1002/2013TC003439
    [Google Scholar]
  23. Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004
    [Google Scholar]
  24. Gjelberg, J. G., & Steel, R. J. (1981). An outline of Lower‐Middle Carboniferous sedimentation on Svalbard: Effects of tectonic, climatic and sea level changes in rift basin sequences. Canadian Society of Petroleum Geologists Memoir, 7(7), 543–561.
    [Google Scholar]
  25. Glørstad‐Clark, E., Birkeland, E. P., Nystuen, J. P., Faleide, J. I., & Midtkandal, I. (2011). Triassic platform‐margin deltas in the western Barents Sea. Marine and Petroleum Geology, 28, 1294–1314. https://doi.org/10.1016/j.marpetgeo.2011.03.006
    [Google Scholar]
  26. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27, 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  27. Gradstein, F. M., Ogg, J. G., & Hilgen, F. J. (2012). On the geologic time scale. Newsletters on Stratigraphy, 45, 171–188. https://doi.org/10.1127/0078-0421/2012/0020
    [Google Scholar]
  28. Gudlaugsson, S. T., Faleide, J. I., Johansen, S. E., & Breivik, A. J. (1998). Late Palaeozoic structural development of the South‐western Barents Sea. Marine and Petroleum Geology, 15, 73–102. https://doi.org/10.1016/S0264-8172(97)00048-2
    [Google Scholar]
  29. Gupta, S., Cowie, P. A., Dawers, N. H., & Underhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26, 595–598. https://doi.org/10.1130/0091-7613(1998)026<C;0595:AMTERB>2.3.CO;2
    [Google Scholar]
  30. Hamblin, W. K. (1965). Origin of “reverse drag” on the downthrown side of normal faults. Bulletin Geological Society of America, 76, 1145–1164. https://doi.org/10.1130/0016-7606(1965)76[1145:OORDOT]2.0.CO;2
    [Google Scholar]
  31. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnås, R., & Rotevatn, A. (2017). Depositional systems in multiphase rifts: seismic case study from the Lofoten margin, Norway. Basin Research, 29, 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  32. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2011). How do the properties of a pre‐existing normal‐fault population influence fault development during a subsequent phase of extension?Journal of Structural Geology, 33, 1312–1324. https://doi.org/10.1016/j.jsg.2011.06.010
    [Google Scholar]
  33. Indrevær, K., Gabrielsen, R. H., & Faleide, J. I. (2017). Early Cretaceous synrift uplift and tectonic inversion in the Loppa High area, southwestern Barents Sea, Norwegian shelf. Journal of the Geological Society of London, 174, 242–254. https://doi.org/10.1144/jgs2016-066
    [Google Scholar]
  34. Jackson, C. A.‐L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. M. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models (Vol. 439:187‐217). London: Geological Society.
    [Google Scholar]
  35. Jackson, C. A.‐L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215–234. https://doi.org/10.1016/j.jsg.2013.06.012
    [Google Scholar]
  36. Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., … Weatherall, P. (2012). The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters, 39, 1–6. https://doi.org/10.1029/2012GL052219
    [Google Scholar]
  37. Janecke, S. U., Vandenburg, C. J., & Blankenau, J. J. (1998). Geometry, mechanisms and significance of extensional folds from examples in the Rocky Mountain Basin and Range province, USA. Journal of Structural Geology, 20, 841–856. https://doi.org/10.1016/S0191-8141(98)00016-9
    [Google Scholar]
  38. Kamp, W. K. (2016). Permian to Late Triassic structural and stratigraphic evolution of the Fingerdjupet Subbasin. MSc thesis.
  39. Khalil, S. M., & McClay, K. R. (2002). Extensional fault‐related folding, northwestern Red Sea, Egypt. Journal of Structural Geology, 24, 743–762. https://doi.org/10.1016/S0191-8141(01)00118-3
    [Google Scholar]
  40. Larssen, G. B., Elvebakk, G., Henriksen, L. B., Nilsson, I., Samuelsberg, T. J., Stemmerik, L., … Svånå, T. A. (2002). Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea. Norwegian Petroleum Directorate Bulletin, 9, 76.
    [Google Scholar]
  41. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; Lower Rudeis Formation, Hammam Faraun Fault Block, Suez Rift, Egypt. Sedimentary Geology, 191, 67–87. https://doi.org/10.1016/j.sedgeo.2006.01.006
    [Google Scholar]
  42. Lewis, M. M., Jackson, C.‐A.‐L., & Gawthorpe, R. L. (2013). Salt‐influenced normal fault growth and forced folding: The Stavanger Fault System, North Sea. Journal of Structural Geology, 54, 156–173. https://doi.org/10.1016/J.Jsg.2013.07.015
    [Google Scholar]
  43. Lohr, T., Krawczyk, C. M., Oncken, O., & Tanner, D. C. (2008). Evolution of a fault surface from 3D attribute analysis and displacement measurements. Journal of Structural Geology, 30, 690–700. https://doi.org/10.1016/j.jsg.2008.02.009
    [Google Scholar]
  44. Mansfield, C. S., & Cartwright, J. A. (1996). High resolution fault displacement mapping from three‐dimensional seismic data: Evidence for dip linkage during fault growth. Journal of Structural Geology, 18, 249–263. https://doi.org/10.1016/S0191-8141(96)80048-4
    [Google Scholar]
  45. Manzocchi, T., Walsh, J. J., & Nicol, A. (2006). Displacement accumulation from earthquakes on isolated normal faults. Journal of Structural Geology, 28, 1685–1693. https://doi.org/10.1016/j.jsg.2006.06.006
    [Google Scholar]
  46. Marin, D., Escalona, A., Sliwihska, K. K., Nøhr‐Hansen, H., & Mordasova, A. (2017). Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the southwestern Barents Sea. American Association of Petroleum Geologists Bulletin, 101, 1487–1517. https://doi.org/10.1306/10241616010
    [Google Scholar]
  47. Mauduit, T., & Brun, J. P. (1998). Growth fault/rollover systems: Birth, growth and decay. Journal of Geophysical Research, 103, 18 119‐18 136.
    [Google Scholar]
  48. McClay, K. R., & Scott, A. D. (1991). Experimental models of hangingwall deformation in ramp‐flat listric extensional fault systems. Tectonophysics, 188, 85–96. https://doi.org/10.1016/0040-1951(91)90316-K
    [Google Scholar]
  49. McLeod, A. E., Underhill, J. R., Davies, S. J., & Dawers, N. H. (2002). The influence of fault array evolution on synrift sedimentation patterns: Controls on deposition in the Strathspey‐Brent‐Statfjord half graben, northern North Sea. American Association of Petroleum Geologists Bulletin, 86, 1061–1093. https://doi.org/10.1306/61eedc24-173e-11d7-8645000102c1865d
    [Google Scholar]
  50. Medwedeff, D. A. (1989). Growth fault‐bend folding at southeast Lost Hills, San Joaquin Valley, California. American Association of Petroleum Geologists Bulletin, 73, 54–67. https://doi.org/10.1306/703C9AE6-1707-11D7-8645000102C1865D
    [Google Scholar]
  51. Midtkandal, I., Faleide, J. I., Faleide, T. S., Serck, C. S., Planke, S., Corseri, R., … Nystuen, J. P. (0000). Lower Cretaceous Barents Sea strata: Epicontinental basin configuration, timing, correlation, and depositional dynamics. Geological Magazine.
    [Google Scholar]
  52. Mørk, A., & Elvebakk, G. (1999). Lithological description of subcropping Lower and Middle Triassic rocks from the Svalis Dome, Barents Sea. Polar Research, 18, 83–104. https://doi.org/10.1111/j.1751-8369.1999.tb00278.x
    [Google Scholar]
  53. Mulrooney, M. J., Leutscher, J., & Braathen, A. (2017). A 3D structural analysis of the Goliat field, Barents Sea, Norway. Marine and Petroleum Geology, 86, 192–212. https://doi.org/10.1016/j.marpetgeo.2017.05.038
    [Google Scholar]
  54. Mulrooney, M. J., Rismyhr, B., Yenwongfai, H. D., Leutscher, J., Olaussen, S., & Braathen, A. (2018). Impacts of small‐scale faults on continental to coastal plain deposition: Evidence from the Realgrunnen Subgroup in the Goliat field, southwest Barents Sea, Norway. Marine and Petroleum Geology, 95, 276–302. https://doi.org/10.1016/J.MARPETGEO.2018.04.023
    [Google Scholar]
  55. Norwegian Petroleum Directorate FactPages
    Norwegian Petroleum Directorate FactPages (2018). WWW Document. Retrieved from http://factpages.npd.no/ (Accessed 9.19.18).
  56. Osmundsen, P. T., Braathen, A., Rød, R. S., & Hynne, I. B. (2014). Styles of normal faulting and fault‐controlled sedimentation in the Triassic deposits of Eastern Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 61–79.
    [Google Scholar]
  57. Osmundsen, P. T., & Péron‐Pinvidic, G. (2018). Crustal‐scale fault interaction at rifted margins and the formation of domain‐bounding breakaway complexes: Insights from offshore Norway. Tectonics, 37, 935–964. https://doi.org/10.1002/2017TC004792
    [Google Scholar]
  58. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society, London, Special Publications, 71, 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  59. Ravnås, R., & Steel, R. J. (1998). Architecture of Marine Rift Basin Successions. American Association of Petroleum Geologists Bulletin, 82, 110–146. https://doi.org/10.1306/1D9BC3A9-172D-11D7-8645000102C1865D
    [Google Scholar]
  60. Ritzmann, O., & Faleide, J. I. (2007). Caledonian basement of the western Barents Sea. Tectonics, 26, 1–20. https://doi.org/10.1029/2006TC002059
    [Google Scholar]
  61. Rotevatn, A., & Jackson, C.‐A.‐L. (2014). 3D structure and evolution of folds during normal fault dip linkage. Journal of the Geological Society of London, 171, 821–829. https://doi.org/10.1144/jgs2014-045
    [Google Scholar]
  62. Rotevatn, A., Jackson, C.‐A.‐L., Tvedt, A. B. M., Bell, R. E., & Blækkan, I. (2018a). How do normal faults grow?Journal of Structural Geology, 0–1, https://doi.org/10.1016/j.jsg.2018.08.005
    [Google Scholar]
  63. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., … Andresen, A. (2018b). Structural inheritance and rapid rift‐length establishment in a multiphase Rift: The East Greenland Rift System and its Caledonian Orogenic Ancestry. Tectonics, 37, 1858–1875. https://doi.org/10.1029/2018TC005018
    [Google Scholar]
  64. Rykkelid, E., & Fossen, H. (2002). Layer rotation around vertical fault overlap zones: Observations from seismic data, field examples, and physical experiments. Marine and Petroleum Geology, 19, 181–192. https://doi.org/10.1016/S0264-8172(02)00007-7
    [Google Scholar]
  65. Schlische, R. W. (1995). Geometry and origin of fault‐related folds in extensional settings. American Association of Petroleum Geologists Bulletin, 79, 1661–1678. https://doi.org/10.1306/7834DE4A-1721-11D7-8645000102C1865D
    [Google Scholar]
  66. Schlische, R. W., & Olsen, P. E. (1990). Quantitative filling model for continental extensional basins with applications to early mesozoic rifts of Eastern North America. The Journal of Geology, 98, 135–155. https://doi.org/10.1086/629390
    [Google Scholar]
  67. Serck, C. S., Faleide, J. I., Braathen, A., Kjølhamar, B., & Escalona, A. (2017). Jurassic to early cretaceous basin configuration(s) in the Fingerdjupet Subbasin, SW Barents Sea. Marine and Petroleum Geology, 86, 874–891. https://doi.org/10.1016/j.marpetgeo.2017.06.044
    [Google Scholar]
  68. Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., & Gupta, S. (2000). Fault‐propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Bulletin Geological Society of America, 112, 1877–1899. https://doi.org/10.1130/0016-7606(2000)112<1877:FPFIES>2.0.CO;2
    [Google Scholar]
  69. Smelror, M., Mørk, A., Monteil, E., Rutledge, D., & Leereveld, H. (1998). The Klippfisk formation – A new lithostratigraphic unit of Lower Cretaceous platform carbonates on the Western Barents Shelf. Polar Research, 17, 181–202. https://doi.org/10.1111/j.1751-8369.1998.tb00271.x
    [Google Scholar]
  70. Soliva, R., & Benedicto, A. (2005). Geometry, scaling relations and spacing of vertically restricted normal faults. Journal of Structural Geology, 27, 317–325. https://doi.org/10.1016/j.jsg.2004.08.010
    [Google Scholar]
  71. Steel, R. J., & Worsley, D. (1984).Svalbard’s post‐Caledonian strata — An atlas of sedimentational patterns and palaeogeographic evolution. In Petroleum geology of the North European Margin (pp. 109–135). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-94-009-5626-1_9
    [Google Scholar]
  72. Stewart, S. A., Harvey, M. J., Otto, S. C., & Weston, P. J. (1996). Influence of salt on fault geometry: Examples from the UK salt basins. Geological Society, London, Special Publications, 100, 175–202. https://doi.org/10.1144/GSL.SP.1996.100.01.12
    [Google Scholar]
  73. Thorsen, C. E. (1963). Age of growth faulting in the southern Louisiana. Transactions. Gulf Coast Association of Geological Societies, 13, 103–110.
    [Google Scholar]
  74. Tvedt, A. B. M., Rotevatn, A., Jackson, C.‐A.‐L., Fossen, H., & Gawthorpe, R. L. (2013). Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea. Journal of Structural Geology, 55, 1–20. https://doi.org/10.1016/j.jsg.2013.08.002
    [Google Scholar]
  75. Vågnes, E., Gabrielsen, R. H., & Haremo, P. (1998). Late Cretaceous‐Cenozoic intraplate contractional deformation at the Norwegian continental shelf: Timing, magnitude and regional implications. Tectonophysics, 300, 29–46. https://doi.org/10.1016/S0040-1951(98)00232-7
    [Google Scholar]
  76. Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24, 1669–1675. https://doi.org/10.1016/S0191-8141(01)00165-1
    [Google Scholar]
  77. Walsh, J. J., & Watterson, J. (1990). New methods of fault projection for coalmine planning. Proceedings of the Yorkshire Geological Society, 42, 209–219. https://doi.org/10.1144/pygs.48.2.209
    [Google Scholar]
  78. Walsh, J. J., & Watterson, J. (1991). Geometric and kinematic coherence and scale effects in normal fault systems. Geological Society, London, Special Publications, 56, 193–203. https://doi.org/10.1144/GSL.SP.1991.056.01.13
    [Google Scholar]
  79. Withjack, M. O., Schlische, R. W., & Olsen, P. E. (2002). Rift‐basin structure and its influence on sedimentary systems. Sedimentation in Continental Rifts, SEPM Special Publication, 73, 57–81. https://doi.org/10.2110/pec.02.73.0057
    [Google Scholar]
  80. Worsley, D., Agdestein, T., Gjelberg, J. G., Kirkemo, K., Mørk, A., Nilsson, I., … Stemmerik, L. (2001). The geological evolution of Bjørnøya, Arctic Norway: Implications for the Barents Shelf. Norsk Geologisk Tidsskrift, 81, 195–234.
    [Google Scholar]
  81. Xiao, H. B., & Suppe, J. (1989). Role of compaction in listric shape of growth normal faults. American Association of Petroleum Geologists Bulletin, 73, 777–786. https://doi.org/10.1306/44B4A25D-170A-11D7-8645000102C1865D
    [Google Scholar]
  82. Xiao, H. B., & Suppe, J. (1992). Origin of rollover. American Association of Petroleum Geologists Bulletin, 76(4), 509–529. https://doi.org/10.1306/BDFF8CD6-1718-11D7-8645000102C1865D
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12353
Loading
/content/journals/10.1111/bre.12353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error