1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12356
2019-05-06
2024-03-29
Loading full text...

Full text loading...

References

  1. Abrantes, F., Voelker, A. H. L., Sierro, F. J., Naughton, F., Rodrigues, T., Cacho, I., … Batista, L. (2012). 1 – Paleoclimate variability on the Mediterranean region. The climate of the Mediterranean region, from the past to the future (pp. 1–86). London, UK: Elsevier.
    [Google Scholar]
  2. Avallone, A., Briole, P., Agatza‐Balodimou, A. M., Billiris, H., Charade, O., Mitsakaki, C., … Veis, G. (2004). Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. Comptes Rendus Geoscience, 336, 301–311. https://doi.org/10.1016/j.crte.2003.12.007
    [Google Scholar]
  3. Backert, N., Ford, M., & Malartre, F. (2010). Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta, Corinth Rift, Greece. Sedimentology, 57, 543–586. https://doi.org/10.1111/j.1365-3091.2009.01105.x
    [Google Scholar]
  4. Barrett, B. J., Hodgson, D. M., Collier, R. E. L., & Dorrell, R. M. (2018). Novel 3D sequence stratigraphic numerical model for syn‐rift basins: Analysing architectural responses to eustasy, sedimentation and tectonics. Marine and Petroleum Geology, 92, 270–284. https://doi.org/10.1016/j.marpetgeo.2017.10.026
    [Google Scholar]
  5. Bell, R. E., McNeill, L. C., Bull, J. M., & Henstock, T. J. (2008). Evolution of the offshore western Gulf of Corinth. Geological Society of America Bulletin, 120, 156–178.
    [Google Scholar]
  6. Benson, L. V., Lund, S. P., Burdett, J. W., Kashgarian, M., Rose, T. P., Smoot, J. P., & Schwartz, M. (1998). Correlation of Late‐Pleistocene Lake‐Level Oscillations in Mono Lake, California, with North Atlantic Climate Events. Quaternary Research, 49, 1–10. https://doi.org/10.1006/qres.1997.1940
    [Google Scholar]
  7. Bernard, P., Lyon‐Caen, H., Briole, P., Deschamps, A., Boudin, F., Makropoulos, K., … Linde, A. (2006). Seismicity, deformation and seismic hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics, 426, 7–30. https://doi.org/10.1016/j.tecto.2006.02.012
    [Google Scholar]
  8. Briole, P., Rigo, A., Lyon‐Caen, H., Ruegg, J. c., Papazissi, K., Mitsakaki, C., … Deschamps, A. (2000). Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995. Journal of Geophysical Research‐Solid Earth, 105, 25605–25625. https://doi.org/10.1029/2000JB900148
    [Google Scholar]
  9. Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J. E. T., Massari, F., & Rio, D. (2005). Climatic patterns revealed by pollen and oxygen isotope records across the Matuyama‐Brunhes Boundary in the central Mediterranean (southern Italy). Geological Society, London, Special Publications, 247, 159–182. https://doi.org/10.1144/GSL.SP.2005.247.01.09
    [Google Scholar]
  10. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33.
    [Google Scholar]
  11. Chronis, G., Piper, D. J. W., & Anagnostou, C. (1991). Late Quaternary evolution of the Gulf of Patras, Greece: Tectonism, deltaic sedimentation and sea‐level change. Marine Geology, 97, 191–209. https://doi.org/10.1016/0025-3227(91)90026-Z
    [Google Scholar]
  12. Clarke, P. J., Davies, R. R., England, P. C., Parsons, B. E., Billiris, H., Paradissis, D., … Bingley, R. (1997). Geodetic estimate of seismic hazard in the Gulf of Korinthos. Geophysical Research Letters, 24, 1303–1306. https://doi.org/10.1029/97GL01042
    [Google Scholar]
  13. Collier, R. E. L., & Dart, C. J. (1991). Neogene to Quaternary rifting, sedimentation and uplift in the Corinth Basin, Greece. Journal of the Geological Society London, 148, 1049–1065. https://doi.org/10.1144/gsjgs.148.6.1049
    [Google Scholar]
  14. Collier, R. E. L., Leeder, M. R., & Maynard, J. R. (1990). Transgressions and regressions: A model for the influence of tectonic subsidence, deposition and eustasy, with application to Quaternary and Carboniferous examples. Geological Magazine, 127, 117–128. https://doi.org/10.1017/S0016756800013819
    [Google Scholar]
  15. Collier, R. E. L., Leeder, M. R., Trout, M., Ferentinos, G., Lyberis, E., & Papatheodorou, G. (2000). High sediment yields and cool, wet winters: Test of last glacial paleoclimates in the northern Mediterranean. Geology, 28, 999–1002. https://doi.org/10.1130/0091-7613(2000)28<999:HSYACW>2.0.CO;2
    [Google Scholar]
  16. Collier, R. E. L., & Thompson, J. (1991). Transverse and linear dunes in an Upper Pleistocene marine sequence, Corinth Basin, Greece. Sedimentology, 38, 1021–1040. https://doi.org/10.1111/j.1365-3091.1991.tb00369.x
    [Google Scholar]
  17. Collier, R. E. L. (1990). Eustatic and tectonic controls upon Quaternary coastal sedimentation in the Corinth Basin, Greece. Journal of the Geological Society, 147, 301–314.
    [Google Scholar]
  18. Cotterill, C. J. (2002). A high resolution Holocene fault activity history of the Aigion shelf, Gulf of Corinth, Greece. PhD Thesis, School of Ocean and Earth Sciences, University of Southampton, UK.
  19. Dart, C. J., Collier, R. E. L., Gawthorpe, R. L., Keller, J. V. A., & Nichols, G. (1994). Sequence stratigraphy of (?)Pliocene‐quaternary synrift, gilbert‐type fan deltas, Northern Peloponnesos, Greece. Marine and Petroleum Geology, 11, 545–560.
    [Google Scholar]
  20. de Martini, P., Pantosti, D., Palyvos, N., Lemeille, F., McNeill, L., & Collier, R. E. L. (2004). Slip rates of the Aigion and Eliki faults from uplifted marine terraces, Corinth Gulf, Greece. Comptes Rendus Geoscience, 336, 325–334.
    [Google Scholar]
  21. Dodenov, A. E. (2005). The stratigraphic transition and suggested boundary between the Early and Middle Pleistocene in the loess record of northern Eurasia. Geological Society, London, Special Publications, 247, 209–219. https://doi.org/10.1144/GSL.SP.2005.247.01.11
    [Google Scholar]
  22. Dorsey, R. J., & Umhoefer, P. J. (2000). Tectonic and eustatic controls on sequence stratigraphy of the Pliocene Loreto Basin, Baja California Sur, Mexico. GSA Bulletin, 112, 177–199.
    [Google Scholar]
  23. Dorsey, R. J., Umhoefer, P. J., & Renne, P. R. (1995). Rapid subsidence and stacked gilbert‐type fan deltas, Pliocene Loreto Basin, Baja California Sur, Mexico. Sedimentary Geology, 98, 181–204.
    [Google Scholar]
  24. Dotsika, E., Psomiadis, D., Zanchetta, G., Spyropoulos, N., Leone, G., Tzavidopoulos, I., & Poutoukis, D. (2010). Pleistocene palaeoclimatic evolution from Agios Georgios Cave speleothem (Kilkis, N. Greece). Bulletin of the Geological Society of Greece, Proceedings of the 12th International Congress, Patras, 2, 886–895.
  25. Emiliani, C. (1978). The cause of the ice ages. Earth & Planetary Science Letters, 37, 349–352. https://doi.org/10.1016/0012-821X(78)90050-X
    [Google Scholar]
  26. Floyd, M. A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., … England, P. C. (2010). A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research, 115, B10403. https://doi.org/10.1029/2009JB007040
    [Google Scholar]
  27. Ford, M., Hemelsdael, R., Mancini, M., & Palyvos, N. (2016). Rift migration and lateral propagation: evolution of normal faults and sediment‐routing systems of the western Corinth rift (Greece). In C.Childs, R. E.Holdsworth, C.‐A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The geometry of normal faults (pp. 439). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  28. Ford, M., Rohais, S., Williams, E. A., Bourlange, S., Jousselin, D., Backert, N., & Malartre, F. (2013). Tectonosedimentary evolution of the western Corinth rift (Central Greece). Basin Research, 25, 3–25. https://doi.org/10.1111/j.1365-2117.2012.00550.x
    [Google Scholar]
  29. Ford, M., Williams, E. A., Malartre, F., & Popescu, S. M. (2007). Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert‐type fan delta, Gulf of Corinth, Greece. In G.Nichols, E.Williams, & C.Paola (Eds.), Sedimentary processes, environments and basins. A tribute to Peter Friend (pp. 49–90). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  30. Frazier, D. (1974). Depositional Episodes: Their Relationship to the Quaternary Stratigraphic Framework in the Northwestern Portion of the Gulf Basin. Bureau of Economic Geology, University of Texas, Geological Circular 74‐1, pp. 26.
  31. Galloway, W. L. (1989). Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding surface bounded depositional units. AAPG Bulletin, 73, 125–142.
    [Google Scholar]
  32. Garcia‐Garcia, F., Fernandez, J., Viseras, C., & Soria, J. H. (2006). Architecture and sedimentary facies evolution in a delta stack controlled by fault growth (Betic Cordillera, southern Spain, late Tortorian). Sedimentary Geology, 185, 79–92.
    [Google Scholar]
  33. Garcia‐Mondéjar, J. (1990). Sequence analysis of a marine Gilbert‐type delta, La Miel, Albian Lunada Formation of northern Spain. In A.Colella, & D. B.Prior (Eds.), Coarse‐grained deltas (pp. 255–269). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  34. Gasse, F., Lédée, V., Massault, M., & Fontes, J.‐C. (1989). Water‐level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature, 342, 57–59. https://doi.org/10.1038/342057a0
    [Google Scholar]
  35. Gawthorpe, R. L., Andrews, J. E., Collier, R. E. L., Ford, M., Henstra, G. A., Kranis, H., … Skourtsos, E.(2017). Building up or out? Disparate sequence architectures along an active rift margin – Corinth rift, Greece. Geology, 45, 111–114.
    [Google Scholar]
  36. Gawthorpe, R. L., Fraser, A., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264-8172(94)90021-3
    [Google Scholar]
  37. Gawthorpe, R. L., Hardy, S., & Ritchie, B. (2003). Numerical modelling of depositional sequences in half‐graben rift basins. Sedimentology, 50, 169–185. https://doi.org/10.1046/j.1365-3091.2003.00543.x
    [Google Scholar]
  38. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  39. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., … Stamatakis, M. (2017). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift, Greece. Basin Research, 1–32, https://doi.org/10.1111/bre.12260
    [Google Scholar]
  40. Gawthorpe, R. L., Sharp, I., Underhill, J. R., & Gupta, S. (1997). Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology, 25, 795–798. https://doi.org/10.1130/0091-7613(1997)025<0795:LSSASE>2.3.CO;2
    [Google Scholar]
  41. Ghisetti, F., & Vezzani, L. (2004). Plio‐Pleistocene sedimentation and fault segmentation in the Gulf of Corinth (Greece) controlled by inherited structural fabric. Comptes Rendus Geosciences, 336, 243–249. https://doi.org/10.1016/j.crte.2003.12.008
    [Google Scholar]
  42. Gilbert, G. K. (1885). The topographic features of lake shores. United States Geological Survey Annual Report, 5, 69–123.
    [Google Scholar]
  43. Gilbert, G. K. (1890). Lake Bonneville. United States Geological Survey Monographs, 1, 1–438.
    [Google Scholar]
  44. Goldsworthy, M., & Jackson, J. (2001). Migration of activity within normal fault systems: Examples from the Quaternary of mainland Greece. Journal of Structural Geology, 23, 489–506. https://doi.org/10.1016/S0191-8141(00)00121-8
    [Google Scholar]
  45. Hardy, S., Dart, C. J., & Waltham, D. (1994). Computer modelling of the influence of tectonics on sequence architecture of coarse‐grained fan deltas. Marine and Petroleum Geology, 11, 561–574. https://doi.org/10.1016/0264-8172(94)90068-X
    [Google Scholar]
  46. Hardy, S., & Gawthorpe, R. L. (1998). Effects of variations in fault slip rate on sequence stratigraphy in fan deltas: Insights from numerical modeling. Geology, 26, 911–914. https://doi.org/10.1130/0091-7613(1998)026<0911:EOVIFS>2.3.CO;2
    [Google Scholar]
  47. Hardy, S., & Gawthorpe, R. L. (2002). Normal fault control on bedrock channel incision and sediment supply: Insights from numerical modeling. Journal of Geophysical Research, 107, 2246. https://doi.org/10.1029/2001JB000166
    [Google Scholar]
  48. Head, M. J., & Gibbard, E. L. (2005). Early‐middle pleistocene transitions: The land‐ocean evidence. Geological Society, London, Special Publications, 247, 1–18.
    [Google Scholar]
  49. Jackson, C. A. L., Gawthorpe, R. L., Carr, I. D., & Sharp, I. R. (2005). Normal faulting as a control on the stratigraphic development of shallow marine syn‐rift sequences: The Nukhul and Lower Rudeis Formations, Hammam Faraun fault block, Suez Rift. Egypt. Sedimentology, 52, 313–338. https://doi.org/10.1111/j.1365-3091.2005.00699.x
    [Google Scholar]
  50. Jervey, M. T. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.VanWagoner (Eds.), Sea‐level changes: An integrated approach (pp. 47–69). Broken Arrow, OK: SEPM Society for Sedimentary Geology.
    [Google Scholar]
  51. Joannin, S., Quillévéré, F., Suc, J.‐P., Lécuyer, C., & Martineau, F. (2007). Early Pleistocene climate changes in the central Mediterranean region as inferred from integrated pollen and planktonic foraminiferal stable isotope analyses. Quaternary Research, 67, 264–274. https://doi.org/10.1016/j.yqres.2006.11.001
    [Google Scholar]
  52. Leeder, M. R., Collier, R. E. L., Abdul Aziz, L. H., Trout, M., Ferentinos, G., Papatheodorou, G., & Lyberis, E. (2002). Tectono‐sedimentary processes along an active marine/lacustrine half‐graben margin: Alkyonides Gulf, E. Gulf of Corinth, Greece. Basin Research, 14, 25–41. https://doi.org/10.1046/j.1365-2117.2002.00164.x
    [Google Scholar]
  53. Leeder, M. R., Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt block/half‐graben basins. In M. P.Coward, J. F.Dewey, & P. L.Hancock (Eds.), Continental extensional tectonics (Vol 28, pp. 139–152). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  54. Leeder, M. R., Harris, T., & Kirkby, M. J. (1998). Sediment supply and climate change: Implications for basin stratigraphy. Basin Research, 10, 7–18. https://doi.org/10.1046/j.1365-2117.1998.00054.x
    [Google Scholar]
  55. Leeder, M. R., Mack, G. H., Brasier, A. T., Parrish, R. R., Mintosh, W. C., Andrews, J. E., & Duremeijer, C. E. (2008). Late‐Pliocene timing of Corinth (Greece) rift‐margin fault migration. Earth and Planetary Science Letters, 274, 132–141. https://doi.org/10.1016/j.epsl.2008.07.006
    [Google Scholar]
  56. Leeder, M. R., Mark, D. F., Gawthorpe, R. L., Kranis, H., Loveless, S., Pedentchouk, N., … Stamatakis, M. (2012). A “Great Deepening”: Chronology of rift climax, Corinth rift, Greece. Geology, 40, 999–1002. https://doi.org/10.1130/G33360.1
    [Google Scholar]
  57. Lisiecki, L. E., & Raymo, M. E. (2007). Plio‐Pleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quaternary Science Reviews, 26, 56–69. https://doi.org/10.1016/j.quascirev.2006.09.005
    [Google Scholar]
  58. Luterbacher, J., García‐Herrera, R., Akcer‐On, S., Allan, R., Alvarez‐Castro, M.‐C., Benito, G., … Zorita, E. (2012). 2 – A review of 2000 years of paleoclimatic evidence in the Mediterranean. In P.Lionello (Eds.), The Climate of the Mediterranean Region, from the past to the future, (pp. 87–185) Amsterdam: Elsevier Insights, Elsevier.
    [Google Scholar]
  59. Lyons, R. P., Scholtz, C. A., Cohen, A. S., King, J. W., Brown, E. T., Ivory, S. J., … Blome, M. W. (2015). Continuous 1.3‐million‐year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 112, 15568–15573. https://doi.org/10.1073/pnas.1512864112
    [Google Scholar]
  60. Machette, M. N., Persounius, S. F., & Nelson, A. R. (1991). The Wasatch fault zone, Utah – segmentation and history of Holocene earthquakes. Journal of Structural Geology, 13, 137–149.
    [Google Scholar]
  61. Malartre, F., Ford, M., & Williams, E. A. (2004). Preliminary biostratigraphy and 3D lithostratigraphy of the Vouraikos Gilbert‐type fan delta. Implications for the evolution of the Gulf of Corinth, Greece. Comptes Rendus Geoscience, 336, 269–280.
    [Google Scholar]
  62. Marchegiano, M., Francke, A., Gliozzi, E., & Ariztegui, D. (2017). Arid and humid phases in central Italy during the Late Pleistocene revealed by the Lake Trasimeno ostracod record. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 55–69. https://doi.org/10.1016/j.palaeo.2017.09.033
    [Google Scholar]
  63. Marshall, M. H., Lamb, H. F., Huws, D., Davies, S. J., Bates, R., Bloemendal, J., … Bryant, C. (2011). Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile. Global and Planetary Change, 78, 147–161. https://doi.org/10.1016/j.gloplacha.2011.06.004
    [Google Scholar]
  64. McNeill, L. C., & Collier, R. E. L. (2004). Uplift and slip rates of the eastern Eliki fault segment, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. Journal of the Geological Society, London, 161, 81–92. https://doi.org/10.1144/0016-764903-029
    [Google Scholar]
  65. McNeill, L. C., Cotterill, C. J., Henstock, T. J., Bull, J. M., Stefatos, A., Collier, R., … Hicks, S. E. (2005). Active faulting within the offshore western Gulf of Corinth, Greece: Implications for models of continental rift deformation. Geology, 33, 241–244. https://doi.org/10.1130/G21127.1
    [Google Scholar]
  66. Mitchum, R. M., Vail, P. R., & Thompson, S. (1977). Seismic stratigraphy and global changes of sea level, Part 2: The depositional sequence as a basic unit for stratigraphic analysis. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by C.E. Payton), AAPG Mem., 26, 53–62.
  67. Moretti, I., Lykousis, V., Sakellariou, D., Reynaud, J. Y., Benziane, B., & Prinzhoffer, A. (2004). Sedimentation and subsidence rate in the Gulf of Corinth: What we learn from the Marion Dufresne's long‐piston coring. Comptes Rendus Geoscience, 336, 291–299. https://doi.org/10.1016/j.crte.2003.11.011
    [Google Scholar]
  68. Mortimer, E., Gupta, S., & Cowie, P. (2005). Clinoform nucleation and growth in coarse‐grained deltas, Loreto basin, Baja California Sur, Mexico: A response to episodic accelerations in fault displacement. Basin Research, 17, 337–359. https://doi.org/10.1111/j.1365-2117.2005.00273.x
    [Google Scholar]
  69. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  70. Nixon, C. W., McNeill, L. C., Bull, J. M., Bell, R. E., Gawthorpe, R. L., Henstock, T. J., … Kranis, H. (2016). Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, 35, 1225–1248. https://doi.org/10.1002/2015TC004026
    [Google Scholar]
  71. Ori, G. G., Roveri, M., & Nichols, G. (1991). Architectural patterns in large‐scale Gilbert‐type delta complexes, Pleistocene, Gulf of Corinth, Greece. In: The Three‐Dimensional Facies Architecture of Terrigenous Clastic Sediments and Its Implications for Hydrocarbon Discovery and Recovery Miall, (Ed. by A.D. Miall & N. Tyler), Concepts in Sedimentology and Paleontology, 3. Society for Sedimentary Geology (SEPM),207‐216.
  72. Ritchie, B. D., Hardy, S., & Gawthorpe, R. L. (1999). Three dimensional numerical modeling of coarse‐grained clastic deposition in sedimentary basins. Journal of Geophysical Research, 104, 17759–17780. https://doi.org/10.1029/1999JB900170
    [Google Scholar]
  73. Rohais, S., Eschard, R., Ford, M., Guillocheau, F., & Moretti, I. (2007). Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: Implications for its structural evolution. Tectonophysics, 440, 5–28. https://doi.org/10.1016/j.tecto.2006.11.006
    [Google Scholar]
  74. Scholz, C. (2010). Large earthquake triggering, clustering, and the synchronization of faults. Bulletin of the Seismological Society of America, 100, 901–909.
    [Google Scholar]
  75. Schwartz, D. P., & Coppersmith, K. J. (1984). Fault behaviour and characteristic earthquakes ‐ examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681–5698.
    [Google Scholar]
  76. Soter, S., & Katsonopoulou, D. (1998). The search for ancient Helike, 1988–1995: geological, sonar and bore hole studies. In D.Katsonopoulou, S.Soter, & D.Scilardi (Eds.), Ancient Helike and Aigalieia (pp. 67–116). Aigion, Greece: The Helike Society.
    [Google Scholar]
  77. Stevenson, C. J., Jackson, C. A. L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081.
    [Google Scholar]
  78. Suc, J.‐P., & Popescu, S.‐M. (2005). Pollen records and climatic cycles in the North Mediterranean region since 2.7 Ma. Geological Society, London, Special Publications, 247, 147–158. https://doi.org/10.1144/GSL.SP.2005.247.01.08
    [Google Scholar]
  79. Torfstein, A., Goldstein, S. L., Stein, M., & Enzel, Y. (2013). Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews, 69, 1–7. https://doi.org/10.1016/j.quascirev.2013.02.015
    [Google Scholar]
  80. Von Freyberg, B. (1973). Geologie des Isthmus von Korinth. Erlanger Geologische Abhandlungen, 95. Junge und Sohn, Universitats‐Buchdruckerei, Erlangen.
  81. Wdowinski, S., O'Connell, R. J., & England, P. (1989). A continuum model of continental deformation above subduction zones' application to the Andes and the Aegean. Journal of Geophysical Research, 94, 10331–10346. https://doi.org/10.1029/JB094iB08p10331
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12356
Loading
/content/journals/10.1111/bre.12356
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error