1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Mass failure deposits in lacustrine settings are some of the most understudied facies associations in the ancient or modern rock record. We integrated seismic data and well logs to investigate the external morphology, internal architecture and deformation and reservoir distribution of the sublacustrine landslides in the Cretaceous Nengjiang Formation of the Songliao Basin (SLB). A large‐scale sublacustrine landslide, named the Qi‐Jia sublacustrine landslide (QJSL), has been identified in the Nengjiang Formation of the SLB. The QJSL is currently the largest known sublacustrine landslide in the world. This landslide covers an area that exceeds 300 km2, with an estimated volume of 30 km3. Seismic imaging and mapping reveal that the QJSL can be recognized by several distinguishing seismic characteristics: discontinuous and internal chaotic seismic facies, compressional structures in the downslope region, irregular top and basal surfaces and erosional grooves in basal shear surfaces. The QJSL is 20–200 m thick, and is composed of a succession of fine‐grained deposits. Sandy layers are present but sparse and thinner than 16 m, and form reservoirs of the petroleum discoveries in this area. Our analyses show that the mechanism that triggered the collapse of the QJSL is attributed to rapid deposition and deltaic progradation. This study demonstrates that sand‐rich sublacustrine landslides formed at delta front slope can serve as conventional reservoirs in the lake centre, and provide a new target for subaqueous hydrocarbon exploration and development.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12357
2019-04-09
2024-03-28
Loading full text...

Full text loading...

References

  1. Algar, S., Milton, C., Upshall, H., Roestenburg, J., & Crevello, P. D. (2011). Mass‐transport deposits of the deep‐water Northwestern Borneo Margin (Malaysia); Characterization from seismic reflection, borehole, and core data with implications for hydrocarbon exploration and exploitation. SEPM, Special Publication, 96, 355–393.
    [Google Scholar]
  2. Alsop, G. I., & Marco, S. (2012). A large‐scale radial pattern of seismogenic slumping towards the Dead Sea Basin. Journal of the Geological Society, 169, 99–110. https://doi.org/10.1144/0016-76492011-032
    [Google Scholar]
  3. Butler, R. W. H., & McCaffrey, W. D. (2010). Structural evolution and sediment entrainment in mass‐transport complexes: Outcrop studies from Italy. Journal of the Geological Society, 167, 617–631. https://doi.org/10.1144/0016-76492009-041
    [Google Scholar]
  4. Canals, M., Lastras, G., Urgeles, R., Casamor, J. L., Mienert, J., Cattaneo, A., … Bryn, P. (2004). Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: Case studies from the Costa project. Marine Geology, 213, 9–72. https://doi.org/10.1016/j.margeo.2004.10.001
    [Google Scholar]
  5. Cruden, D. M. (1991). A Simple definition of a landslide. Bulletin of Engineering Geology and the Environment, 43, 27–29.
    [Google Scholar]
  6. Dalla Valle, G., Gamberi, F., Rocchini, P., Minisini, D., Errera, A., Baglioni, L., & Trincardi, F. (2013). 3d Seismic Geomorphology of mass transport complexes in a Foredeep Basin: Examples from the pleistocene of the Central Adriatic Basin (Mediterranean Sea). Sedimentary Geology, 294, 127–141. https://doi.org/10.1016/j.sedgeo.2013.05.012
    [Google Scholar]
  7. Desheng, L. (1995). Hydrocarbon habitat in the Songliao Rift Basin, China. Geological Society London Special Publications, 80, 317–329. https://doi.org/10.1144/GSL.SP.1995.080.01.15
    [Google Scholar]
  8. Feng, Z.‐Q., Zhang, S., Cross, T. A., Feng, Z.‐H., Xie, X.‐N., Zhao, B., … Wang, C.‐S. (2010). Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin, China. Basin Research, 22, 96–107. https://doi.org/10.1111/j.1365-2117.2009.00442.x
    [Google Scholar]
  9. Frey‐Martínez, J., Cartwright, J., & James & David,, (2006). Frontally confined versus frontally emergent submarine landslides: A 3d seismic characterisation. Marine & Petroleum Geology, 23, 585–604. https://doi.org/10.1016/j.marpetgeo.2006.04.002
    [Google Scholar]
  10. Galloway, W. E., Ganey‐Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico Basin. AAPG Bulletin, 84, 1743–1774.
    [Google Scholar]
  11. Gamboa, D., & Alves, T. M. (2015). Three‐dimensional fault meshes and multi‐layer shear in mass‐transport blocks: Implications for fluid flow on continental margins. Tectonophysics, 647–648, 21–32. https://doi.org/10.1016/j.tecto.2015.02.007
    [Google Scholar]
  12. Gamboa, D., & Alves, T. M. (2016). Bi‐modal deformation styles in confined mass‐transport deposits: Examples from a salt minibasin in SE Brazil. Marine Geology, 379, 176–193. https://doi.org/10.1016/j.margeo.2016.06.003
    [Google Scholar]
  13. Hampton, M. A., Lee, H. J., & Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34, 33–59. https://doi.org/10.1029/95RG03287
    [Google Scholar]
  14. Huang, W., Zhang, S., Zhang, C. C., & Wei, W. (2013). Sequence configuration and sedimentary evolution of Nenjiang formation in the Songliao Basin. Acta Sedimentologica Sinica, 31, 920–937.
    [Google Scholar]
  15. Kneller, B., Dykstra, M., Fairweather, L., & Milana, J. P. (2016). Mass‐transport and slope accommodation: Implications for turbidite sandstone reservoirs. AAPG Bulletin, 100, 213–235. https://doi.org/10.1306/09011514210
    [Google Scholar]
  16. Kremer, K., Simpson, G., & Girardclos, S. (2012). Giant Lake Geneva tsunami in AD 563. Nature Geoscience, 5, 756–757. https://doi.org/10.1038/ngeo1618
    [Google Scholar]
  17. Ledoux, G., Lajeunesse, P., Chapron, E., & St‐Onge, G. (2010). Multibeam Bathymetry investigations of mass movements in Lake Le Bourget (Nw Alps, France) using a portable platform. Dordrecht, Netherlands: Springer.
    [Google Scholar]
  18. Leslie, S. C., & Mann, P. (2016). Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea. Earth and Planetary Science Letters, 449, 382–394. https://doi.org/10.1016/j.epsl.2016.05.040
    [Google Scholar]
  19. Lewis, K. B. (1971). Slumping on a continental slope inclined at 1°–4°. Sedimentology, 16, 97–110.
    [Google Scholar]
  20. Locat, J., & Lee, H. J. (2002). Submarine landslides: advances and challenges. Canadian Geotechnical Journal, 39, 193–212. https://doi.org/10.1139/t01-089
    [Google Scholar]
  21. Martinez, J. F., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the Continental Margin of Israel. Basin Research, 17, 83–108. https://doi.org/10.1111/j.1365-2117.2005.00255.x
    [Google Scholar]
  22. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., & Løvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions, 364, 2009–2039. https://doi.org/10.1098/rsta.2006.1810
    [Google Scholar]
  23. Moernaut, J., & De Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Marine Geology, 285, 29–45. https://doi.org/10.1016/j.margeo.2011.05.001
    [Google Scholar]
  24. Moernaut, J., De Batist, M., Charlet, F., Heirman, K., Chapron, E., Pino, M., … Urrutia, R. (2007). Giant earthquakes in South‐Central Chile revealed by Holocene mass‐wasting events in Lake Puyehue. Sedimentary Geology, 195, 239–256. https://doi.org/10.1016/j.sedgeo.2006.08.005
    [Google Scholar]
  25. Morgan, L. A., Shanks Iii, W. C., Lovalvo, D. A., Johnson, S. Y., Stephenson, W. J., Pierce, K. L., … Balistrieri, L. (2003). Exploration and discovery in Yellowstone Lake: Results from high‐resolution sonar imaging, seismic reflection profiling, and submersible studies. Journal of Volcanology and Geothermal Research, 122, 221–242. https://doi.org/10.1016/S0377-0273(02)00503-6
    [Google Scholar]
  26. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20, 73–98. https://doi.org/10.1111/j.1365-2117.2007.00340.x
    [Google Scholar]
  27. Moscardelli, L., & Wood, L. (2016). Morphometry of mass‐transport deposits as a predictive tool. GSA Bulletin, 128, 47–80.
    [Google Scholar]
  28. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90, 1059–1088. https://doi.org/10.1306/02210605052
    [Google Scholar]
  29. Ogiesoba, O. C., & Hammes, U. (2012). Seismic interpretation of mass‐transport deposits within the upper Oligocene Frio formation, South Texas Gulf Coast. AAPG Bulletin, 96, 845–868. https://doi.org/10.1306/09191110205
    [Google Scholar]
  30. Pan, S., Liang, S., Ma, L., Liu, C., & Liu, H. (2017). Genesis, distribution, and hydrocarbon implications of ostracod‐bearing beds in the Songliao Basin (Ne China). Australian Journal of Earth Sciences, 64, 1–14.
    [Google Scholar]
  31. Pan, S., Liu, H., Carlos, Z., Liu, C., Liang, S., Zhang, Q., & Bai, Z. (2017). Sublacustrine hyperpycnal channel‐fan system in a large depression basin: A case study of Nen 1 member, Cretaceous Nenjiang formation in the Songliao Basin, Ne China. Petroleum Exploration & Development, 44, 911–922.
    [Google Scholar]
  32. Pan, S., Wei, P., Wang, T., Liu, C., Chen, B., & Liang, S. (2014). Mass‐transport deposits of the Upper Cretaceous Qingshankou Formation, Songliao Terrestrial Basin, Northeast China: Depositional characteristics, recognition criteria and external geometry. Acta Geologica Sinica (English Edition), 88, 62–77. https://doi.org/10.1111/1755-6724.12183
    [Google Scholar]
  33. Panek, T., Korup, O., Minar, J., & Hradecky, J. (2016). Giant landslides and highstands of the Caspian Sea. Geology, 44, 939–942. https://doi.org/10.1130/G38259.1
    [Google Scholar]
  34. Pope, E. L., Talling, P. J., Urlaub, M., Hunt, J. E., Clare, M. A., & Challenor, P. (2015). Are large submarine landslides temporally random or do uncertainties in available age constraints make it impossible to tell?Marine Geology, 369, 19–33.
    [Google Scholar]
  35. Posamentier, H. W. (2002). Ancient shelf ridges‐a potentially significant component of the transgressive systems tract: Case Study from Offshore Northwest Java. AAPG Bulletin, 86, 75–106.
    [Google Scholar]
  36. Posamentier, H. W., & Martinsen, O. J. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. SEPM, Special Publication, 96, 7–38.
    [Google Scholar]
  37. Shanmugam, G., & Wang, Y. (2015). The landslide problem. Journal of Palaeogeography, 4, 109–166. https://doi.org/10.3724/SP.J.1261.2015.00071
    [Google Scholar]
  38. Shipp, R. C., Weimer, P., & Posamentier, H. W. (2011). Mass‐transport deposits in deepwater settings: An introduction. SEPM, Special Publication, 96, 1–4.
    [Google Scholar]
  39. Simonneau, A., Chapron, E., Vannière, B., Wirth, S. B., Gilli, A., Giovanni, C. D., … Magny, M. (2013). Mass‐movement and flood‐induced deposits in Lake Ledro, Southern Alps, Italy: Implications for Holocene palaeohydrology and natural hazards. Climate of the past, 9, 825–840. https://doi.org/10.5194/cp-9-825-2013
    [Google Scholar]
  40. Talling, P. J., Allin, J., Armitage, D. A., Arnott, R. W. C., Cartigny, M. J. B., Clare, M. A., … Xu, J. (2015). Key future directions for research on turbidity currents and their deposits. Journal of Sedimentary Research, 85, 153–169. https://doi.org/10.2110/jsr.2015.03
    [Google Scholar]
  41. Wang, Z. Z., Shi, L. Z., & Zhang, Y. S. (2014). Accumulation characteristics of shallow natural gas in Daqing Placanticline in the Northern Songliao Basin. Natural Gas Geoscience, 25, 1350–1357.
    [Google Scholar]
  42. Wanli, Y., Yongkang, L. I., & Ruiqi, G. (1985). Formation and evolution of Nonmarine petroleum in Songliao Basin, China. AAPG Bulletin, 69, 1112–1122.
    [Google Scholar]
  43. Wei, H.‐H., Liu, J.‐L., & Meng, Q.‐R. (2010). Structural and sedimentary evolution of the Southern Songliao Basin, Northeast China, and implications for hydrocarbon prospectivity. AAPG Bulletin, 94, 533–566. https://doi.org/10.1306/09080909060
    [Google Scholar]
  44. Welbon, A. I. F., Brockbank, P. J., Brunsden, D., & Olsen, T. S. (2007). Characterizing and producing from reservoirs in landslides: Challenges and opportunities. Geological Society London Special Publications, 292, 49–74. https://doi.org/10.1144/SP292.3
    [Google Scholar]
  45. Xie, X., Jiao, J. J., Tang, Z., & Zheng, C. (2003). Evolution of abnormally low pressure and its implications for the hydrocarbon system in the Southeast Uplift Zone of Songliao Basin, China. AAPG Bulletin, 87, 99–119.
    [Google Scholar]
  46. Zavala, C., & Arcuri, M. (2016). Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology, 337, 36–54. https://doi.org/10.1016/j.sedgeo.2016.03.008
    [Google Scholar]
  47. Zeng, H., John, A., Jackson, K. G., & Dommisse, R. (2011). Stratal Slice: A tool for seismic sedimentologic imaging and reservoir prediction. International Congress of the Brazilian Geophysical Society & Expogef, 2011, 789–792.
    [Google Scholar]
  48. Zhang, G., Zou, L., Shen, X., Lu, S., Li, C., & Chen, H. (2009). Remote sensing detection of heavy oil through spectral enhancement techniques in the Western Slope Zone of Songliao Basin, China. AAPG Bulletin, 93, 31–49. https://doi.org/10.1306/08110808002
    [Google Scholar]
  49. Zhao, W., Zou, C., Chi, Y., & Zeng, H. (2011). Sequence stratigraphy, seismic sedimentology, and lithostratigraphic plays: Upper Cretaceous, Sifangtuozi Area, Southwest Songliao Basin, China. AAPG Bulletin, 95, 241–265. https://doi.org/10.1306/06301009125
    [Google Scholar]
  50. Zhi‐qiang, F., Shun, Z., Cross, T. A., Zi‐hui, F., Xi‐nong, X., Bo, Z., … Cheng‐shan, W. (2010). Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin, China. Basin Research, 22, 96–107. https://doi.org/10.1111/j.1365-2117.2009.00442.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12357
Loading
/content/journals/10.1111/bre.12357
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error