1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Recent studies of natural, multiphase rifts suggest that the presence of pre‐existing faults may strongly influence fault growth during later rift phases. These findings compare well with predictions from recent scaled analogue experiments that simulate multiphase, non‐coaxial extension. However, in natural rifts we only get to see the final result of multiphase rifting. We therefore do not get the chance to compare the effects of the same rift phase with and without pre‐existing structural heterogeneity, as we may in the controlled environment of a laboratory experiment. Here, we present a case study from the Lofoten Margin that provides a unique opportunity to compare normal fault growth with and without pre‐existing structural heterogeneity. Using seismic reflection and wellbore data, we demonstrate that the Ribban Basin formed during Late Jurassic to Early Cretaceous rifting. We also show that the rift fault network of the Ribban Basin lacks a pre‐existing (Permian‐Triassic) structural grain that underlies the neighbouring North Træna Basin that also formed during the Late Jurassic to Early Cretaceous. Being able to compare adjacent basins with similar histories but contrasting underlying structure allows us to study how pre‐existing normal faults influence rift geometry. We demonstrate that in Lofoten, the absence of pre‐existing normal faults produced collinear fault zones. Conversely, where pre‐existing faults are present, normal fault zones develop strong “zigzag” plan‐view geometries.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12358
2019-04-17
2024-03-28
Loading full text...

Full text loading...

References

  1. Acocella, V., Gudmundsson, A., & Funiciello, R. (2000). Interaction and linkage of extension fractures and normal faults: Examples from the rift zone of Iceland. Journal of Structural Geology, 22, 1233–1246. https://doi.org/10.1016/S0191-8141(00)00031-6
    [Google Scholar]
  2. Andersen, T. B., Jamtveit, B., Dewey, J. F., & Swenson, E. (1991). Subduction and eduction of continental crust: Major mechanisms during continent‐continent collision and orogenic extensional collapse, a model based on the southern Norwegian Caledonides. Terra Nova, 3, 303–310.
    [Google Scholar]
  3. Bell, R. E., Jackson, C.‐L., Whipp, P. S., & Clements, B. (2014). Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics, 33, 1936–1963. https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  4. Bellahsen, N., Fournier, M., D'Acremont, E., Leroy, S., & Daniel, J. M. (2006). Fault reactivation and rift localization: Northeastern Gulf of Aden margin. Tectonics, 25, 1–14. https://doi.org/10.1029/2004TC001626
    [Google Scholar]
  5. Bergh, S. G., Eig, K., Kløvjan, O. S., Henningsen, T., Olesen, O., & Hansen, J.-A. (2007). The Lofoten-Vesterålen continental margin: A multiphase Mesozoic-Palaeogene rifted shelf as shown by offshore-onshore brittle fault-fracture analysis. Norwegian Journal of Geology, 87, 29–58.
    [Google Scholar]
  6. Childs, C., Watterson, J., & Walsh, J. J. (1995). Fault overlap zones within developing normal fault systems. Journal of the Geological Society, 152, 535–549. https://doi.org/10.1144/gsjgs.152.3.0535
    [Google Scholar]
  7. Claringbould, J. S., Bell, R. E., Jackson, C. A. L., Gawthorpe, R. L., & Odinsen, T. (2017). Pre‐existing normal faults have limited control on the rift geometry of the northern North Sea. Earth and Planetary Science Letters, 475, 190–206. https://doi.org/10.1016/j.epsl.2017.07.014
    [Google Scholar]
  8. Cowie, P. A. (1998). Normal fault growth in three‐dimensions in continental and oceanic crust. In R.Buck, P.Delaney, J.Karson, & Y.Lagabrielle (Eds.), Faulting and magmatism at mid‐ocean ridges (pp. 325–348). Washington, DC: AGU. Monograph 106.
  9. Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of fault array evolution for synrift depocentre development: Insights from a numerical fault growth model. Basin Research, 12, 241–261. https://doi.org/10.1046/j.1365-2117.2000.00126.x
    [Google Scholar]
  10. Crider, J. G., & Pollard, D. D. (1998). Fault linkage: Three‐dimensional mechanical interaction between echelon normal faults. Journal of Geophysical Research: Solid Earth, 103, 24373–24391.
    [Google Scholar]
  11. Davies, R. J., Turner, J. D., & Underhill, J. R. (2001). Sequential dip‐slip movement during rifting: A newmodel for the evolution of the Jurassic trilete North Sea rift system. Petroleum Geoscience, 7, 371–388.
    [Google Scholar]
  12. Deng, C., Gawthorpe, R. L., Finch, E., & Fossen, H. (2017). Influence of a pre‐existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology. 105, 44–61. https://doi.org/10.1016/j.jsg.2017.11.005
    [Google Scholar]
  13. Doré, A. G. (1992). Synoptic palaeogeography of the Northeast Atlantic Seaway: Late Permian to Cretaceous. In J.Parnell (Ed.), Basins on the Atlantic seaboard: Petroleum geology, sedimentology and basin evolution (Vol. 62, pp. 421–446). London, UK: Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.1992.062.01.31
    [Google Scholar]
  14. Doré, A. G., Lundin, E. R., Jensen, L. N., Birkeland, Ø., Eliassen, P. E., & Fichler, C. (1999). In A. J.Fleet, & S. A.Boldy (Eds.), Petroleum geology of Northwest Europe (pp. 41–62). Proceedings of the 5th Conference.
  15. Ehrlich, R., & Gabrielsen, R. H. (2004). The complexity of a ramp–flat–ramp fault and its effect on hanging‐wall structuring: An example from the Njord oil field, offshore mid‐Norway. Petroleum Geoscience, 10, 305–317. https://doi.org/10.1144/1354-079303-585
    [Google Scholar]
  16. Etheridge, M. A. (1986). On the reactivation of extensional fault systems. Philosophical Transactions of the Royal Society of London A, 317, 179–194.
    [Google Scholar]
  17. Færseth, R. B. (2012). Structural development of the continental shelf offshore Lofoten‐Vesterålen, northern Norway. Norwegian Journal of Geology, 92, 19–40.
    [Google Scholar]
  18. Faleide, J. I., Bjørlykke, K., & Gabrielsen, R. H. (2010). Geology of the Norwegian continental shelf. In K.Bjørlykke (Ed.), Petroleum geoscience: From sedimentary environments to rock physics (pp. 467–499). Berlin, Germany: Springer‐Verlag, Berlin Heidelberg.
    [Google Scholar]
  19. Finch, E., & Gawthorpe, R. (2017). Growth and interaction of normal faults and fault network evolution in rifts: Insights from three-dimensional discrete element modelling. Geological Society, London, Special Publications, 439(1), 219–248.
    [Google Scholar]
  20. Giba, M., Walsh, J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004
    [Google Scholar]
  21. Gupta, S., Cowie, P. A., Dawers, N. H., & Uderhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault array evolution. Geology, 26, 595–598. https://doi.org/10.1130/0091-7613(1998)026<0595:AMTERB>2.3.CO;2
    [Google Scholar]
  22. Hames, W. E., & Andresen, A. (1996). Timing of Palaeozoic orogeny and extension in the continental shelf of north‐central Norway as indicated by laser 40Ar/ 39Ar muscovite dating. Geology, 24, 1005–1008.
    [Google Scholar]
  23. Hansen, J. W., Bakke, S., & Fanavoll, S. (1992). Shallow drilling Nordland VI and VII 1992. IKU report 23.
  24. Hansen, J.‐A., Bergh, S. G., & Henningsen, T. (2012). Mesozoic rifting and basin evolution on the Lofoten and Vesterålen Margin, North‐Norway; time constraints and regional implications. Norwegian Journal of Geology, 91, 203–228.
    [Google Scholar]
  25. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnås, R., & Rotevatn, A. (2017). Depositional systems in multiphase rifts: Seismic case study from the Lofoten margin, Norway. Basin Research, 29, 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  26. Henstra, G. A., & Rotevatn, A. (2014). Nature of Palaeozoic extension in Lofoten, north Norwegian continental shelf: Insights from 3‐D seismic analysis of a Cordilleran‐style metamorphic core complex. Terra Nova, 26, 247–252. https://doi.org/10.1111/ter.12098
    [Google Scholar]
  27. Henstra, G. A., Rotevatn, A., Gawthorpe, R. L., & Ravnås, R. (2015). Evolution of a major segmented normal fault during multiphase rifting: The origin of plan‐view zigzag geometry. Journal of Structural Geology, 74, 45–63. https://doi.org/10.1016/j.jsg.2015.02.005
    [Google Scholar]
  28. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2010). Normal‐fault development during two phases of non‐coaxial extension: An experimental study. Journal of Structural Geology, 32, 1656–1667. https://doi.org/10.1016/j.jsg.2009.07.007
    [Google Scholar]
  29. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2011). How do the properties of a pre‐existing normal‐fault population influence fault development during a subsequent phase of extension?Journal of Structural Geology, 33, 1312–1324.
    [Google Scholar]
  30. Huyghe, P., & Mugnier, J. L. (1992). The influence of depth on reactivation in normal faulting. Journal of Structural Geology, 14, 991–998. https://doi.org/10.1016/0191-8141(92)90030-Z
    [Google Scholar]
  31. Jackson, C. A. L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215–234. https://doi.org/10.1016/j.jsg.2013.06.012
    [Google Scholar]
  32. Keep, M., & McClay, K. R. (1997). Analogue modeling of multiphase rift systems. Tectonophysics, 273, 239–270.
    [Google Scholar]
  33. Klein, A. C., Steltenpohl, M. G., Hames, W. E., & Andresen, A. (1999). Ductile and brittle extension in the southern Lofoten Archipelago, North Norway; implications for differences in tectonic style along an ancient collisional margin. American Journal of Science, 299, 69–89. https://doi.org/10.2475/ajs.299.1.69
    [Google Scholar]
  34. Laubach, S. E., Eichhubl, P., Hargrove, P., Ellis, M. A., & Hooker, J. N. (2014). Fault core and damage zone fracture attributes vary along strike owing to interaction of fracture growth, quartz accumulation, and differing sandstone composition. Journal of Structural Geology, 68, 207–226. https://doi.org/10.1016/j.jsg.2014.08.007
    [Google Scholar]
  35. Lee, M. J., & Hwang, Y. J. (1993). Tectonic evolution and structural styles of the East Shetland Basin. Geological Society, London, Petroleum Geology Conference Series, 4, 1137–1149. https://doi.org/10.1144/0041137
    [Google Scholar]
  36. Lepvrier, C., Fournier, M., Berard, T., & Roger, J. (2002). Cenozoic extension in coastal Dhofar (southern Oman): Implications on the oblique rifting on the Gulf of Aden. Tectonophysics, 357, 279–293.
    [Google Scholar]
  37. Løseth, H., & Tveten, E. (1996). Post‐Caledonian structural evolution of the Lofoten and Vesterålen offshore and onshore areas. Norwegian Journal of Geology, 76, 215–230.
    [Google Scholar]
  38. Macgregor, D. (2015). History of the development of the East African Rift System: A series of interpreted maps through time. Journal of African Earth Sciences, 101, 232–252. https://doi.org/10.1016/j.jafrearsci.2014.09.016
    [Google Scholar]
  39. McLeod, A., Dawers, N. H., & Underhill, J. R. (2000). The propagation and linkage of normal faults: Insights from the Strathspey–Brent–Statfjord fault array, northern North Sea. Basin Research, 12, 263–284. https://doi.org/10.1046/j.1365-2117.2000.00124.x
    [Google Scholar]
  40. Mjelde, R., & Sellevoll, M. A. (1993). Possible shallow crustal shear wave anisotropy off Lofoten, Norway, inferred from three‐component ocean‐bottom seismographs. Geophysical Journal International, 115, 159–167. https://doi.org/10.1111/j.1365-246X.1993.tb05596.x
    [Google Scholar]
  41. Morley, C. K. (2017). The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand. Geological Society, London, Special Publications, 439(1), 413–445.
    [Google Scholar]
  42. Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., & Wonganan, N. (2004). Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand. Journal of Structural Geology, 26, 1803–1829. https://doi.org/10.1016/j.jsg.2004.02.014
    [Google Scholar]
  43. Mosar, J., Eide, E. A., Osmundsen, P. T., Sommaruga, A., & Torsvik, T. H. (2002). Greenland – Norway separation: A geodynamic model for the North Atlantic. Norwegian Journal of Geology, 82, 281–298.
    [Google Scholar]
  44. Nøttvedt, A., Johannessen, E. P., & Surlyk, F. (2008). The mesozoic of western Scandinavia and East Greenland. Episodes, 31, 59–65.
    [Google Scholar]
  45. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13, 721–733. https://doi.org/10.1016/0191-8141(91)90033-F
    [Google Scholar]
  46. Peron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  47. Phillips, T. B., Jackson, C. A. L., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008
    [Google Scholar]
  48. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. In G. D.Williams, & A.Dobb (Eds.), Tectonics and seismic sequence stratigraphy (pp. 35–66). London, UK: The Geological Society of London.
    [Google Scholar]
  49. Ravnås, R., Nøttvedt, A., Steel, R. J., & Windelstad, J. (2000). Syn‐rift sedimentary architectures in the Northern North Sea. In A.Nøttvedt (Ed.), Dynamics of the Norwegian margin (Vol. 167, pp. 133–177). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  50. Rotevatn, A., & Jackson, C. A. L. (2014). 3D structure and evolution of folds during normal fault dip linkage. Journal of the Geological Society, 171, 821–829. https://doi.org/10.1144/jgs2014-045
    [Google Scholar]
  51. Rotevatn, A., Jackson, C. A. L., Tvedt, A. B. M., Bell, R., & Blækkan, I. (2018). How do normal faults grow?Journal of Structural Geology. https://doi.org/10.1016/j.jsg.2018.08.005
    [Google Scholar]
  52. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., … Andresen, A. (2018). Structural inheritance and rapid rift‐length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry. Tectonics, 37, 1858–1875.
    [Google Scholar]
  53. Steltenpohl, M. G., Hames, W. E., & Andresen, A. (2004). The Silurian to Permian history of a metamorphic core complex in Lofoten, northern Scandinavian Caledonides. Tectonics, 23, 1–23. https://doi.org/10.1029/2003TC001522
    [Google Scholar]
  54. Steltenpohl, M. G., Kassos, G., & Andresen, A. (2006). Retrograded eclogite facies pseudotachylytes as deep‐crustal paleoseismic faults within continental basement of Lofoten, north Norway. Geosphere, 2, 61–72. https://doi.org/10.1130/GES00035.1
    [Google Scholar]
  55. Tenthorey, E., & Cox, S. F. (2006). Cohesive strengthening of fault zones during the interseismic period: An experimental study. Journal of Geophysical Research: Solid Earth, 111, 1–14. https://doi.org/10.1029/2005JB004122
    [Google Scholar]
  56. Tomasso, M., Underhill, J. R., Hodgkinson, R. A., & Young, M. J. (2008). Structural styles and depositional architecture in the Triassic of the Ninian and Alwyn North fields: Implications for basin development and prospectivity in the Northern North Sea. Marine and Petroleum Geology, 25(7), 588–605. https://doi.org/10.1016/j.marpetgeo.2007.11.007
    [Google Scholar]
  57. Tsikalas, F., Faleide, J. I., & Eldholm, O. (2001). Lateral variations in tectono‐magmatic style along the Lofoten‐Vesterålen volcanic margin off Norway. Marine and Petroleum Geology, 18, 807–832. https://doi.org/10.1016/S0264-8172(01)00030-7
    [Google Scholar]
  58. Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24, 1669–1675. https://doi.org/10.1016/S0191-8141(01)00165-1
    [Google Scholar]
  59. Whipp, P. S., Jackson, C.‐A.‐l., Gawthorpe, R. l., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26, 523–549. https://doi.org/10.1111/bre.12050
    [Google Scholar]
  60. Wilson, R. W., McCaffrey, K. J. W., Holdsworth, R. E., Imber, J., Jones, R. R., Welbon, A. I. F., & Roberts, D. (2006). Complex fault patterns, transtension and structural segmentation of the Lofoten Ridge, Norwegian margin; using digital mapping to link onshore and offshore geology. Tectonics, 25, 1–28. https://doi.org/10.1029/2005TC001895
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12358
Loading
/content/journals/10.1111/bre.12358
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fault reactivation; multiphase rifting; normal faults; rift basins; structure

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error