1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Lower Cambrian quartz arenitic deposits have a worldwide occurrence. In this study, petrographic and mineralogical analyses were carried out on samples from the quartz‐rich Ringsaker Member of the Vangsås Formation from southern Norway and the corresponding Hardeberga Formation from southern Sweden and on the Danish island of Bornholm. The quartz arenite is almost completely quartz cemented and has an average intergranular volume of 30%. The quartz cement is the dominating cause for porosity loss. Dissolution along stylolites and microstylolites is suggested to be the primary and secondary source for the quartz cement respectively. The quartzose sandstone from southern Norway was severely cemented prior to the Caledonian Orogeny, thus limiting the tectonic influence on diagenesis during thrusting. For most samples, authigenic clay minerals and detrital phyllosilicates represent ca. 5% of the present‐day composition. This, together with a low feldspar content, of on average 4%, indicates that the sediment was extremely quartz‐rich already during deposition. The low amount of feldspar prior to burial and the formation of early diagenetic kaolinite point to weathering, sediment reworking and early diagenesis act as important controls on sediment maturity. The large variation in clay‐mineral and feldspar content between the localities, as well as within the sandstone successions, can be explained by different palaeogeography on the shelf during deposition and subsequently dissimilar subjection to reworking and early diagenetic processes. Weathering in the provenance area, reworking in the depositional shallow‐marine environment and meteoric flushing during the burial stage are suggested to explain the high mineralogical maturity of the lower Cambrian sandstone from southwestern Baltica. These processes may generally account for similar quartz‐rich shallow‐marine sandstone units, deposited as a result of intensive continental denudation and during temperate to subtropical and moderately humid conditions.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12359
2019-04-26
2024-04-18
Loading full text...

Full text loading...

References

  1. Ahlberg, P. (2003). Trilobites and intercontinental tie points in the Upper Cambrian of Scandinavia. Geologica Acta, 1(1), 127–134.
    [Google Scholar]
  2. Amorosi, A. (1995). Glaucony and sequence stratigraphy: A conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research, 65(4b), 419–425.
    [Google Scholar]
  3. Avigad, D., Sandler, A., Kolodner, K., Stern, R., McWilliams, M., Miller, N., & Beyth, M. (2005). Mass‐production of Cambro‐Ordovician quartz‐rich sandstone as a consequence of chemical weathering of Pan‐African terranes: Environmental implications. Earth and Planetary Science Letters, 240(3), 818–826. https://doi.org/10.1016/j.epsl.2005.09.021
    [Google Scholar]
  4. Bassis, A., Hinderer, M., & Meinhold, G. (2016). Petrography and geochemistry of Palaeozoic quartz‐rich sandstones from Saudi Arabia: Implications for provenance and chemostratigraphy. Arabian Journal of Geosciences, 9(5), 400. https://doi.org/10.1007/s12517-016-2412-z
    [Google Scholar]
  5. Basu, A. (1981). Weathering before the advent of land plants: Evidence from unaltered detrital K‐feldspars in Cambrian‐Ordovician arenites. Geology, 9(3), 132–133. https://doi.org/10.1130/0091-7613(1981)9<132:WBTAOL>2.0.CO;2
    [Google Scholar]
  6. Basu, A. (1985). Influence of climate and relief on compositions of sands released at source areas. In G. G.Zuffa (Ed.), Provenance of Arenites (pp. 1–18). Dordrecht, the Netherland: Springer.
    [Google Scholar]
  7. Bergh, S., Corfu, F., Priyatkina, N., Kullerud, K., & Myhre, P. (2015). Multiple post‐Svecofennian 1750–1560 Ma pegmatite dykes in Archaean‐Palaeoproterozoic rocks of the West Troms Basement Complex, North Norway: Geological significance and regional implications. Precambrian Research, 266, 425–439. https://doi.org/10.1016/j.precamres.2015.05.035
    [Google Scholar]
  8. Berner, R. A. (1981). A new geochemical classification of sedimentary environments. Journal of Sedimentary Research, 51(2), 359–365. https://doi.org/10.1306/212f7c7f-2b24-11d7-8648000102c1865d
    [Google Scholar]
  9. Bingen, B., Belousova, E., & Griffin, W. (2011). Neoproterozoic recycling of the Sveconorwegian orogenic belt: Detrital‐zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambrian Research, 189(3), 347–367. https://doi.org/10.1016/j.precamres.2011.07.005
    [Google Scholar]
  10. Bingen, B., Nordgulen, O., & Viola, G. (2008). A four‐phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology, 88(1), 43–72.
    [Google Scholar]
  11. Bjørlykke, K. (1994). Fluid‐flow processes and diagenesis in sedimentary basins. Geological Society, London, Special Publications, 78(1), 127–140. https://doi.org/10.1144/GSL.SP.1994.078.01.11
    [Google Scholar]
  12. Bjørlykke, K. (1998). Clay mineral diagenesis in sedimentary basins—a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Minerals, 33(1), 15–34.
    [Google Scholar]
  13. Bjørlykke, K. (1999). Principal aspects of compaction and fluid flow in mudstones. Geological Society, London, Special Publications, 158(1), 73–78. https://doi.org/10.1144/GSL.SP.1999.158.01.06
    [Google Scholar]
  14. Bjørlykke, K., & Aagaard, P. (1992). Clay minerals in North Sea sandstones (pp. 65–80). Tulsa, OK: SEPM Special Publication 47.
    [Google Scholar]
  15. Bjørlykke, K., Aagaard, P., Dypvik, H., Hastings, D., & Harper, A. (1986). Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid‐Norway. Habitat of Hydrocarbons on the Norwegian Continental Shelf, 275–286.
    [Google Scholar]
  16. Bjørlykke, K., & Brendsdal, A. (1986). Diagenesis of the Brent sandstone in the Statfjord field, North Sea. SEMP Special Publication, 38, 157–167.
    [Google Scholar]
  17. Bjørlykke, K., Elvsborg, A., & Høy, T. (1976). Late Precambrian sedimentation in the central sparagmite basin of south Norway. Norsk Geologisk Tidsskrift, 56, 233–290.
    [Google Scholar]
  18. Buchardt, B., & Nielsen, A. T. (1985). Carbon and oxygen isotope composition of Cambro‐Silurian limestone and anthraconite from Bornholm: Evidence for deep burial diagenesis. Bulletin of the Geological Society of Denmark, 33, 415–435.
    [Google Scholar]
  19. Burke, K., MacGregor, D. S., & Cameron, N. R. (2003). Africa’s petroleum systems: Four tectonic ‘Aces’ in the past 600 million years. In T. J.Arthur, D. S.MacGregor, & N. R.Cameron (Eds.), Petroleum geology of Africa: New themes and developing technologies (pp. 21–60). London, UK: Geological Society of London. Special Publication.
    [Google Scholar]
  20. Calner, M., Ahlberg, P., Lehnert, O., & Erlström, M. (2013). The Lower Palaeozoic of southern Sweden and the Oslo Region, Norway (pp. 1–96). Field Guide for the 3rd Annual Meeting of the IGCP project.
  21. Chandler, F. (1988). Quartz arenites: Review and interpretation. Sedimentary Geology, 58(2), 105–126. https://doi.org/10.1016/0037-0738(88)90065-6
    [Google Scholar]
  22. Clemmensen, L. B., & Dam, G. (1993). Aeolian sand‐sheet deposits in the Lower Cambrian Neksø Sandstone Formation, Bornholm, Denmark: Sedimentary architecture and genesis. Sedimentary Geology, 83(1–2), 71–85. https://doi.org/10.1016/0037-0738(93)90183-6
    [Google Scholar]
  23. Dalziel, I. W. (1997). Neoproterozoic‐Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin, 109(1), 16–42.
    [Google Scholar]
  24. Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research, 40(2), 695–707.
    [Google Scholar]
  25. Dreyer, T. (1988). Late Proterozoic (Vendian) to Early Cambrian Sedimentation in the Hedmark Group, Southwestern Part of the Sparagmite Region, Southern Norway. Norges Geologiske Undersøkelse Bulletin, 412, 1–27.
    [Google Scholar]
  26. Ehrenberg, S. (1989). Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones: Discussion; compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California: Discussion. AAPG Bulletin, 73(10), 1274–1276.
    [Google Scholar]
  27. Ehrenberg, S. (1995). Measuring sandstone compaction from modal analysis of thin sections: How to do it and what the results mean. Journal of Sedimentary Research, 65(2), 369–379.
    [Google Scholar]
  28. Elvsborg, A., & Nystuen, J. P. (1978). Evenstad berggrunnsgeologisk kart 1917 1. M. 1:50 000, Norges geologiske undersøkelse.
  29. Friis, H., Sylvestersen, R. L., Nebel, L. N., Poulsen, M. L. K., & Svendsen, J. B. (2010). Hydrothermally influenced cementation of sandstone—An example from deeply buried Cambrian sandstones from Bornholm, Denmark. Sedimentary Geology, 227(1), 11–19. https://doi.org/10.1016/j.sedgeo.2010.03.002
    [Google Scholar]
  30. Gabrielsen, R. H., Nystuen, J. P., Jarsve, E. M., & Lundmark, A. M. (2015). The Sub‐Cambrian Peneplain in southern Norway: Its geological significance and its implications for post‐Caledonian faulting, uplift and denudation. Journal of the Geological Society, 172(6), 777–791. https://doi.org/10.1144/jgs2014-154
    [Google Scholar]
  31. Graversen, O. (2009). Structural analysis of superposed fault systems of the Bornholm horst block, Tornquist Zone, Denmark. Bulletin of the Geological Society of Denmark, 57, 25–49.
    [Google Scholar]
  32. Hamberg, L. (1991). Tidal and seasonal cycles in a Lower Cambrian shallow marine sandstone (Hardeberga Fm.), Scania, Southern Sweden. Clastic Tidal Sedimentology (Memoir 16), 255–273.
  33. Hansen, H. N., Løvstad, K., Müller, R., & Jahren, J. (2017). Clay coating preserving high porosities in deeply buried intervals of the Stø Formation. Marine and Petroleum Geology, 88, 648–658. https://doi.org/10.1016/j.marpetgeo.2017.09.011
    [Google Scholar]
  34. Holmsen, P., & Oftedahl, C. (1956). Ytre Rendal og Stor‐Elvdal. Norges Geologiske Undersøkelse (Vol. 194), pp. 173–.
  35. Jahren, J., & Maast, T. (2013). Is Grain‐to‐grain Pressure Solution Contributing to Quartz Cementation in Sandstones? 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013.
  36. Jensen, S. K., & Nielsen, S. B. (1995). Estimating amount and timing of Late Paleozoic uplift and erosion in the Rønne Graben, Bornholm, Denmark. Bulletin of the Geological Society of Denmark, 42(1), 23–33.
    [Google Scholar]
  37. Jensenius, J. (1987). Regional studies of fluid inclusions in Paleozoic sediments from southern Scandinavia. Bulletin of the Geological Society of Denmark, 36, 221–235.
    [Google Scholar]
  38. Kumpulainen, R., & Nystuen, J. (1985). Late Proterozoic basin evolution and sedimentation in the westernmost part of Baltoscandia. The Caledonide Orogen—scandinavia and Related Areas, 1, 213–232.
    [Google Scholar]
  39. Lamminen, J., Andersen, T., & Nystuen, J. P. (2015). Provenance and rift basin architecture of the Neoproterozoic Hedmark Basin, South Norway inferred from U‐Pb ages and Lu–Hf isotopes of conglomerate clasts and detrital zircons. Geological Magazine, 152(01), 80–105. https://doi.org/10.1017/S0016756814000144
    [Google Scholar]
  40. Longiaru, S. (1987). Visual comparators for estimating the degree of sorting from plane and thin section. Journal of Sedimentary Research, 57(4), 791–794. https://doi.org/10.1306/212F8C60-2B24-11D7-8648000102C1865D
    [Google Scholar]
  41. Lorentzen, S., Augustsson, C., Nystuen, J. P., Berndt, J., Jahren, J., & Schovsbo, N. H. (2018). Provenance and sedimentary processes controlling the formation of lower Cambrian quartz arenite along the southwestern margin of Baltica. Sedimentary Geology, 375, 203–217. https://doi.org/10.1016/j.sedgeo.2017.08.008
    [Google Scholar]
  42. Lorentzen, S., Braut, T., Augustsson, C., Schovsbo, N. H., Jahren, J., & Nystuen, J. P. (in review). Weathering and provenance signature of lower Cambrian quartz arenite on Baltica, with additional case study from Bornholm. Journal of Sedimentary Research.
    [Google Scholar]
  43. Lundegard, P. D. (1992). Sandstone porosity loss; a 'big picture' view of the importance of compaction. Journal of Sedimentary Research, 62(2), 250–260. https://doi.org/10.1306/D42678D4-2B26-11D7-8648000102C1865D
    [Google Scholar]
  44. McBride, E. F. (1963). A classification of common sandstones. Journal of Sedimentary Research, 33(3), 664–669.
    [Google Scholar]
  45. Mcbride, E. F. (1985). Diagenetic processes that affect provenance determinations in sandstone. In G. G.Zuffa (Ed.), Provenance of Arenites (pp. 95–113). Dordrecht, Netherlands: Springer.
    [Google Scholar]
  46. McKinley, J., Worden, R., Ruffell, A., & Morad, S. (2003). Smectite in sandstones: A review of the controls on occurrence and behaviour during diagenesis. In R. H.Worden & S.Morad (Ed.), Clay mineral cements in sandstones (pp. 109–128). Oxford, UK: Blackwell Publishing. https://doi.org/10.1002/9781444304336.ch5
    [Google Scholar]
  47. Michelsen, O., & Nielsen, L. H. (1993). Structural development of the Fennoscandian border zone, offshore Denmark. Marine and Petroleum Geology, 10(2), 124–134. https://doi.org/10.1016/0264-8172(93)90017-M
    [Google Scholar]
  48. Möller, C., Andersson, J., Lundqvist, I., & Hellström, F. (2007). Linking deformation, migmatite formation and zircon U‐Pb geochronology in polymetamorphic orthogneisses, Sveconorwegian Province, Sweden. Journal of Metamorphic Geology, 25(7), 727–750. https://doi.org/10.1111/j.1525-1314.2007.00726.x
    [Google Scholar]
  49. Nielsen, A. T., & Schovsbo, N. H. (2006). Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark, 53, 47–92.
    [Google Scholar]
  50. Nielsen, A. T., & Schovsbo, N. H. (2011). The Lower Cambrian of Scandinavia: Depositional environment, sequence stratigraphy and palaeogeography. Earth‐Science Reviews, 107(3), 207–310. https://doi.org/10.1016/j.earscirev.2010.12.004
    [Google Scholar]
  51. Nielsen, A. T., & Schovsbo, N. H. (2015). The regressive Early‐Mid Cambrian ‘Hawke Bay Event’in Baltoscandia: Epeirogenic uplift in concert with eustasy. Earth‐Science Reviews, 151, 288–350. https://doi.org/10.1016/j.earscirev.2015.09.012
    [Google Scholar]
  52. Nordgulen, Ø. (1999). Geologisk kart over Norge, berggrunnskart HAMAR, M 1: 250 000. Norges geologiske undersøkelse 11154.
  53. Nystuen, J. P. (1981). The late Precambrian" sparagmites" of southern Norway; a major Caledonian allochthon; the Osen‐Roa nappe complex. American Journal of Science, 281(1), 69–94. https://doi.org/10.2475/ajs.281.1.69
    [Google Scholar]
  54. Nystuen, J. P. (1982). Late Proterozoic basin evolution on the Baltoscandian craton: The Hedmark Group, southern Norway. Norges geologiske undersøkelse Bulletin, 375 (pp. 74). Trondheim, Norway: Universitetsforlaget.
    [Google Scholar]
  55. Nystuen, J. P. (1987). Synthesis of the tectonic and sedimentological evolution of the late Proterozoic‐early Cambrian Hedmark Basin, the Caledonian Thrust Belt, southern Norway. Norsk Geologisk Tidsskrift, 67(4), 395–418.
    [Google Scholar]
  56. Nystuen, J. P., Andresen, A., Kumpulainen, R. A., & Siedlecka, A. (2008). Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes, 31(1), 35–43.
    [Google Scholar]
  57. Odin, G. S., & Fullagar, P. (1988). Chapter C4 geological significance of the glaucony facies. In G. S.Odin (Ed.), Developments in sedimentology (pp. 295–332). Amsterdam, Netherlands: Elsevier.
    [Google Scholar]
  58. Odin, G. S., & Matter, A. (1981). De glauconiarum origine. Sedimentology, 28(5), 611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.x
    [Google Scholar]
  59. Olaussen, S., Larsen, B. T., & Steel, R. (1994). The Upper Carboniferous‐Permian Oslo Rift; basin fill in relation to tectonic development. Canadian Society of Petroleum Geologists Pangea: Global Environments and Resources (Memoir, 17),175–197.
  60. Pryor, W. A. (1973). Permeability‐porosity patterns and variations in some Holocene sand bodies. AAPG Bulletin, 57(1), 162–189.
    [Google Scholar]
  61. Ramm, M. (1992). Porosity‐depth trends in reservoir sandstones: Theoretical models related to Jurassic sandstones offshore Norway. Marine and Petroleum Geology, 9(5), 553–567. https://doi.org/10.1016/0264-8172(92)90066-N
    [Google Scholar]
  62. Rittenhouse, G. (1971). Mechanical compaction of sands containing different percentages of ductile grains: A theoretical approach. AAPG Bulletin, 55(1), 92–96.
    [Google Scholar]
  63. Ruffell, A., & Wach, G. (1998). Firmgrounds–key surfaces in the recognition of parasequences in the Aptian Lower Greensand Group, Isle of Wight (southern England). Sedimentology, 45(1), 91–107. https://doi.org/10.1046/j.1365-3091.1998.00147.x
    [Google Scholar]
  64. Saigal, G., & Bjørlykke, K. (1987). Carbonate cements in clastic reservoir rocks from offshore Norway—relationships between isotopic composition, textural development and burial depth. Geological Society, London, Special Publications, 36(1), 313–324. https://doi.org/10.1144/GSL.SP.1987.036.01.22
    [Google Scholar]
  65. Siedlecka, A. (1987). Skoganvarre berggrunnskart 2034 4, 1: 50,000. Foreløpig utgave. Norges geologiske Undersøkelse.
    [Google Scholar]
  66. Skjeseth, S. (1963). Contributions to the geology of the Mjøsa districts and the classical sparagmite area in southern Norway. Norges geologiske undersøkelse Bulletin 220.
  67. Soegaard, K., & Eriksson, K. A. (1989). Origin of thick, first‐cycle quartz arenite successions: Evidence from the 1.7 Ga Ortega Group, northern New Mexico. Precambrian Research, 43(1–2), 129–141.
    [Google Scholar]
  68. Suttner, L. J., Basu, A., & Mack, G. H. (1981). Climate and the origin of quartz arenites. Journal of Sedimentary Research, 51(4), 1235–1246.
    [Google Scholar]
  69. Torsvik, T. H., & Cocks, L. R. M. (2013). New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society, London, Memoirs, 38(1), 5–24.
    [Google Scholar]
  70. Torsvik, T. H., & Cocks, L. R. M. (2017). Earth history and palaeogeography (pp. 317). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  71. Torsvik, T., Smethurst, M., Meert, J. G., Van der Voo, R., McKerrow, W., Brasier, M., … Walderhaug, H. (1996). Continental break‐up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth‐Science Reviews, 40(3–4), 229–258. https://doi.org/10.1016/0012-8252(96)00008-6
    [Google Scholar]
  72. Udden, J. A. (1914). Mechanical composition of clastic sediments. Geological Society of America Bulletin, 25(1), 655–744. https://doi.org/10.1130/GSAB-25-655
    [Google Scholar]
  73. Vejbæk, O., Stouge, S., & Poulsen, K. (1994). Palaeozoic tectonic and sedimentary evolution and hydrocarbon prospectivity in the Bornholm area: Geological Survey of Denmark. A34, 1–23.
  74. Vidal, G., & Nystuen, J. P. (1991). Lower Cambrian acritarch stratigraphy in Scandinavia. GFF, 103(2), 183–192.
    [Google Scholar]
  75. Walderhaug, O., & Bjørkum, P. A. (2003). The effect of stylolite spacing on quartz cementation in the Lower Jurassic Stø Formation, southern Barents Sea. Journal of Sedimentary Research, 73(2), 146–156.
    [Google Scholar]
  76. Walker, T. R. (1976). Diagenetic origin of continental red beds. In H.Falke (Ed.), The continental Permain in Central, West, and South Europe (pp. 240–282). Dordrecht, Netherlands: Springer.
    [Google Scholar]
  77. Weltje, G. J. (2006). Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. Geological Society, London, Special Publications, 264(1), 79–99. https://doi.org/10.1144/GSL.SP.2006.264.01.07
    [Google Scholar]
  78. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377–392. https://doi.org/10.1086/622910
    [Google Scholar]
  79. Wilson, M. D. (1992). Inherited grain‐rimming clays in sandstones from eolian and shelf environments: Their origin and control on reservoir properties. In D. W. Houseknechtm & E. D.Pittman (Ed.), Origin, diagenesis, and petrophysics of clay minerals in sandstones (pp. 209–225). Tulsa, OK: SEPM Special Publication 47.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12359
Loading
/content/journals/10.1111/bre.12359
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Baltica; Cambrian; diagenesis; quartz arenite; sedimentology; tectonics and sedimentation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error