1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The onshore–offshore correlation of sedimentary successions is a common problem in basin analysis, but it becomes critical for the full understanding of the Messinian salinity crisis (MSC), a complex array of palaeoenvironmental events which affected the Mediterranean basin at the end of the Miocene. The outcrop records show that the Messinian stratigraphic architectures may be highly complex as the deposits of the different MSC evolutionary stages can be lithologically similar and separated by erosional surfaces and/or morphostructural highs. The correct definition of the nature and stratigraphic position of Messinian deposits in offshore areas through seismic data may be almost impossible, especially where core data are sparse. To bridge the gap between onshore and offshore records, we have built synthetic seismic sections from well‐constrained outcrop successions. Our results provide useful insights and warnings for the interpretation of offshore data, pointing out that MSC units having different age, nature and depositional settings, may show similar seismic facies and geometries. Conversely, the same deposit may result in different seismic facies, either with parallel and high‐amplitude reflections or even transparent or chaotic due to interference patterns of seismic reflections related to dominant frequency. It follows that a correct interpretation of the nature and age of deep‐seated Messinian deposits can only be obtained through the integration of seismic and core data, and considering the onshore record. The application of our approach to the Balearic Promontory results in an alternative interpretation with respect to previous models. We show that this offshore area has good analogues in the onshore of the Betic Cordillera and includes both shallow and intermediate depth sub‐basins that underwent a strong post‐Messinian subsidence.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12361
2019-04-24
2024-04-16
Loading full text...

Full text loading...

References

  1. Arenas, C., & Pomar, L. (2010). Microbial deposits in upper Miocene carbonates, Mallorca, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 465–485. https://doi.org/10.1016/j.palaeo.2010.08.030
    [Google Scholar]
  2. Barragan, G. (1986). Una nueva interpretación de la sedimentación neógena en el sector suroccidental de la Cuenca de Vera. Acta Geologica Hispanica, 21–22, 449–457.
    [Google Scholar]
  3. Bassetti, M. A., Miculan, P., & Sierro, F. S. (2006). Evolution of depositional environments after the end of Messinian salinity crisis in Nijar Basin (SE Betic Cordillera). Sedimentary Geology, 188–189, 279–295. https://doi.org/10.1016/j.sedgeo.2006.03.009
    [Google Scholar]
  4. Bourillot, R., Vennin, E., Rouchy, J. M., Durlet, C., Rommevaux, V., Kolodka, C., & Knap, F. (2010). Structure and evolution of a Messinian mixed carbonate‐siliciclastic platform: The role of evaporites (Sorbas Basin, South‐east Spain). Sedimentology, 57, 477–512. https://doi.org/10.1111/j.1365-3091.2009.01092.x
    [Google Scholar]
  5. Braga, J. C., Martín, J. M., Riding, R., Aguirre, J., Sanchez‐Almazo, I. M., & Dinares‐Turell, J. (2006). Testing models for the Messinian salinity crisis: The Messinian record in Almería, SE Spain. Sedimentary Geology, 188–189, 131–154. https://doi.org/10.1016/j.sedgeo.2006.03.002
    [Google Scholar]
  6. Braga, J. C., Martín, J. M., & Wood, J. L. (2001). Submarine lobes and feeder channels of redeposited, temperate carbonate and mixed sliciclastic‐carbonate platform deposits (Vera Basin, Almeria, southern Spain). Sedimentology, 48, 99–116.
    [Google Scholar]
  7. CIESM
    CIESM . (2008) The Messinian salinity crisis from mega‐deposits to microbiology. In: F.Briand (Ed.), A consensus report, in 33ème CIESM Workshop Monographs, 33 (pp. 1–168). Monaco: CIESM.
    [Google Scholar]
  8. Clauzon, G., Suc, J.‐P., Gautier, F., Berger, A., & Loutre, M.‐F. (1996). Alternate interpretation of the Messinian salinity crisis: Controversy resolved?Geology, 24, 363–366.
    [Google Scholar]
  9. Conesa, G., Martin, J. P. S., Cornée, J. J., & Muller, J. P. (1999). Nouvelles contraintes sur la crise de salinite messinienne par l’etude d’une plate‐forme carbonateée´e marginale (bassin de Sorbas, Espagne). Compte Rendu Academie Science Paris, 328, 81–87.
    [Google Scholar]
  10. Corbi, H., Soria, J. M., Lancis, C., Giannetti, A., Tent‐Manclus, J. E., & Dinares‐Turell, J. (2016). Sedimentological and paleoenvironmental scenario before, during, and after the Messinian Salinity Crisis: The San Miguel de Salinas composite section (western Mediterranean). Marine Geology, 379, 246–266. https://doi.org/10.1016/j.margeo.2016.05.017
    [Google Scholar]
  11. Cornée, J.‐J., Saint Martin, J.‐P., Conesa, G., Munch, P. H., André, J.‐P., Saint Martin, S., & Roger, S. (2004). Correlation and sequence stratigraphic model for Messinian carbonate platforms of the western and central Mediterranean. International Journal of Earth Sciences, 93, 621–633.
    [Google Scholar]
  12. Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., … Violanti, D. (2011). The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): The Alba section revisited. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 238–255. https://doi.org/10.1016/j.palaeo.2011.07.017
    [Google Scholar]
  13. Di Blasi, F. (2018). Morphology and morphogenesis of modern subaqueous drainage systems: implications for the origin of the Mediterranean Messinian canyons (PhD Thesis). University of Parma, 261 pp.
  14. Driussi, O., Maillard, A., Ochoa, D., Lofi, J., Chanier, F., Gaullier, V., … Garcia, M. (2015). Messinian salinity crisis deposits widespread over the Balearic Promontory: Insights from new high‐resolution seismic data. Marine Petroleum Geology, 66, 41–54. https://doi.org/10.1016/j.marpetgeo.2014.09.008
    [Google Scholar]
  15. Dronkert, H. (1976). Late Miocene evaporites in the Sorbas basin and adjoining areas. Memorie Della Società Geologica Italiana, 16, 203–243.
    [Google Scholar]
  16. Etheve, N., Frizon De Lamotte, D., Mohn, G., Martos, R., Roca, E., & Blanpied, C. (2016). Extensional vs contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back‐arc setting. Tectonophysics, 682, 35–55. https://doi.org/10.1016/j.tecto.2016.05.037
    [Google Scholar]
  17. Fagin, S. W. (1991) Seismic modeling of geologic structures: Applications to exploration problems. Society of Exploration Geophysicists, Tulsa, Oklahoma. Geophysical Development Series 2.
  18. Fortuin, A. R., Kelling, J. M. D., & Roep, T. B. (1995). The enigmatic Messinian‐Pliocene section of Cuevas del Almanzora (Vera basin, SE Spain) revisited—erosional feature and strontium isotope ages. Sedimentary Geology, 97, 177–201.
    [Google Scholar]
  19. Fortuin, A. R., & Krijgsman, W. (2003). The Messinian of the Nijar basin (SE Spain): Sedimentation, depositional environments and paleogeographic evolution. Sedimentary Geology, 160, 213–242. https://doi.org/10.1016/S0037-0738(02)00377-9
    [Google Scholar]
  20. Gennari, R., Iaccarino, S. M., Di Stefano, A., Sturiale, G., Cipollari, P., Manzi, V., … Cosentino, D. (2008). The Messinian‐Zanclean boundary in the Northern Apennine. Stratigraphy, 5, 307–322.
    [Google Scholar]
  21. Gennari, R., Lozar, F., Turco, E., Dela Pierre, F., Lugli, S., Manzi, V., … Taviani, M. (2018). Integrated stratigraphy and paleoceanographic evolution of the pre‐evaporitic phase of the Messinian salinity crisis in the Eastern Mediterranean as recorded in the Tokhni section (Cyprus Island). Newsletter on Stratigraphy, 51, 33–55. https://doi.org/10.1127/nos/2017/0350
    [Google Scholar]
  22. Gennari, R., Manzi, V., Angeletti, L., Bertini, A., Biffi, U., Ceregato, A., … Taviani, M. (2013). A shallow water record of the onset of the Messinian salinity crisis in the Adriatic foredeep (Legnagnone section, Northern Apennines). Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 145–164. https://doi.org/10.1016/j.palaeo.2013.05.015
    [Google Scholar]
  23. Gomez De La Peña, L., Gracia, E., Muñoz, A., Acosta, J., Gomez‐Ballesteros, M., Ranero, C. R., & Uchupi, E. (2016). Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean). Tectonophysics, 689, 25–39. https://doi.org/10.1016/j.tecto.2016.03.009
    [Google Scholar]
  24. Gvirtzman, Z., Manzi, V., Calvo, R., Gavrieli, I., Gennari, R., Lugli, S., … Roveri, M. (2017). Intra‐Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. Geology, 45, 915–918. https://doi.org/10.1130/G39113.1
    [Google Scholar]
  25. Hilgen, F. J., Kuiper, K. F., Krijgsman, W., Snel, E., & Van Der Laan, E. (2007). Astronomical tuning as the basis for high resolution chronostratigraphy: The intricate history of the Messinian Salinity Crisis. Stratigraphy, 4, 231–238.
    [Google Scholar]
  26. Hsü, K., Ryan, W. B. F., & Cita, M. B. (1973). Late Miocene desiccation of the Mediterranean. Nature, 242, 240. https://doi.org/10.1038/242240a0
    [Google Scholar]
  27. Kastens, K. A., Mascle, J., Auroux, C., et al. (1987). Proceedings ODP, Initial Reports, 107. College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  28. Krijgsman, W., Capella, W., Simon, D., Hilgen, F. J., Kouwenhoven, T. J., Mejier, P. T., … Flecker, R. (2018). The Gibraltar corridor: Watergate of the Messinian salinity crisis. Marine Geology, 400, 238–246. https://doi.org/10.1016/j.margeo.2018.06.008
    [Google Scholar]
  29. Krijgsman, W., Fortuin, A. R., Hilgen, F. J., & Sierro, F. J. (2001). Astrochronology for the Messinian Sorbas Basin (SE Spain) and orbital (precessional) forcing evaporite cyclicity. Sedimentary Geology, 140, 43–60.
    [Google Scholar]
  30. Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F., & Wilson, D. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  31. Lofi, J., Déverchére, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., … Thinon, I. (2011). Seismic atlas of the Messinian salinity crisis markers in the offshore mediterranean domain. Commission for the Geological Map of the World and Memoires De La Société Géologique De France, Nouvelle Série, 72.
    [Google Scholar]
  32. Lofi, J., Gorini, C., Berne, S., Clauzon, G., Dos Reis, A. T., Ryan, W. B. F., & Steckler, M. S. (2005). Erosional processes and paleo‐environmental changes in the western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Marine Geology, 217, 1–30. https://doi.org/10.1016/j.margeo.2005.02.014
    [Google Scholar]
  33. Lofi, J., Sage, F., Déverchère, J., Loncke, L., Maillard, A., Gaullier, V., … Gorini, C. (2011). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through through multi‐site seismic analysis. Bulletin Societé Géologique De France, 182, 163–180.
    [Google Scholar]
  34. Lugli, S., Gennari, R., Gvirtzman, Z., Manzi, V., Roveri, M., & Schreiber, B. C. (2013). Evidence of clastic evaporites in the canyons of the Levant Basin (Israel): Implications for the Messinian Salinity Crisis. Journal of Sedimentary Research, 83, 942–954. https://doi.org/10.2110/jsr.2013.72
    [Google Scholar]
  35. Lugli, S., Manzi, V., Roveri, M., & Schreiber, C. (2010). The Primary Lower Gypsum in the Mediterranean: A new facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 83–99. https://doi.org/10.1016/j.palaeo.2010.07.017
    [Google Scholar]
  36. Lugli, S., Manzi, V., Roveri, M., & Schreiber, C. (2015). The deep record of the Messinian salinity crisis: Evidence of a non‐desiccated Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 433, 201–218. https://doi.org/10.1016/j.palaeo.2015.05.017
    [Google Scholar]
  37. Maillard, A., Driussi, O., Lofi, J., Briais, A., Chanier, F., Hübscher, C., & Gaullier, V. (2014). Record of the Messinian Salinity Crisis in the SW Mallorca area (Balearic Promontory, Spain). Marine Geology, 357, 304–320. https://doi.org/10.1016/j.margeo.2014.10.001
    [Google Scholar]
  38. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., & Sierro, F. J.(2013). Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 315–322. https://doi.org/10.1111/ter.12038
    [Google Scholar]
  39. Manzi, V., Gennari, R., Lugli, S., Persico, D., Reghizzi, M., Roveri, M., … Gvirtzman, Z. (2018). The onset of the Messinian salinity crisis in the deep Eastern Mediterranean Basin. Terra Nova, 30, 189–198. https://doi.org/10.1111/ter.1232530, 189-198
    [Google Scholar]
  40. Manzi, V., Lugli, S., Ricci Lucchi, F., & Roveri, M. (2005). Deep‐water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): Did theMediterranean ever dry out?Sedimentology, 52, 875–902.
    [Google Scholar]
  41. Manzi, V., Lugli, S., Roveri, M., Dela, P. F., Gennari, R., Lozar, F., … Turco, E. (2016). The Messinian salinity crisis in Cyprus: A further step towards a new stratigraphic framework for Eastern Mediterranean. Basin Research, 28, 207–236.
    [Google Scholar]
  42. Manzi, V., Lugli, S., Roveri, M., & Schreiber, B. C. (2009). A new facies model for the Upper Gypsum of Sicily (Italy): Chronological and palaeoenvironmental constraints for the Messinian salinity crisis in the Mediterranean. Sedimentology, 56, 1937–1960. https://doi.org/10.1111/j.1365-3091.2009.01063.x
    [Google Scholar]
  43. Manzi, V., Lugli, S., Roveri, M., Schreiber, B. C., & Gennari, R. (2011). The Messinian “Calcare di Base” (Sicily, Italy) revisited. Geological Society of America Bulletin, 123, 347–370. https://doi.org/10.1130/B30262.1
    [Google Scholar]
  44. Manzi, V., Roveri, M., Gennari, R., Bertini, A., Biffi, U., Giunta, S., … Taviani, M. (2007). The deep‐water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: The Fanantello section (Northern Apennines, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 470–499. https://doi.org/10.1016/j.palaeo.2007.04.012
    [Google Scholar]
  45. Martín, J. M., & Braga, J. C. (1994). Messinian events in the Sorbas basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sedimentary Geology, 90, 257–268. https://doi.org/10.1016/0037-0738(94)90042-6
    [Google Scholar]
  46. Martínez Del Olmo, W. (2011a). El arrecife Messiniense del sondeo Torrevieja Marino C.1 desde las linea sismicas (SE de Espana). Revista Sociedad Geologica De Espana, 24, 173–185.
    [Google Scholar]
  47. Martínez Del Olmo, W. (2011b). El Messiniense en el Golfo de Valencia y el Mar de Alborán: Implicaciones paleogeográficas y paleoceanográficas. Revista Sociedad Geologica De Espana, 24, 237–257.
    [Google Scholar]
  48. Mas, G. (2015). El registre estratigrafic del Messinià terminal i del Pliocè a l’illa de Mallorca.Relacions amb la crisi de salinitat de la Mediterrània. Tesi Doctoral, Universitat de les Illes Balears, 1–534.
  49. Mas, G. Y., & Fornós, J. J. (2012). La Crisis de Salinidad del Messiniense en la cuenca sedimentaria de Palma (Mallorca, Islas Baleares); The Messinian Salinity Crisis Record in the Palma basin (Mallorca, Balearic Islands). Geogaceta, 52, 57–60.
    [Google Scholar]
  50. Meilijson, A., Steinberg, J., Hilgen, F., Bialik, O. M., Waldmann, N. D., & Makovsky, Y. (2018). Deep‐basin evidence resolves a 50‐year‐old debate and demonstrates synchronous onset of Messinian evaporites in a non‐desiccated Mediterranean. Geology, 46, 243–246.
    [Google Scholar]
  51. Montenat, C. (1990) Les Bassins Neogenes du domain Betique oriental (Espagne). Tectonique et sedimentation dans un couloir de decrochement. Premier partie: etude regionale. Doc. et Trav. IGAL, 12‐13. IGAL, Paris, 391 pp. + 3 maps.
  52. Ochoa, D., Sierro, F. J., Lofi, J., Maillard, A., Flores, J.‐A., & Suarez, M. (2015). Synchronous onset of the Messinian evaporite precipitation: First Mediterranean offshore evidence. Earth and Planetary Science Letters, 427, 112–124. https://doi.org/10.1016/j.epsl.2015.06.059
    [Google Scholar]
  53. Omodeo‐Salé, S., Gennari, R., Lugli, S., Manzi, V., & Roveri, M. (2012). Tectonic and climatic control on the Late Messinian sedimentary evolution of the Nijar Basin (Betic Cordillera, Southern Spain). Basin Research, 24, 314–337. https://doi.org/10.1111/j.1365-2117.2011.00527.x
    [Google Scholar]
  54. Orszag‐Sperber, F. (2006). Changing perspectives in the concept of “Lago‐Mare” in Mediterranean Late Miocene evolution. Sedimentary Geology, 188–189, 259–277. https://doi.org/10.1016/j.sedgeo.2006.03.008
    [Google Scholar]
  55. Reghizzi, M., Gennari, R., Douville, E., Lugli, S., Manzi, V., Montagna, P., … Taviani, M. (2017). Isotope stratigraphy (87Sr/86Sr, δ18O, δ13C) of the Sorbas basin (Betic Cordillera, Spain): Paleoceanographic evolution across the onset of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 469, 60–73. https://doi.org/10.1016/j.palaeo.2016.12.039
    [Google Scholar]
  56. Riding, R., Braga, J. C., Martin, J. M., & Sanchez‐Almazo, I. M. (1998). The Mediterranean Messinian Salinity Crisis: Constraints from a coeval marginal basin, Sorbas, southeastern Spain. Marine Geology, 146, 1–20. https://doi.org/10.1016/S0025-3227(97)00136-9
    [Google Scholar]
  57. Roep, T. B., Dabrio, C. J., Fortuin, A. R., & Polo, M. D. (1998). Late highstand patterns of shifting and stepping coastal barriers and washover fans (late Messinian, Sorbas Basin, SE Spain). Sedimentary Geology, 116, 27–56. https://doi.org/10.1016/S0037-0738(97)00111-5
    [Google Scholar]
  58. Rosell, L., Ortì, F., Kasprzyk, A., Playa, E., & Peryt, T. M. (1998). Strontium geochemistry of Miocene primary gypsum: Messinian of Southeastern Spain and Sicily and Badenian of Poland. Journal of Sedimentary Research, 68, 63–79. https://doi.org/10.2110/jsr.68.63
    [Google Scholar]
  59. Rouchy, J. M., & Caruso, A. (2006). The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sedimentary Geology, 188–189, 33–67. https://doi.org/10.1016/j.sedgeo.2006.02.005
    [Google Scholar]
  60. Roveri, M., Bassetti, M. A., & Ricci Lucchi, F. (2001). The Mediterranean messinian salinity crisis: An Apennine foredeep perspective. Sedimentary Geology, 140, 201–214. https://doi.org/10.1016/S0037-0738(00)00183-4
    [Google Scholar]
  61. Roveri, M., Bertini, A., Cosentino, D., Di Stefano, A., Gennari, R., Gliozzi, E., … Taviani, M. (2008). A high‐resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy, 5, 323–342.
    [Google Scholar]
  62. Roveri, M., Boscolo Gallo, A., Rossi, M., Gennari, R., Iaccarino, S. M., Lugli, S., … Taviani, M. (2005). The Adriatic foreland record of Messinian events (Central Adriatic Sea, Italy). GeoActa, 4, 139–158.
    [Google Scholar]
  63. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … De Lange, G. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58.
    [Google Scholar]
  64. Roveri, M., Gennari, R., Lugli, S., & Manzi, V. (2009). The Terminal Carbonate Complex: The record of sea‐level changes during the Messinian salinity crisis. GeoActa, 8, 57–71.
    [Google Scholar]
  65. Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M., … Schreiber, B. C. (2016). The Messinian salinity crisis: Open problems and possible implications for Mediterranean petroleum systems. Petroleum Geoscience, 22, 283–290. https://doi.org/10.1144/petgeo2015-089
    [Google Scholar]
  66. Roveri, M., Gennari, R., Persico, D., Rossi, F. P., Lugli, S., Manzi, V., … Taviani, M. (2018). A new chronostratigraphic and palaeoenvironmental framework for the end of the Messinian salinity crisis in the Sorbas Basin (Betic Cordillera, southern Spain). Geological Journal. https://doi.org/10.1002/gj.3256
    [Google Scholar]
  67. Roveri, M., Lugli, S., Manzi, V., Gennari, R., Iaccarino, S. M., Grossi, F., & Taviani, M. (2006). The record of Messinian events in the Northern Apennines foredeep basins. Acta Naturalia De L'ateneo Parmense, 42, 47–123.
    [Google Scholar]
  68. Roveri, M., Lugli, S., Manzi, V., Gennari, R., & Schreiber, B. C. (2014). High‐resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: Implications for marginal to central basins correlation. Marine Geology, 349, 113–125.
    [Google Scholar]
  69. Roveri, M., Lugli, S., Manzi, V., & Schreiber, B. C. (2008a). The Messinian Sicilian stratigraphy revisited: Toward a new scenario for the Messinian salinity crisis. Terra Nova, 20, 483–488.
    [Google Scholar]
  70. Roveri, M., Lugli, S., Manzi, V., & Schreiber, B. C. (2008b) The shallow‐ to deep‐water record of the Messinian salinity crisis: new insights from Sicily, Calabria and Apennine basins. In F.Briand (Ed.) CIESM 2008. The Messinian Salinity Crisis from mega‐deposits to microbiology – A consensus report (Vol. 33, pp. 72–82). Monaco: CIESM Workshop Monographs.
    [Google Scholar]
  71. Roveri, M., Manzi, V., Bergamasco, A., Falcieri, F., Gennari, R., & Lugli, S. (2014). Dense shelf water cascading and Messinian canyons: A new scenario for the Mediterranean salinity crisis. American Journal of Science, 314, 751–784.
    [Google Scholar]
  72. Roveri, M., Manzi, V., Lugli, S., Schreiber, B. C., Caruso, A., Rouchy, J. M., … Ricci, L. F. (2006). Clastic vs. primary precipitated evaporites in the Messinian Sicilian basins. Acta Naturalia De L'ateneo Parmense, 42, 125–199.
    [Google Scholar]
  73. Roveri, M., Manzi, V., Ricci Lucchi, F., & Rogledi, S. (2003). Sedimentary and tectonic evolution of the Vena del Gesso Basin (Northern Apennines, Italy): Implications for the onset of the Messinian salinity crisis. Geological Society of America Bulletin, 115, 387–405. https://doi.org/10.1130/0016-7606(2003)115<0387:SATEOT>2.0.CO;2
    [Google Scholar]
  74. Ryan, W. B. F., & Cita, M. B. (1978). The nature and distribution of Messinian erosion surfaces, indicators of a several‐kilometer‐deep Mediterranean in the Miocene. Marine Geology, 27, 193–230.
    [Google Scholar]
  75. Sanz De Galdeano, C. (1990). Geologic evolution of the Betic Cordilleras in the Western Mediterranean, Miocene to the present. Tectonophysics, 172, 107–119. https://doi.org/10.1016/0040-1951(90)90062-D
    [Google Scholar]
  76. Sierro, F., Hilgen, F., Krijgsman, W., & Flores, J. (2001). The Abad composite (SE Spain): A Messinian reference section for the Mediterranean and the APTS. Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 141–169. https://doi.org/10.1016/S0031-0182(00)00253-4
    [Google Scholar]
  77. Soria, J. M., Caracuel, J. E., Corbì, H., Dinarès‐Turell, J., Lancis, C., Tent‐Manclùs, J., & Yébenes, A. (2008). The Bajo Segura Basin (SE Spain): Implications for the Messinian Salinity Crisis in the Mediterranean margins. Stratigraphy, 5, 259–265.
    [Google Scholar]
  78. Stoica, M., Krijgsman, W., Fortuin, A., & Gliozzi, E. (2016). Paratethyan ostracods in the Spanish Lago‐Mare: More evidence for interbasinal exchange at high Mediterranean sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 854–870. https://doi.org/10.1016/j.palaeo.2015.10.034
    [Google Scholar]
  79. Vai, G. B. (1997). Cyclostratigraphic estimate of the Messinian Stage duration. In: A.Montanari, G. S.Odin, & R.Coccioni (Eds.), Miocene Stratigraphy: An Integrated Approach. Developments in Paleontology and Stratigraphy (Vol. 15, pp. 463–476). Amsterdam: Elsevier.
    [Google Scholar]
  80. Vai, G. B., Ricci Lucchi, F. (1977). Algal crusts, autochtonous and clastic gypsum in a cannibalistic evaporite basin; a case history from the Messinian of Northern Apennine. Sedimentology, 24, 211–244.
    [Google Scholar]
  81. Volk, H. R. (1967). Zur Geologie und Stratigraphy des Neogenbekkens von Vera, Südost Spanien (Doctor’s Thesis). University of Amsterdam, 1–164.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12361
Loading
/content/journals/10.1111/bre.12361
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error