1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Deformation, isostasy and erosion for one 8 km increment of thrust motion (479 km total). Top panel, fault displacement and isostatic loading following 8 km of displacement. Middle panel, new estimated topography and erosion. Bottom panel, estimated cross section geometry and topography following erosion and deposition.

, Abstract

Forward modeled, balanced cross sections that account for the flexural response to thrust loading and erosional unloading can verify and refine the kinematic sequence of deformation in fold‐thrust belts as well as help assess the validity of a balanced cross section. Results from flexural‐kinematic reconstructions that indicate either the cross section, the kinematic order or both are invalid include: (a) a predicted final topography that is dramatically different from the actual topography; (b) large normal fault or thrust fault bounded synorogenic basins that are not present in the mapped geology; and/or (c) an exhumation history that is not consistent with provenance records in the basin or measured thermochronometers. Where detailed measured foreland basin sections exist, flexural‐kinematic modeling of fold‐thrust belt deformation, including out‐of‐sequence (OOS) faults can predict a foreland basin evolution that can be compared to measured data. The modeling process creates a “pseudostratigraphy” in the modeled foreland. The pseudostratigraphy and predicted provenance of each modeled stratigraphic increment can be directly compared to measured stratigraphic sections. We present a case study using two cross sections through the Himalaya of far western Nepal (Api and Simikot) to assess the validity of the section geometries and the resulting kinematic histories, displacement rates, flexural wave response and predicted provenance for both sections. Insights from combining the flexural‐kinematic models with existing stratigraphic data include: (a) Changing the order of proposed OOS and normal faults to earlier in the evolution of the fold‐thrust belt was necessary to reproduce the foreland provenance data. We argue that OOS thrust and normal faults in the Api section occurred between 11 and 4 Ma. (b) Published shortening estimates for the Simikot cross section are too high (>50 km), resulting in unrealistic shortening rates up to 80 mm/yr between 25 and 20 Ma. (c) Flexural forward models with and without an additional sediment loading modeling step indicate that while sediment loading does not have a measurable effect on the magnitude and location of erosion within the fold‐thrust belt, it does have a small effect on accumulation rates and thus the predicted age of stratigraphic boundaries when compared to measured stratigraphic thicknesses and age. Thickness difference range from 0.2 to 0.5 km and can result in predicted age differences of ca. 1 Ma. Accounting for both flexural isostacy and erosion can eliminate unviable kinematic sequences and when combined with provenance data from measured stratigraphic sections, can provide insight into the order, age and rate of deformation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12362
2019-06-10
2024-04-19
Loading full text...

Full text loading...

References

  1. Antolín, B., Godin, L., Wemmer, K., & Nagy, C. (2013). Kinematics of the Dadeldhura klippe shear zones (W Nepal): Implications for the foreland evolution of the himalayan metamorphic core. Terra Nova, 25(4), 282–291. https://doi.org/10.1111/ter.12034
    [Google Scholar]
  2. Armstrong, F. C., & Oriel, S. S. (1965). Tectonic development of Idaho‐Wyoming thrust belt. AAPG Bulletin, 49(11), 1847–1861.
    [Google Scholar]
  3. Bally, A. W., Gordy, P. L., & Stewart, G. A. (1966). Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 14(3), 337–381.
    [Google Scholar]
  4. Berger, A., Jouanne, F., Hassani, R., & Mugnier, J. L. (2004). Modelling the spatial distribution of present‐day deformation in Nepal: How cylindrical is the Main Himalayan Thrust in Nepal?Geophysical Journal International, 156(1), 94–114. https://doi.org/10.1111/j.1365-246X.2004.02038.x
    [Google Scholar]
  5. Bettinelli, P., Avouac, J. P., Flouzat, M., Jouanne, F., Bollinger, L., Willis, P., & Chitrakar, G. R. (2006). Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy, 80(8–11), 567–589. https://doi.org/10.1007/s00190-006-0030-3
    [Google Scholar]
  6. Boyer, S. E., & Elliott, D. (1982). Thrust systems. AAPG Bulletin, 66(9), 1196–1230. https://doi.org/10.1306/03B5A77D-16D1-11D7-8645000102C1865D
    [Google Scholar]
  7. Bullen, M. E., Burbank, D. W., Garver, J. I., & Abdrakhmatov, K. Y. (2001). Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building. Bulletin of the Geological Society of America, 113(12), 1544–1559. https://doi.org/10.1130/0016-7606(2001)113<1544
    [Google Scholar]
  8. Burchfiel, B. C., Zhiliang, C., Hodges, K. V., Yuping, L., Royden, L. H., Changrong, D., & Jiene, X. (1992). The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Papers, 269, 1–41.
    [Google Scholar]
  9. Butler, R. W. H. (1987). Thrust sequences. Journal of the Geological Society, 144, 619–634. https://doi.org/10.1144/gsjgs.144.4.0619
    [Google Scholar]
  10. Cande, S. C., & Kent, D. V. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100(B4), 6093–6095. https://doi.org/10.1029/94JB03098
    [Google Scholar]
  11. Castellarin, A., & Cantelli, L. (2000). Neo‐Alpine evolution of the Southern Eastern Alps. Journal of Geodynamics, 30(1–2), 251–274. https://doi.org/10.1016/S0264-3707(99)00036-8
    [Google Scholar]
  12. Coleman, M. E. (1996). Orogen‐parallel and orogen‐perpendicular extension in the central Nepalese Himalayas. Bulletin of the Geological Society of America, 108(12), 1594–1607. https://doi.org/10.1130/0016-7606(1996)108<1594:OPAOPE>2.3.CO;2
    [Google Scholar]
  13. Copley, A., Avouac, J. P., & Royer, J. Y. (2010). India‐Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. Journal of Geophysical Research: Solid Earth, 115(3), 1–14. https://doi.org/10.1029/2009JB006634
    [Google Scholar]
  14. Cruz, L., Malinski, J., Wilson, A., Take, W. A., & Hilley, G. (2010). Erosional control of the kinematics and geometry of fold‐and‐thrust belts imaged in a physical and numerical sandbox. Journal of Geophysical Research: Solid Earth, 115(9), 1–15. https://doi.org/10.1029/2010JB007472
    [Google Scholar]
  15. Currie, B. S., Rowley, D. B., & Tabor, N. J. (2005). Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33, 181. https://doi.org/10.1130/G21170.1
    [Google Scholar]
  16. Dahlen, F. A., Suppe, J., & Davis, D. (1983). Mechanics of fold‐and‐thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B2), 1153–1172. https://doi.org/10.1029/JB089iB12p10087
    [Google Scholar]
  17. Dahlen, F. A., Suppe, J., & Davis, D. (1984). Mechanics of fold‐and‐thrust belts and accretionary wedges: Cohesive Coulomb theory. Journal of Geophysical Research, 89(B12), 10087–10101. https://doi.org/10.1029/JB089iB12p10087
    [Google Scholar]
  18. Dahlstrom, C. D. A. (1969). Balanced cross sections. Canadian Journal of Earth Sciences, 6(4), 743–757. https://doi.org/10.1139/e69-069
    [Google Scholar]
  19. Decelles, P. G. (2012). Foreland basin systems revisited: Variations in response to tectonic settings. Tectonics of Sedimentary Basins: Recent Advances. 405–426. https://doi.org/10.1002/9781444347166.ch20
    [Google Scholar]
  20. DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., & Garzanti, E. (2004). Detrital geochronology and geochemistry of Cretaceous‐Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227(3–4), 313–330. https://doi.org/10.1016/j.epsl.2004.08.019
    [Google Scholar]
  21. DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B., & Spurlin, M. (2000). Tectonic implications of U‐Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 288, 497–499. https://doi.org/10.1126/science.288.5465.497
    [Google Scholar]
  22. DeCelles, P. G., Gehrels, G. E., Quade, J., & Ojha, T. P. (1998). Eocene‐early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics, 17(5), 741–765. https://doi.org/10.1029/98TC02598
    [Google Scholar]
  23. DeCelles, P. G., Gehrels, G. E., Quade, J., Ojha, T. P., Kapp, P. A., & Upreti, B. N. (1998). Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. GSA Bulletin, 110(1), 2–21. https://doi.org/10.1130/0016-7606(1998)110<0002:NFBDEU>2.3.CO;2
    [Google Scholar]
  24. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  25. Decelles, P. G., & Mitra, G. (1995). History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. Geological Society of America Bulletin, 107, 454–462. https://doi.org/10.1130/0016-7606(1995)107<0454:HOTSOW>2.3.CO;2
    [Google Scholar]
  26. DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P., & Upreti, B. N. (2001). Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics, 20(4), 487–509. https://doi.org/10.1029/2000TC001226
    [Google Scholar]
  27. Duncan, C., Masket, J., & Fielding, E. (2003). How steep are the Himalaya? Characteristics and implications of along-strike topographic variations, Geology, 31, 75–78. https://doi.org/10.1130/0091-7613(2003)031<0075:HSATHC>2.0.CO;2
    [Google Scholar]
  28. Duvall, A. R., Clark, M. K., van der Pluijm, B. A., & Li, C. (2011). Direct dating of Eocene reverse faulting in northeastern Tibet using Ar‐dating of fault clays and low‐temperature thermochronometry. Earth and Planetary Science Letters, 304(3–4), 520–526. https://doi.org/10.1016/j.epsl.2011.02.028
    [Google Scholar]
  29. Echavarria, L., Hernández, R., Allmendinger, R., & Reynolds, J. (2003). Subandean thrust and fold belt of northwestern Argentina: Geometry and timing of the Andean evolution. AAPG Bulletin, 87(6), 965–985. https://doi.org/10.1306/01200300196
    [Google Scholar]
  30. Gansser, A. (1964). Geology of the Himalayas (pp. 1–308) (L. U. DeSitter, Ed.). New York, NY: John Wiley & Sons Ltd.
    [Google Scholar]
  31. Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., … Yin, A. (2011). Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics. 30, TC5016. https://doi.org/10.1029/2011TC002868
    [Google Scholar]
  32. Gilmore, M. E., Mcquarrie, N., Eizenhöfer, P. R., & Ehlers, T. A. (2018). Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya. Solid Earth, 9, 599–627.
    [Google Scholar]
  33. Godin, L. (2003). Structural evolution of the Tethyan sedimentary sequence in the Annapurna area, central Nepal Himalaya. Journal of Asian Earth Sciences, 22, 307–328. 20(5), 729–747. https://doi.org/10.1016/S1367-9120(03)00066-X
    [Google Scholar]
  34. Godin, L., Parrish, R. R., Brown, R. L., & Hodges, K. V. (2001). Crustal thickening leading to exhumation of the Himalayan metamorphic core of Central Nepal: Insight from U‐Pb geochronology and 40Ar/39Ar thermochronology. Tectonics, 20(5), 729–747. https://doi.org/10.1029/2000TC001204
    [Google Scholar]
  35. Graveleau, F., Malavieille, J., & Dominguez, S. (2012). Experimental modelling of orogenic wedges: A review. Tectonophysics, 538–540, 1–66. https://doi.org/10.1016/j.tecto.2012.01.027
    [Google Scholar]
  36. Guatam, P., & Fujiwara, Y. (2000). Magnetic polarity stratigraphy of Siwalik Groupd seds of Karnali River section in western Nepal. Geophysical Journal International, 142, 812–824.
    [Google Scholar]
  37. Harvey, J. E., Burbank, D. W., & Bookhagen, B. (2015). Along‐strike changes in Himalayan thrust geometry: Topographic and tectonic discontinuities in western Nepal. Lithosphere, 7(5), 511–518. https://doi.org/10.1130/L444.1
    [Google Scholar]
  38. Hetzel, R., Dunkl, I., Haider, V., Strobl, M., von Eynatten, H., Ding, L., & Frei, D. (2011). Peneplain formation in southern Tibet predates the India‐Asia collision and plateau uplift. Geology, 39(10), 983–986. https://doi.org/10.1130/G32069.1
    [Google Scholar]
  39. Hodges, K. V., Hurtado, J. M., & Whipple, K. X. (2001). Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 20(6), 799–809. https://doi.org/10.1029/2001TC001281
    [Google Scholar]
  40. Jordan, T. E. (1981). Thrust loads and foreland basin evolution, cretaceous, Western United States. AAPG Bulletin, 65, 2506–2520.
    [Google Scholar]
  41. Jordan, T. E., Flemings, P. B., & Beer, J. A. (1988). Dating thrust‐fault activity by use of foreland‐basin strata. In K. L.Kleinspehn & C.Paola (Eds.), New perspectives in basin analysis (pp. 307–330). New York, NY: Springer.
    [Google Scholar]
  42. Jordan, T. A., & Watts, A. B. (2005). Gravity anomalies, flexure and the elastic thickness structure of the India‐Eurasia collisional system. Earth and Planetary Science Letters, 236, 732–750. https://doi.org/10.1016/j.epsl.2005.05.036
    [Google Scholar]
  43. Karner, G. D., & Watts, A. B. (1983). Gravity anomalies and flexure of the lithosphere at mountain ranges. Journal of Geophysical Research, 88, 10449–10477. https://doi.org/10.1029/JB088iB12p10449
    [Google Scholar]
  44. Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
    [Google Scholar]
  45. Kohn, M. J., Wieland, M. S., Parkinson, C. D., & Upreti, B. N. (2004). Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters, 228(3–4), 299–310. https://doi.org/10.1016/j.epsl.2004.10.007
    [Google Scholar]
  46. Lavé, J., & Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105(B3), 5735–5770. https://doi.org/10.1029/1999JB900292
    [Google Scholar]
  47. Lock, J., & Willett, S. (2008). Low‐temperature thermochronometric ages in fold‐and‐thrust belts. Tectonophysics, 456, 147–162. https://doi.org/10.1016/j.tecto.2008.03.007
    [Google Scholar]
  48. Long, S. P., McQuarrie, N., Tobgay, T., Coutand, I., Cooper, F. J., Reiners, P. W., & Hodges, K. V. (2012). Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: Insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics, 31(5), TC5004. https://doi.org/10.1029/2012TC003155
    [Google Scholar]
  49. Lyon‐Caen, H., & Molnar, P. (1983). Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. Journal of Geophysical Research, 88, 8171. https://doi.org/10.1029/JB088iB10p08171
    [Google Scholar]
  50. Malavieille, J. (2010). Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: Analog models and case studies. GSA Today, 20(1), 4–10. https://doi.org/10.1130/GSATG48A.1
    [Google Scholar]
  51. McConnell, R. K. (1968). Viscosity of the mantle from relaxation time spectra of isostatic adjustment. Journal of Geophysical research, 73, 7089.
    [Google Scholar]
  52. McQuarrie, N., & Ehlers, T. A. (2015). Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: Insights from thermokinematic and erosion modeling of the Bhutan Himalaya. Tectonics, 34(6), 1055–1079. https://doi.org/10.1002/2014TC003783
    [Google Scholar]
  53. McQuarrie, N., & Ehlers, T. A. (2017). Techniques for understanding fold‐thrust belt kinematics, and thermal evolution. In R. D.Law, J. R.Thigpen, A. J.Merschat & H. H.Stowell (Eds.), Linkages and feedbacks in orogenic systems: Geological society of America memoir 213 (Vol. 1213, pp. 25–54). https://doi.org/10.1130/2017.1213(02)
    [Google Scholar]
  54. McQuarrie, N., Tobgay, T., Long, S. P., Reiners, P. W., & Cosca, M. A. (2014). Variable exhumation rates and variable displacement rates: Documenting recent slowing of Himalayan shortening in western Bhutan. Earth and Planetary Science Letters, 386, 161–174. https://doi.org/10.1016/j.epsl.2013.10.045
    [Google Scholar]
  55. Molinaro, M., Leturmy, P., Guezou, J. C., Frizon de Lamotte, D., & Eshraghi, S. A. (2005). The structure and kinematics of the southeastern Zagros fold‐thrust belt, Iran: From thin‐skinned to thick‐skinned tectonics. Tectonics, 24(3), 1–19. https://doi.org/10.1029/2004TC001633
    [Google Scholar]
  56. Montomoli, C., Iaccarino, S., Carosi, R., Langone, A., & Visonà, D. (2013). Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the exhumation of crystalline rocks. Tectonophysics, 608, 1349–1370. https://doi.org/10.1016/j.tecto.2013.06.006
    [Google Scholar]
  57. Morley, C. K. (1988). Out of sequence thrusts. Tectonics, 7(3), 539–561. https://doi.org/10.1029/TC007i003p00539
    [Google Scholar]
  58. Mugnier, J.‐L., Delcaillau, B., Huyghe, P., & Leturmy, P. (1998). The break‐back thrust splay of the Main Dun Thrust (Himalayas of western Nepal): Evidence of an intermediate displacement scale between earthquake slip and finite geometry of thrust systems. Journal of Structural Geology, 20(7), 857–864. https://doi.org/10.1016/S0191-8141(98)00024-8
    [Google Scholar]
  59. Mugnier, J. L., Leturmy, P., Mascle, G., Huyghe, P., Chalaron, E., Vidal, G., … Delcaillau, B. (1999). The Siwaliks of western Nepal I. Geometry and kinematics. Journal of Asian Earth Sciences, 17(5–6), 629–642. https://doi.org/10.1016/S1367-9120(99)00038-3
    [Google Scholar]
  60. Mukherjee, S. (2015). A review on out‐of‐sequence deformation in the Himalaya. Tectonics of the Himalaya, 412, SP412–SP413. https://doi.org/10.1144/SP412.13
    [Google Scholar]
  61. Murphy, M. A., & Yin, A. (2003). Structural evolution and sequence of thrusting in the Tethyan fold‐thrust belt and Indus‐Yalu suture zone, southwest Tibet. GSA Bulletin, 115(1), 21–34. https://doi.org/10.1130/0016-7606(2003)115<0021:SEASOT>2.0.CO;2
    [Google Scholar]
  62. Najman, Y. (2006). The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth‐Science Reviews, 74, 1–72. https://doi.org/10.1016/j.earscirev.2005.04.004
    [Google Scholar]
  63. Najman, Y., Carter, A., Oliver, G., & Garzanti, E. (2005). Provenance of Eocene foreland basin sediments, Nepal: Constraints to the timing and diachroneity of early Himalayan orogenesis. Geology, 33(4), 309–312. https://doi.org/10.1130/G21161.1
    [Google Scholar]
  64. Najman, Y., Johnson, C., White, N. M., & Oliver, G. (2004). Constraints on foreland basin and orogenic evolution from detrital mineral fission track analyses and sediment facies of the Himalayan foreland basin, NW India. Basin Research, 16, 1–24. https://doi.org/10.1111/j.1365-2117.2004.00223.x
    [Google Scholar]
  65. Naylor, M., & Sinclair, H. D. (2007). Punctuated thrust deformation in the context of doubly vergent thrust wedges: Implications for the localization of uplift and exhumation. Geology, 35(6), 559–562.
    [Google Scholar]
  66. Ojha, T. P., Butler, R. F., Decelles, P. G., & Quade, J. (2009). Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Research, 21(1), 61–90. https://doi.org/10.1111/j.1365-2117.2008.00374.x
    [Google Scholar]
  67. Ojha, T. P., Butler, R. F., Quade, J., DeCelles, P. G., Richards, D., & Upreti, B. N. (2000). Magnetic polarity stratigraphy of the Neogene Siwalik Group at Khutia Khola, far western Nepal. GSA Bulletin, 112(3), 424–434. https://doi.org/10.1130/0016-7606(2000)112<424:MPSOTN>2.0.CO;2
    [Google Scholar]
  68. Rahl, J. M., Haines, S. H., & van der Pluijm, B. A. (2011). Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn‐tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, 307(1–2), 180–190. https://doi.org/10.1016/j.epsl.2011.04.036
    [Google Scholar]
  69. Rak, A. J., McQuarrie, N., & Ehlers, T. A. (2017). Kinematics, exhumation, and sedimentation of the North Central Andes (Bolivia): An integrated thermochronometer and thermokinematic modeling approach. Tectonics, 36(11), 2524–2554. https://doi.org/10.1002/2016TC004440
    [Google Scholar]
  70. Ratschbacher, L., Frisch, W., Liu, G., & Chen, C. (1994). Distributed deformation in southern and western Tibet during and after the India‐Asia collision. Journal of Geophysical Research, 99(B10), 19917–19945. https://doi.org/10.1029/94JB00932
    [Google Scholar]
  71. Robinson, D. M. (2008). Forward modeling the kinematic sequence of the central Himalayan thrust belt, western Nepal. Geosphere, 4(5), 785. https://doi.org/10.1130/GES00163.1
    [Google Scholar]
  72. Robinson, D. M., DeCelles, P. G., & Copeland, P. (2006). Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models. GSA Bulletin, 118(7–8), 865–885. https://doi.org/10.1130/B25911.1
    [Google Scholar]
  73. Robinson, D. M., DeCelles, P. G., Patchett, P. J., & Garzione, C. N. (2001). The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth and Planetary Science Letters, 192(4), 507–521. https://doi.org/10.1016/S0012-821X(01)00451-4
    [Google Scholar]
  74. Robinson, D. M., & McQuarrie, N. (2012). Pulsed deformation and variable slip rates within the central Himalayan thrust belt. Lithosphere, 4(5), 449–464. https://doi.org/10.1130/L204.1
    [Google Scholar]
  75. Robinson, D. M., & Pearson, O. N. (2013). Was Himalayan normal faulting triggered by initiation of the Ramgarh‐Munsiari thrust and development of the Lesser Himalayan duplex?International Journal of Earth Sciences, 102(7), 1773–1790. https://doi.org/10.1007/s00531-013-0895-3
    [Google Scholar]
  76. Sakai, H. (1983). Geology of the Tansen group of the Lesser Himalaya in Nepal. Memoirs of the Faculty of Science, Kyushu University. Series D, Geology, 25, 27–74.
    [Google Scholar]
  77. Schelling, D. (1992). The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics, 11(5), 925–943. https://doi.org/10.1029/92TC00213
    [Google Scholar]
  78. Sinha, R., & Friend, P. F. (1994). River systems and their sediment flux, Indo‐Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825–845. https://doi.org/10.1111/j.1365-3091.1994.tb01426.x
    [Google Scholar]
  79. Srivastava, P., & Mitra, G. (1994). Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold and thrust belt. Tectonics, 13(1), 89–109. https://doi.org/10.1029/93TC01130
    [Google Scholar]
  80. Stewart, J., & Watts, A. B. (1997). Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. Journal of Geophysical Research: Solid Earth, 102, 5327–5352. https://doi.org/10.1029/96JB03664
    [Google Scholar]
  81. Szulc, A. G., Najman, Y., Sinclair, H. D., Pringle, M., Bickle, M., Chapman, H., … DeCelles, P. (2006). Tectonic evolution of the Himalaya constrained by detrital 40Ar‐39Ar, Sm‐Nd and petrographic data from the Siwalik foreland basin succession. SW Nepal. Basin Research, 18(4), 375–391. https://doi.org/10.1111/j.1365-2117.2006.00307.x
    [Google Scholar]
  82. Soucy La Roche, R., Godin, L., Kellett, J. M. C., & Kellett, A. D. (2018). Tectonometamorphic evolution of the tip of the Himalayan metamorphic core in the Jajarkot klippe, west Nepal. Journal of Metamorphic Geology, 37, 239–269. https://doi.org/10.1111/jmg.12459
    [Google Scholar]
  83. Thiede, R., Robert, X., Stübner, K., Dey, S., & Faruhn, J. (2017). Sustained out‐of‐sequence shortening along a tectonically active segment of the Main Boundary thrust: The Dhauladhar Range in the northwestern Himalaya. Lithosphere, 9, 715–725. https://doi.org/10.1130/L630.1
    [Google Scholar]
  84. Tobgay, T., McQuarrie, N., Long, S., Kohn, M. J., & Corrie, S. L. (2012). The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya. Earth and Planetary Science Letters, 319–320, 146–158. https://doi.org/10.1016/j.epsl.2011.12.005
    [Google Scholar]
  85. Turcotte, D. L., & Schubert, G. (1982). Geodynamics (450 p.). New York, NY: John Wiley.
    [Google Scholar]
  86. van der Beek, P., Robert, X., Mugnier, J. L., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late Miocene—Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Research, 18, 413–434. https://doi.org/10.1111/j.1365-2117.2006.00305.x
    [Google Scholar]
  87. van der Pluijm, B. A., Hall, C. M., Vrolijk, P. J., Pevear, D. R., & Covey, M. C. (2001). The dating of shallow faults in the Earth’s crust. Nature, 412(6843), 172–175. https://doi.org/10.1038/35084053
    [Google Scholar]
  88. van der Pluijm, B. A., Vrolijk, P., & Hall, C. M. (2006, October). Fault dating in the Canadian Rocky Mountains: Evidence for late cretaceous and early Eocene orogenic pulses. Geology, 34, 837. https://doi.org/10.1130/G22610.1
    [Google Scholar]
  89. Vrolijk, P., & Van Der Pluijm, B. A. (1999). Clay gouge. Journal of Structural Geology, 21(8–9), 1039–1048. https://doi.org/10.1016/S0191-8141(99)00103-0
    [Google Scholar]
  90. Webb, A. A. G., Yin, A., Harrison, T. M., Célérier, J., Gehrels, G. E., Manning, C. E., … Grove, M. (2011). Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere, 7, 1013–1061. https://doi.org/10.1130/GES00627.1
    [Google Scholar]
  91. Wobus, C. W., Hodges, K. V., & Whipple, K. X. (2003). Has focused denudation sustained active thrusting at the Himalayan topographic front?Geology, 31(10), 861–864. https://doi.org/10.1130/G19730.1
    [Google Scholar]
  92. Yakymchuk, C., & Godin, L. (2012). Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences: An example from far‐northwest Nepal. Journal of Metamorphic Geology, 30, 513–535. https://doi.org/10.1111/j.1525-1314.2012.00979.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12362
Loading
/content/journals/10.1111/bre.12362
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error