1887
Volume 32, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Igneous sills and laccoliths emplaced in sedimentary basins may significantly impact petroleum systems, both positively and negatively. Igneous intrusions provide heat to maturate regionally immature organic‐rich host rocks, act as fractured reservoirs hosting commercial accumulations of hydrocarbons, and form structures affecting fluid flow and trapping at different scales. Nevertheless, the petrophysical implications of igneous intrusions on their host rock are poorly known. In this study, we analyse 200 wells in the Río Grande Valley oil field, Neuquén basin, Argentina, where the main reservoirs are in fractured igneous sills. This dataset represents a globally unique possibility to characterize the igneous–host rock interaction using both wireline logs and core material. We identify a systematic Contact Low Resistivity Zone (CLRsZ) at both the upper and lower contacts of the sills emplaced in the organic‐rich Vaca Muerta and Agrio Formations. We characterize the nature of these CLRsZ and their petrophysical properties by integrating resistivity and gamma ray well logs, petrographic analyses, petrophysical tests and geochemical analyses. The low resistivity signal of the CLRsZ is dominantly carried by massive‐sulphide deposits, mainly pyrite, observed both in the host rock and the chilled margin of the sills. Well log images and porosity‐permeability analysis on core plugs show that both the sills and their associated CLRsZ can act as carrier for fluid flow and reservoir for hydrocarbons storage. The thickness of the upper and lower CLRsZ correlates linearly with the thickness of the sill, and the volume of both the upper and lower CLRsZ represents ca. 40% with respect to the volume of their associated sill. The thickness of the CLRsZ represents ca. 13% of the thickness of contact aureole induced by the sills. In the CLRsZ, a great proportion of kerogen was transformed to hydrocarbon, so that CLRsZ were restricted to the innermost contact aureole of the sills. Our results show that the CLRsZ can have major implications on fluid flow and should be considered in reservoir models in volcanic basins hosting sills emplaced in organic‐rich formations.

,

Low resistivity zones identified at contacts of sill intrusions emplaced in organic‐rich shale formations have major implications in fluid flow and petroleum systems.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12363
2019-04-29
2024-04-25
Loading full text...

Full text loading...

References

  1. Aarnes, I., Planke, S., Trulsvik, M., & Svensen, H. (2015). Contact metamorphism and thermogenic gas generation in the vøring and møre basins, offshore Norway, during the Paleocene‐Eocene thermal maximum. Journal of the Geological Society, 172, 588–598. https://doi.org/10.1144/jgs2014-098
    [Google Scholar]
  2. Aarnes, I., Svensen, H., Connolly, J. A., & Podladchikov, Y. Y. (2010). How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica et Cosmochimica Acta, 74, 7179–7195. https://doi.org/10.1016/j.gca.2010.09.011
    [Google Scholar]
  3. Aarnes, I., Svensen, H., Polteau, S., & Planke, S. (2011). Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chemical Geology, 281, 181–194. https://doi.org/10.1016/j.chemgeo.2010.12.007
    [Google Scholar]
  4. Abdelmalak, M. M., Mourgues, R., Galland, O., & Bureau, D. (2012). Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2d experimental modelling. Earth and Planetary Science Letters, 359, 93–105. https://doi.org/10.1016/j.epsl.2012.10.008
    [Google Scholar]
  5. Agirrezabala, L. M., Permanyer, A., Suárez‐Ruiz, I., & Dorronsoro, C. (2014). Contact metamorphism of organic‐rich mudstones and carbon release around a magmatic sill in the Basque‐Cantabrian Basin, Western Pyrenees. Organic Geochemistry, 69, 26–35. https://doi.org/10.1016/j.orggeochem.2014.01.014
    [Google Scholar]
  6. Alberdi‐Genolet, M., Cavallaro, A., Hernandez, N., Crosta, D., & Martinez, L. (2013). Magmatic events and sour crude oils in the Malargüe area of the Neuquén Basin, Argentina. Marine and Petroleum Geology, 43, 48–62. https://doi.org/10.1016/j.marpetgeo.2012.11.005
    [Google Scholar]
  7. Annen, C. (2017). Factors affecting the thickness of thermal aureoles. Frontiers in Earth Science, 5, 82.
    [Google Scholar]
  8. Antun, P. (1967). Sedimentary pyrite and its metamorphism in the Oslo region. Norsk Geologisk Tidsskrift, 47, 211–235.
    [Google Scholar]
  9. Bermúdez, A., & Delpino, D. H. (2008). Concentric and radial joint systems within basic sills and their associated porosity enhancement, Neuquén Basin, Argentina. Geological Society, London, Special Publications, 302, 185–198. https://doi.org/10.1144/SP302.13
    [Google Scholar]
  10. Brissón, I., & Veiga, R. (1998) La Estratigrafía Y Estructura De La Cuenca Neuquina (unpublished report). Gira de campo: Buenos Aires, Repsol YPF.
    [Google Scholar]
  11. Brune, S., Williams, S. E., & Müller, R. D. (2017). Potential links between continental rifting, CO2 degassing and climate change through time. Nature Geoscience, 10, 941. https://doi.org/10.1038/s41561-017-0003-6
    [Google Scholar]
  12. Cartwright, J., Huuse, M., & Aplin, A. (2007). Seal bypass systems. AAPG Bulletin, 91, 1141–1166. https://doi.org/10.1306/04090705181
    [Google Scholar]
  13. Clavier, C., Heim, A., & Scala, C. (1976). Effect of pyrite on resistivity and other logging measurements. SPWLA 17th Annual Logging Symposium, Society of Petrophysicists and Well‐Log Analysts.
  14. Cobbold, P., Diraison, M., & Rossello, E. (1999). Bitumen veins and eocene transpression, Neuquén Basin, Argentina. Tectonophysics, 314, 423–442. https://doi.org/10.1016/S0040-1951(99)00222-X
    [Google Scholar]
  15. Cobbold, P., & Rossello, E. (2003). Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Marine and Petroleum Geology, 20, 429–443. https://doi.org/10.1016/S0264-8172(03)00077-1
    [Google Scholar]
  16. Combina, A. M., & Nullo, F. (2011). Ciclos Tectónicos, Volcánicos Y Sedimentarios Del Cenozoico Del Sur De Mendoza‐Argentina (35°‐37° S Y 69° 30'w). Andean Geology, 38, 198–218.
    [Google Scholar]
  17. Cooper, J. R., Crelling, J. C., Rimmer, S. M., & Whittington, A. G. (2007). Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles. International Journal of Coal Geology, 71, 15–27. https://doi.org/10.1016/j.coal.2006.05.007
    [Google Scholar]
  18. Corseri, R., Senger, K., Selway, K., Abdelmalak, M. M., Planke, S., & Jerram, D. A. (2017). Magnetotelluric evidence for massive sulphide mineralization in intruded sediments of the outer Vøring Basin, mid‐Norway. Tectonophysics, 706, 196–205. https://doi.org/10.1016/j.tecto.2017.04.011
    [Google Scholar]
  19. Courtillot, V. E., & Renne, P. R. (2003). On the ages of flood basalt events. Comptes Rendus Geoscience, 335, 113–140. https://doi.org/10.1016/S1631-0713(03)00006-3
    [Google Scholar]
  20. Delaney, P. T., Pollard, D. D., Ziony, J. I., & McKee, E. H. (1986). Field relations between dikes and joints: Emplacement processes and paleostress analysis. Journal of Geophysical Research: Solid Earth, 91, 4920–4938.
    [Google Scholar]
  21. Delpino, D. H., & Bermúdez, A. M. (2009). Petroleum systems including unconventional reservoirs in intrusive igneous rocks (sills and laccoliths). The Leading Edge, 28, 804–811. https://doi.org/10.1190/1.3167782
    [Google Scholar]
  22. Dow, W. G. (1977). Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, 79–99. https://doi.org/10.1016/0375-6742(77)90078-4
    [Google Scholar]
  23. Espitalie, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock‐Eval et ses applications. Deuxième partie. Revue de l'Institut Français du Pétrole, 40, 755–784. https://doi.org/10.2516/ogst:1985045
    [Google Scholar]
  24. Fjeldskaar, W., Helset, H., Johansen, H., Grunnaleite, I., & Horstad, I. (2008). Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: Implications for vitrinite reflectance and hydrocarbon maturation. Basin Research, 20, 143–159. https://doi.org/10.1111/j.1365-2117.2007.00347.x
    [Google Scholar]
  25. Galland, O. (2012). Experimental modelling of ground deformation associated with shallow magma intrusions. Earth and Planetary Science Letters, 317, 145–156. https://doi.org/10.1016/j.epsl.2011.10.017
    [Google Scholar]
  26. Galland, O., Bertelsen, H. S., Eide, C. H., Guldstrand, F., Haug, Ø. T., Leanza, H. A., … Spacapan, J. B. (2018). Storage and transport of magma in the layered crust—Formation of sills and related flat‐lying intrusions. In S.Burchardt (Ed.), Volcanic and igneous plumbing systems, understanding magma transport, storage and evolution in the earth’s crust (pp. 113–138). Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  27. Ganino, C., & Arndt, N. T. (2009). Climate Changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37, 323–326. https://doi.org/10.1130/G25325A.1
    [Google Scholar]
  28. Gillett, S. L. (2003). Paleomagnetism of the Notch Peak contact metamorphic aureole, revisited: Pyrrhotite from magnetite+ pyrite under submetamorphic conditions. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2002JB002386
    [Google Scholar]
  29. Gudmundsson, A., & Løtveit, I. F. (2014). Sills as fractured hydrocarbon reservoirs: Examples and models. Geological Society, London, Special Publications, 374, 251–271. https://doi.org/10.1144/SP374.5
    [Google Scholar]
  30. Hansen, D. M., & Cartwright, J. (2006). The three‐dimensional geometry and growth of forced folds above saucer‐shaped igneous sills. Journal of Structural Geology, 28, 1520–1535. https://doi.org/10.1016/j.jsg.2006.04.004
    [Google Scholar]
  31. Horton, B. K., Fuentes, F., Boll, A., Starck, D., Ramirez, S. G., & Stockli, D. F. (2016). Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina. Journal of South American Earth Sciences, 71, 17–40. https://doi.org/10.1016/j.jsames.2016.06.003
    [Google Scholar]
  32. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén Basin: An overview. Geological Society, London, Special Publications, 252, 1–14. https://doi.org/10.1144/GSL.SP.2005.252.01.01
    [Google Scholar]
  33. Hughes, H. S., McDonald, I., Boyce, A. J., Holwell, D. A., & Kerr, A. C. (2016). Sulphide sinking in magma conduits: Evidence from mafic‐ultramafic plugs on Rum and the Wider North Atlantic Igneous Province. Journal of Petrology, 57, 383–416. https://doi.org/10.1093/petrology/egw010
    [Google Scholar]
  34. Hunt, J. M. (1996). Petroleum Geochemistry and Geology. New York, NY: WH Freeman.
    [Google Scholar]
  35. Iyer, K., Rüpke, L., & Galerne, C. Y. (2013). Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and climate change. Geochemistry, Geophysics, Geosystems, 14, 5244–5262. https://doi.org/10.1002/2013GC005012
    [Google Scholar]
  36. Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467, 30–42. https://doi.org/10.1016/j.epsl.2017.03.023
    [Google Scholar]
  37. Jamtveit, B., Svensen, H., Podladchikov, Y. Y., & Planke, S. (2004). Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Physical Geology of high‐level Magmatic Systems, 234, 233–241. https://doi.org/10.1144/GSL.SP.2004.234.01.15
    [Google Scholar]
  38. Kozlowski, E., Manceda, R., Ramos, V., & Ramos, V. (1993). Estructura. Geología y Recursos Naturales de Mendoza: Relatorio del 12 Congreso Geológico Argentino y 2 Congreso de Exploración de Hidrocarburos, I (18).
  39. Krivolutskay, N. A., Solev, A. V., Snisar, S. G. E., Gongalskiy, B. I., Kuzmin, D. V., Hauff, F., & Schlychkova, T. B. (2012). Mineralogy, geochemistry and stratigraphy of the Maslovsky Pt–Cu–Ni sulfide deposit, Noril’sk Region. Russia. Mineralium Deposita, 47(1–2), 69–88.
    [Google Scholar]
  40. Krumbholz, M., Hieronymus, C. F., Burchardt, S., Troll, V. R., Tanner, D. C., & Friese, N. (2014). Weibull‐distributed dyke thickness reflects probabilistic character of host‐rock strength. Nature Communications, 5, 3272. https://doi.org/10.1038/ncomms4272
    [Google Scholar]
  41. Lehmann, J., Arndt, N., Windley, B., Zhou, M.‐F., Wang, C. Y., & Harris, C. (2007). Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and Its Ni‐Cu‐Pge sulfide deposit, Gansu, China. Economic Geology, 102, 75–94. https://doi.org/10.2113/gsecongeo.102.1.75
    [Google Scholar]
  42. Magee, C., Bastow, I. D., van Wyk de Vries, B., Jackson, C.‐L., Hetherington, R., Hagos, M., & Hoggett, M. (2017). Structure and dynamics of surface uplift induced by incremental sill emplacement. Geology, 45, 431–434. https://doi.org/10.1130/G38839.1
    [Google Scholar]
  43. Manceda, R., & Figueroa, D. (1995). Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In A. J.Tankard, R.Suarez Soruco, & H. J.Welsink (Eds.), Petroleum Basins of South America: AAPG Memoirs, Vol. 62, pp. 369–382.
  44. Mazurov, M., Grishina, S., Titov, A., & Shikhova, A. (2018). Evolution of ore‐forming metasomatic processes at large skarn iron deposits related to the traps of the Siberian platform. Petrology, 26, 265–279. https://doi.org/10.1134/S0869591118030049
    [Google Scholar]
  45. Mériaux, C., Lister, J. R., Lyakhovsky, V., & Agnon, A. (1999). Dyke propagation with distributed damage of the host rock. Earth and Planetary Science Letters, 165, 177–185. https://doi.org/10.1016/S0012-821X(98)00264-7
    [Google Scholar]
  46. Monreal, F. R., Villar, H., Baudino, R., Delpino, D., & Zencich, S. (2009). Modeling an atypical petroleum system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina. Marine and Petroleum Geology, 26, 590–605. https://doi.org/10.1016/j.marpetgeo.2009.01.005
    [Google Scholar]
  47. Muirhead, J. D., Airoldi, G., Rowland, J. V., & White, J. D. (2012). Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica. Geological Society of America Bulletin, 124, 162–180. https://doi.org/10.1130/B30455.1
    [Google Scholar]
  48. Orchuela, I., Lara, M. E., & Suarez, M. (2003). Productive large scale folding associated with igneous intrusions: El Trapial field, Neuquen Basin, Argentina. 2003 AAPG International Conference & Exhibition Technical Program.
  49. Pang, K.‐N., Zhou, M.‐F., Qi, L., Chung, S.‐L., Chu, C.‐H., & Lee, H.‐Y. (2013). Petrology and geochemistry at the Lower zone‐Middle zone transition of the Panzhihua intrusion, SW China: Implications for differentiation and oxide ore genesis. Geoscience Frontiers, 4, 517–533. https://doi.org/10.1016/j.gsf.2013.01.006
    [Google Scholar]
  50. Parasnis, D. (1956). The electrical resistivity of some sulphide and oxide minerals and their ores. Geophysical Prospecting, 4, 249–278. https://doi.org/10.1111/j.1365-2478.1956.tb01409.x
    [Google Scholar]
  51. Polozov, A. G., Svensen, H. H., Planke, S., Grishina, S. N., Fristad, K. E., & Jerram, D. A. (2016). The basalt pipes of the Tunguska Basin (Siberia, Russia): High temperature processes and volatile degassing into the end‐Permian atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 51–64. https://doi.org/10.1016/j.palaeo.2015.06.035
    [Google Scholar]
  52. Polteau, S., Hendriks, B. W., Planke, S., Ganerød, M., Corfu, F., Faleide, J. I., … Myklebust, R. (2016). The Early Cretaceous Barents Sea Sill Complex: Distribution, 40ar/39ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 83–95. https://doi.org/10.1016/j.palaeo.2015.07.007
    [Google Scholar]
  53. Rabbel, O., Galland, O., Mair, K., Lecomte, I., Senger, K., Spacapan, J. B., & Manceda, R. (2018). From field analogues to realistic seismic modelling: A case study of an oil‐producing andesitic sill complex in the Neuquén Basin. Argentina. Journal of the Geological Society, jgs2017‐2116. https://doi.org/10.1144/jgs2017-116
    [Google Scholar]
  54. Ramos, V. A., Vujovich, G., Martino, R., & Otamendi, J. (2010). Pampia: A large cratonic block missing in the rodinia supercontinent. Journal of Geodynamics, 50, 243–255. https://doi.org/10.1016/j.jog.2010.01.019
    [Google Scholar]
  55. Rasmussen, B., & Fletcher, I. R. (2002). Indirect dating of mafic intrusions by SHRIMP U‐Pb analysis of monazite in contact metamorphosed shale: An example from the Palaeoproterozoic Capricorn Orogen, Western Australia. Earth and Planetary Science Letters, 197, 287–299. https://doi.org/10.1016/S0012-821X(02)00501-0
    [Google Scholar]
  56. Rateau, R., Schofield, N., & Smith, M. (2013). The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Petroleum Geoscience, 19, 259–272. https://doi.org/10.1144/petgeo2012-035
    [Google Scholar]
  57. Schiuma, M. F. (1994). Intrusivos Del Valle Del Río Grande, Provincia De Mendoza, Su Importancia Como Productores De Hidrocarburos. Facultad De Ciencias Naturales Y Museo, 350, 41–63.
    [Google Scholar]
  58. Schmiedel, T., Kjoberg, S., Planke, S., Magee, C., Galland, O., Schofield, N., … Jerram, D. A. (2017). Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid‐Norwegian Margin. Interpretation, 5, SK23–SK38. https://doi.org/10.1190/INT-2016-0155.1
    [Google Scholar]
  59. Schofield, N. J., Brown, D. J., Magee, C., & Stevenson, C. T. (2012). Sill Morphology and comparison of brittle and non‐brittle emplacement mechanisms. Journal of the Geological Society, 169, 127–141. https://doi.org/10.1144/0016-76492011-078
    [Google Scholar]
  60. Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., … Stevenson, C. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29, 41–63. https://doi.org/10.1111/bre.12164
    [Google Scholar]
  61. Schofield, N., Jerram, D. A., Holford, S., Archer, S., Mark, N., Hartley, A., … Hutton, D. (2018) Sills in sedimentary basins and petroleum systems. In C.Breitkreuz & S.Rocchi (Eds.), Physical geology of shallow magmatic systems (pp. 273–294). Berlin, Germany: Springer.
    [Google Scholar]
  62. Senger, K., Buckley, S. J., Chevallier, L., Fagereng, Å., Galland, O., Kurz, T. H., … Tveranger, J. (2015). Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins. Journal of African Earth Sciences, 102, 70–85. https://doi.org/10.1016/j.jafrearsci.2014.10.019
    [Google Scholar]
  63. Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C. H., Festøy, M., … Jerram, D. A. (2017). Effects of igneous intrusions on the petroleum system: A review. First Break, 35, 47–56.
    [Google Scholar]
  64. Spacapan, J. B., Galland, O., Leanza, H. A., & Planke, S. (2017). Igneous sill and finger emplacement mechanism in shale‐dominated formations: A field study at Cuesta Del Chihuido, Neuquén Basin, Argentina. Journal of the Geological Society, 174, 422–433. https://doi.org/10.1144/jgs2016-056
    [Google Scholar]
  65. Spacapan, J., Palma, O., Galland, O., Manceda, R., Rocha, E., D'Odorico, A., & Leanza, H. (2018). Thermal impact of igneous sill‐complexes on organic‐rich formations and implications for petroleum systems: A case study in the northern Neuquén Basin, Argentina. Marine and Petroleum Geology, 91, 519–531.
    [Google Scholar]
  66. Svensen, H., & Jamtveit, B. (2010). Metamorphic fluids and global environmental changes. Elements, 6, 179–182. https://doi.org/10.2113/gselements.6.3.179
    [Google Scholar]
  67. Svensen, H., Planke, S., Chevallier, L., Malthe‐Sørenssen, A., Corfu, F., & Jamtveit, B. (2007). Hydrothermal venting of greenhouse gases triggering early Jurassic global warming. Earth and Planetary Science Letters, 256, 554–566. https://doi.org/10.1016/j.epsl.2007.02.013
    [Google Scholar]
  68. Svensen, H., Planke, S., Malthe‐Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545. https://doi.org/10.1038/nature02566
    [Google Scholar]
  69. Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., & Jamtveit, B. (2009). Siberian gas venting and the end‐Permian environmental crisis. Earth and Planetary Science Letters, 277, 490–500. https://doi.org/10.1016/j.epsl.2008.11.015
    [Google Scholar]
  70. Sydnes, M., Fjeldskaar, W., Løtveit, I. F., Grunnaleite, I., & Cardozo, N. (2018). The importance of sill thickness and timing of sill emplacement on hydrocarbon maturation. Marine and Petroleum Geology, 89, 500–514. https://doi.org/10.1016/j.marpetgeo.2017.10.017
    [Google Scholar]
  71. Sylwan, C. (2014). Source Rock Properties of Vaca Muerta Formation, Neuquina Basin, Argentina. Simposio de Recursos No Convencionales. IX Congreso Argentino de Exploración y Desarrollo de Hidrocarburos. Mendoza, Argentina: IAPG.
  72. Townsend, M., Pollard, D. D., Johnson, K., & Culha, C. (2015). Jointing around magmatic dikes as a precursor to the development of volcanic plugs. Bulletin of Volcanology, 77, 92. https://doi.org/10.1007/s00445-015-0978-z
    [Google Scholar]
  73. Vergani, G. D., Tankard, A. J., Beloti, H. J., & Welsink, H. J. (1995). Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In A. J.Tankard, R.Suárez, & H. J.Welsink (Eds.), Petroleum Basins of South America: AAPG Memoirs, Vol. 62, pp. 383–402.
  74. Waples, D., & Tobey, M. H. (2015). Like space and time, transformation ratio is curved. AAPG Annual Convention and Exhibition.
  75. Witte, J., Bonora, M., Carbone, C., & Oncken, O. (2012). Fracture evolution in oil‐producing sills of the Rio Grande Valley, northern Neuquén Basin, Argentina. AAPG Bulletin, 96, 1253–1277. https://doi.org/10.1306/10181110152
    [Google Scholar]
  76. Zhang, W., Wang, Q., Ye, J., & Zhou, J. (2017). Fracture development and fluid pathways in shales during granite intrusion. International Journal of Coal Geology, 183, 25–37. https://doi.org/10.1016/j.coal.2017.09.011
    [Google Scholar]
  77. Zierenberg, R. A., Koski, R. A., Morton, J. L., & Bouse, R. M. (1993). Genesis of massive sulfide deposits on a sediment‐covered spreading center, Escanaba Trough, southern Gorda Ridge. Economic Geology, 88, 2069–2098. https://doi.org/10.2113/gsecongeo.88.8.2069
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12363
Loading
/content/journals/10.1111/bre.12363
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error