Volume 31, Issue 5
PDF

Abstract

Abstract

The architecture of foreland basins and the resulting distribution of clastic sediments are related to the constant interplay between tectonics and sedimentation. Specifically, basin floor modifications strongly influence dimensions, continuity and connections of sand‐size and fine‐grained deposits. Given the increasing need to identify deep potential reservoir deposits, the large‐scale definition of clastic porous targets and their seals is a matter of interest for oil and gas industry. Here, we present the reconstruction of the Po Plain and Northern Adriatic Foreland Basin (with an extent of ca. 40,000 km2) and its Pliocene–Pleistocene evolution, as an example of a sedimentary clastic system controlled by strongly non‐cylindrical foreland geometry. The study is based on the basin‐scale mapping of six unconformity‐bounded sequences, performed by interpreting a dense network of seismic lines and correlating well‐log data. This provides a three‐dimensional model of the step‐by‐step evolution of the basin and a description of the sediment dispersal pattern. We found that the basin records the change from a continuous (cylindrical) to highly fragmented (non‐cylindrical) foredeep geometry during Late Pliocene. In the Northern Apennines case, the main factors driving the development of a non‐cylindrical geometry are mainly related to inherited inhomogeneity in the downgoing block linked to its Mesozoic extensional faulting, and the relative orientation of these lineaments with respect to the direction of orogen migration. During the late Pliocene–Pleistocene the two directions progressively became close to parallel, and the Northern Apennines system reacted changing from a cylindrical to a non‐cylindrical state.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12369
2019-06-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/31/5/bre12369.html?itemId=/content/journals/10.1111/bre.12369&mimeType=html&fmt=ahah

References

  1. Ahmad, M. I., Dubey, A. K., Toscani, G., Bonini, L., & Seno, S. (2014). Kinematic evolution of thrusts wedge and erratic line length balancing: Insights from deformed sandbox models. International Journal of Earth Sciences, 103, 329–347. https://doi.org/10.1007/s00531-013-0947-8
    [Google Scholar]
  2. Allen, P. A., Homewood, P., & Williams, G. D., (Eds.). (1986). Foreland basins: An introduction. In Foreland basins. International Association of Sedimentologists. Oxford: Blackwell Scientific Publications.
    [Google Scholar]
  3. Amadori, C., Garcia‐Castellanos, D., Toscani, G., Sternai, P., Fantoni, R., Ghielmi, M., & Di Giulio, A. (2018). Restored topography of the Po Plain‐Northern Adriatic region during the Messinian base‐level drop—Implications for the physiography and compartmentalization of the palaeo‐Mediterranean basin. Basin Research, 30, 1247–1263. https://doi.org/10.1111/bre.12302
    [Google Scholar]
  4. Amadori, C., Fantoni, R., Ghielmi, M., Toscani, G., & Di Giulio, A. (2018). 14.C‐ Po Plain‐MSC surfaces (2). In J.Lofi (Ed.), Seismic Atlas of the Messinian salinity crisis markers in the Mediterranean Sea (Vol. 2, p. 50). Mémoires de la Société Géologique de Franc, n.s., t. 181, and Commission for the Geological Map of the World. https://doi.org/10.10682/2018MESSINV2. ISBN 9782917310373
    [Google Scholar]
  5. Amadori, C., Garcia‐Castellanos, D., Toscani, G., Di Giulio, A., Fantoni, R., & Ghielmi, M. ( 2017). Restoration of paleo‐shorelines through lithospheric 3D modeling and backstripping analysis: The example of the Po Plain‐Northern Adriatic region during Late Messinian sea‐level drop. Offshore Mediterranean Conference and Exhibition (OMC) 2017, 29–31 March 2017, Ravenna (Italy).
  6. Artoni, A. (2013). The Pliocene‐Pleistocene stratigraphic and tectonic evolution of the Central sector of the Western Periadriatic Basin of Italy. Marine and Petroleum Geology, 42, 82–106. https://doi.org/10.1016/j.marpetgeo.2012.10.005
    [Google Scholar]
  7. Bally, A. W., Burbi, L., Cooper, C., & Ghelardoni, R. (1986). Balanced sections and seismic reflection profiles across the Central Apennines. Memorie della Societá Geologica Italiana, 35(2), 257–310.
    [Google Scholar]
  8. Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., … Weatherall, P. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371. https://doi.org/10.1080/01490410903297766
    [Google Scholar]
  9. Bertotti, G., & Mosca, P. (2009). Late‐orogenic vertical movements within the arc of the SW Alps and Ligurian Alps. Tectonophysics, 475(1), 117–127. https://doi.org/10.1016/j.tecto.2008.08.016
    [Google Scholar]
  10. Bertotti, G., Picotti, V., Bernoulli, D., & Castellarin, A. (1993). From rifting to drifting: Tectonic evolution of the South‐Alpine upper crust from the Triassic to the Early Cretaceous. Sedimentary Geology, 86, 53–76. https://doi.org/10.1016/0037-0738(93)90133-P
    [Google Scholar]
  11. Bigi, G., Castellarin, A., Coli, M., Dal Piaz, G. V., Sartori, R., & Scandone, P. (1990). Structural model of Italy sheet 1, 1:500000. Progetto Finalizzato Geodinamica. SELCA Firenze, Italy: Consiglio Nazionale delle Ricerche.
    [Google Scholar]
  12. Bigi, G., Castellarin, A., Coli, M., Dal Piaz, G. V., & Vai, G. B. (1990). Structural model of Italy sheet 2, 1:500000. Prog- etto Finalizzato Geodinamica. SELCA Firenze, Italy: Consiglio Naz. Ricerche.
    [Google Scholar]
  13. Bigi, S., Conti, A., Casero, O., Ruggiero, L., Recanati, R., & Lipparini, L. (2013). Geological model of the central Periadriatic basin (Apennines, Italy). Marine and Petroleum Geology, 42, 107–121. https://doi.org/10.1016/j.marpetgeo.2012.07.005
    [Google Scholar]
  14. Boccaletti, M., Coli, M., Eva, C., Ferrari, G., Giglia, G., Lazzarotto, A., … Postpischl, D. (1985). Considerations on the seismotectonics of the Northern Apennines. Tectonophysics, 117, 7–38. https://doi.org/10.1016/0040-1951(85)90234-3
    [Google Scholar]
  15. Boccaletti, M., Corti, G., & Martelli, L. (2011). Recent and active tectonics of the external zone of the Northern Apennines (Italy). International Journal of Earth Sciences, 100, 1331–1348. https://doi.org/10.1007/s00531-010-0545-y
    [Google Scholar]
  16. Bonini, L., Toscani, G., & Seno, S. (2014). Three‐dimensional segmentation and different rupture behavior during the 2012 Emilia seismic sequence (Northern Italy). Tectonoph, 630, 33–42. https://doi.org/10.1016/j.tecto.2014.05.006
    [Google Scholar]
  17. Burbank, D. W., Beck, R. A., & Mulder, T. (1996). The Himalayan foreland. In Y.An & M.Harrison (Eds.), Asian Tectonics (pp. 149–188). Cambridge: Cambridge University Press.
    [Google Scholar]
  18. Caricchi, C., Cifelli, F., Sagnotti, L., Sani, F., Speranza, F., & Mattei, M. (2014). Paleomagnetic evidence for a post‐ Eocene 90° CCW rotation of internal Apennine units: A linkage with Corsica‐Sardinia rotation?Tectonics, 33, 374–392. https://doi.org/10.1002/2013TC003364
    [Google Scholar]
  19. Carminati, E. (2009). Neglected basement ductile deformation in balanced‐section restoration: An example from the Central Southern Alps (Northern Italy). Tectonophysics, 463(1–4), 161–166. https://doi.org/10.1016/j.tecto.2008.09.042
    [Google Scholar]
  20. Carminati, E., Cavazza, D., Scrocca, D., Fantoni, R., Scotti, P., & Doglioni, C. (2010). Thermal and tectonic evolution of the Southern Alps (Northern Italy) rifting: Coupled organic matter maturity analysis and thermo‐kinematic modelling. American Association of Petroleum Geologists Bulletin, 94(3), 369–397. https://doi.org/10.1306/08240909069
    [Google Scholar]
  21. Carminati, E., & Doglioni, C. (2012). Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth‐Science Reviews, 112, 67–96. https://doi.org/10.1016/j.earscirev.2012.02.004
    [Google Scholar]
  22. Carminati, E., Lustrino, M., & Doglioni, C. (2012). Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 579, 173–192. https://doi.org/10.1016/j.tecto.2012.01.026
    [Google Scholar]
  23. Casnedi, R. (1983). Hydrocarbon‐bearing submarine fan system of Cellino Formation, central Italy. American Association of Petroleum Geologists Bulletin, 67(3), 359–370.
    [Google Scholar]
  24. Casnedi, R., Moruzzi, G., & Mutti, E. (1978). Correlazioni elettriche di lobi deposizionali torbiditici nel Pliocene inferiore del sottosuolo abruzzese. Memorie della Societa Geologica Italiana, 18, 23–30.
    [Google Scholar]
  25. Casnedi, R. (1991). Hydrocarbon accumulation in turbidites in migrating basins of the southern Adriatic foredeep (Italy). In A. H.Bouma & R. M.Carter (Eds.), Facies models in exploration and development of hydrocarbon and ore deposits (pp. 219–224). Proceedings of 28th International Geological Congress, VSP, Utrecht, 9–19 July, 1989.
    [Google Scholar]
  26. Castellarin, A., & Vai, G. B. (1986). Southalpine versus Po Plain Apenninic arcs. In: Origin of arcs. Development in Geotectonics, 21, 253–280.
    [Google Scholar]
  27. Catuneanu, O. (2004). Basement control on flexural profiles and the distribution of foreland facies: The Dwyka Group of the Karoo Basin, South Africa. Geology, 32(6), 517–520. https://doi.org/10.1130/G20526.1
    [Google Scholar]
  28. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92(1–2), 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  29. Cazzini, F., Dal Zotto, O., Fantoni, R., Ghielmi, M., Ronchi, P., & Scotti, P. (2015). Oil and gas in the Adriatic foreland, Italy. Journal of Petroleum Geology, 38(3), 255–279. https://doi.org/10.1111/jpg.12610
    [Google Scholar]
  30. Cibin, U., Di Giulio, A., & Martelli, L. (2003). Oligocene–Early Miocene tectonic evolution of the northern Apennines (northwestern Italy) traced through provenance of piggy-back basin fill successions. In T.Mccann & A.Saintot (Eds.), Tracing tectonic deformation using the sedimentary record (Vol. 208, pp. 269–287). London, UK: Geological Society, Special Publications.
    [Google Scholar]
  31. Cibin, U., Di Giulio, A., Martelli, L., Catanzariti, R., Poccianti, S., Rosselli, C., & Sani, F. (2004). Factors controlling foredeep turbidite deposition: the case of Northern Apennines (Oligocene‐Miocene, Italy). In S.Lomas & P.Joseph (Eds.), Confined turbidite systems (Vol. 222, pp. 115–134). London, UK: Geological Society, Special Publications.
    [Google Scholar]
  32. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J. X. (2013). The ICS international chronostratigraphic chart. Episodes, 36(3), 199–204.
    [Google Scholar]
  33. Coward, M. P., Dietrich, D., & Park, R. G. (1989). Alpine Tectonics. Geological Society of London, Special Publications, 45, 449.
    [Google Scholar]
  34. Dal Piaz, G. V., Bistacchi, A., & Massironi, M. (2003). Geological outline of the Alps. Episodes, 26(3), 175–180.
    [Google Scholar]
  35. Dalla, S., Rossi, M. E., Orlando, M., Visentin, C., Gelati, R., Gnaccolini, M., … Catrullo, D. (1992). Late Eocene‐Tortonian tectono‐sedimentary evolution in the western part of the Padan Basin (northern Italy). Paleontology Evolution, 24–25, 341–362.
    [Google Scholar]
  36. Decelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  37. Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., le Pichon, X., Knipper, A. L., … & Biju‐Duval, B. (1986). Geological evolution of the Tethys belt from Atlantic to the Pamirs since the Lias. In J.Aubouin, X.LePichon, & A. S.Monin (Eds.), Evolution of the Tethys (Vol. 123, pp. 241–315). Tectonoph.
    [Google Scholar]
  38. Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W., & Knot, S. D. (1989). Kinematics of the western Mediterranean. Geological Society of London, Special Publications, 45, 265–283.
    [Google Scholar]
  39. Di Giulio, A. (1999). Mass transfer from the Alps to the Apennines: Volumetric constraints in the provenance study of the Macigno‐Modino source‐basin system, Chattian‐Aquitanian, northwestern Italy. Sedimentary Geology, 124(1–4), 69–80. https://doi.org/10.1016/S0037-0738(98)00121-3
    [Google Scholar]
  40. Di Giulio, A., Carrapa, B., Fantoni, R., Gorla, L., & Valdisturlo, A. (2001). Middle Eocene‐Early Miocene sedimentary evolution of the Western Lombardy South Alpine foredeep (Italy). International Journal of Earth Sciences, 90 ( 3), 534–548. https://doi.org/10.1007/s005310000186
    [Google Scholar]
  41. DISS Working Group
    DISS Working Group . (2018). Database of individual seismogenic sources (DISS), version 3.2.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.6092/INGV.IT-DISS3.2.0. Retrieved from http://diss.rm.ingv.it/diss/
    [Google Scholar]
  42. Doglioni, C., Merlini, S., & Cantarella, G. (1999). Foredeep geometries at the front of the Apennines in the Ionian Sea (central Mediterranean). Earth and Planetary Science Letters, 168, 243–254. https://doi.org/10.1016/S0012-821X(99)00059-X
    [Google Scholar]
  43. Dondi, L., & Papetti, I. (1968). Biostratigraphical zone of Po Valley Pliocene. Giornale di Geologia, 35, 99–114.
    [Google Scholar]
  44. Fantoni, R., Bersezio, R., & Forcella, F. (2004). Alpine structure and deformation chronology at the Southern Alps‐Po Plain border in Lombardy. Bollettino della Società Geologica Italiana, 123, 463–476.
    [Google Scholar]
  45. Fantoni, R., & Franciosi, R. (2010). Tectono‐sedimentary setting of the Po Plain and Adriatic foreland. Rendiconti Lincei, 21(1), 197–209. https://doi.org/10.1007/s12210-010-0102-4
    [Google Scholar]
  46. Felletti, F., Carruba, S., & Casnedi, R. (2009). Sustained turbidity currents: evidence from the Pliocene Periadriatic foredeep (Cellino Basin, Central Italy). In B.Kneller, O. J.Martinsen, & B.McCaffrey (Eds.), External controls on deep‐water depositional systems (Vol. 92, pp. 325–346). SEPM Special Publication.
    [Google Scholar]
  47. Gandolfi, G., Paganelli, L., & Zuffa, G. G. (1983). Petrology and dispersal pattern in the Marnoso‐Arenacea Formation (Miocene, Northern Apennines). Journal of Sedimentary Petrology, 53, 493–507.
    [Google Scholar]
  48. Garcia‐Castellanos, D., Fernandez, M., & Torne, M. (2002). Modelling the evolution of the Guadalquivir foreland basin (Southern Spain). Tectonics, 21(3), 9‐1–9‐17.
    [Google Scholar]
  49. Garzanti, E., Vezzoli, G., & Andò, S. (2011). Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth‐Science Reviews, 105(1–2), 25–48. https://doi.org/10.1016/j.earscirev.2010.11.004
    [Google Scholar]
  50. Garzanti, E. (2019). The Himalayan foreland basin from collision onset to the present: A sedimentary‐petrology perspective. In P. J.Treloar & M. P.Searle (Eds.), Himalayan tectonics: A modern synthesis (p. 483). London, UK: Geological Society, Special Publications. https://doi.org/10.1144/SP483.17
    [Google Scholar]
  51. Gattacceca, J., Deino, A., Rizzo, R., Jones, D. S., Henry, B., Beaudoin, B., & Vadeboin, F. (2007). Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications. Earth and Planetary Science Letters, 258(3–4), 359–377. https://doi.org/10.1016/j.epsl.2007.02.003
    [Google Scholar]
  52. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., & Rossi, M. (2013). Late Miocene‐Middle Pleistocene sequences in the Po Plain—Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology, 42, 50–81. https://doi.org/10.1016/j.marpetgeo.2012.11.007
    [Google Scholar]
  53. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., Rossi, M., & Vignolo, A. (2010). Sedimentary and tectonic evolution in the eastern Po‐Plain and northern Adriatic Sea area from Messinian to Middle Pleistocene (Italy). Rendiconti Lincei, 21(1), 131–166. https://doi.org/10.1007/s12210-010-0101-5
    [Google Scholar]
  54. Ghielmi, M., Nini, C., Livraghi, L., Minervini, M., Rogledi, S., Rossi, M., … Visentin, C. (2008). Modern Po Plain‐Adriatic Foredeep (Italy): Geological framework and hydrocarbon exploration. In 70th EAGE Conference and Exhibition Workshop, Rome (Italy), June 8, 2008.
  55. Ghielmi, M., Nini, C., Rogledi, S., Minervini, M., & Rossi, M. (2008). Tectono‐stratigraphic framework of the Pliocene‐to‐Pleistocene succession in the Po Plain‐Adriatic Foredeep (Italy). Rendiconti Online Societá Geologica Italiana, 3(2), 425–426.
    [Google Scholar]
  56. ISPRA
    ISPRA (2015). Modello geologico 3D e geopotenziali della Pianura Padana centrale (Progetto GeoMol). Rapporti ISPRA, 234/2015, 104.
    [Google Scholar]
  57. Lickorish, W. H., Ford, M., Bürgisser, J., & Cobbold, P. R. (2002). Arcuate thrust systems in sandbox experiments: A comparison to the external arcs of the Western Alps. GSA Bulletin, 114(9), 1089–1107.
    [Google Scholar]
  58. Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South Shina Sea margin in the Taiwan region. Basin Research, 15(4), 453–478.
    [Google Scholar]
  59. Livani, M., Scrocca, D., Arecco, P., & Doglioni, C. (2018). Structural and stratigraphic control on salient and recess development along a thrust belt front: The Northern Apennines (Po Plain, Italy). Journal of Geophysical Research: Solid Earth, 123(5), 4360–4387. https://doi.org/10.1002/2017JB015235
    [Google Scholar]
  60. Lucente, F. P., & Speranza, F. (2001). Belt bending driven by lateral bending of subducting lithospheric slab: Geophysical evidence from the Northern Apennines (Italy). Tectonophysics, 337(1–2), 53–64. https://doi.org/10.1016/S0040-1951(00)00286-9
    [Google Scholar]
  61. Maesano, F. E., & D'Ambrogi, C. (2016). Coupling sedimentation and tectonic control: Pleistocene evolution of the central Po Basin. Italian Journal of Geosciences, 135(3), 394–407. https://doi.org/10.3301/IJG.2015.17
    [Google Scholar]
  62. Maesano, F. E., & D'Ambrogi, C. (2017). Vel‐IO 3D: A tool for 3D velocity model construction, optimization and time‐depth conversion in 3D geological modeling workflow. Computers and Geosciences, 99, 171–182. https://doi.org/10.1016/j.cageo.2016.11.013
    [Google Scholar]
  63. Maesano, F. E., D'Ambrogi, C., Burrato, P., & Toscani, G. (2015). Slip‐rates of blind thrusts in slow deforming areas: Examples from the Po Plain (Italy). Tectonophysics, 643, 8–25. https://doi.org/10.1016/j.tecto.2014.12.007
    [Google Scholar]
  64. Maestrelli, D., Benvenuti, M., Bonini, M., Carnicelli, S., Piccardi, L., & Sani, F. (2018). The structural hinge of a chain‐foreland basin: Quaternary activity of the Pede‐Apennine Thrust front (Northern Italy). Tectonophysics, 723, 117–135. https://doi.org/10.1016/j.tecto.2017.12.006
    [Google Scholar]
  65. Maino, M., Decarlis, A., Felletti, F., & Seno, S. (2013). Tectono‐sedimentary evolution of the Tertiary Piedmont Basin (NW Italy) within the Oligo‐Miocene central Mediterranean geodynamics. Tectonics, 32(3), 593–619. https://doi.org/10.1002/tect.20047
    [Google Scholar]
  66. Malinverno, A., & Ryan, W. B. F. (1986). Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5(2), 227–245. https://doi.org/10.1029/TC005i002p00227
    [Google Scholar]
  67. Mariotti, G., & Doglioni, C. (2000). The dip of the foreland monocline in the Alps and Apennines. Earth and Planetary Science Letters, 181, 191–202. https://doi.org/10.1016/S0012-821X(00)00192-8
    [Google Scholar]
  68. Marsden, D. (1992). V0‐k method for depth conversion. The Leading Edge, 11(8), 53–54.
    [Google Scholar]
  69. Marshak, S. (1988). Kinematics of orocline and arc formation in thin‐skinned orogens. Tectonics, 7, 73–86. https://doi.org/10.1029/TC007i001p00073
    [Google Scholar]
  70. Marshak, S. (2005). Salients, recesses, arcs, oroclines, and syntaxes—A review of ideas concerning the formation of map‐view curves in fold‐thrust belts. AAPG Memoir, 82, 131–156.
    [Google Scholar]
  71. Masetti, D., Fantoni, R., Romano, R., Sartorio, D., & Trevisani, E. (2012). Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data. AAPG Bulletin, 96(11), 2065–2089. https://doi.org/10.1306/03091211087
    [Google Scholar]
  72. Massoli, D., Koyi, H. A., & Barchi, M. R. (2006). Structural evolution of a fold and thrust belt generated by multiple décollements: Analogue models and natural examples from the Northern Apennines (Italy). Journal of Structural Geology, 28, 185–199. https://doi.org/10.1016/j.jsg.2005.11.002
    [Google Scholar]
  73. Micallef, A., Camerlenghi, A., Garcia‐Castellanos, D., Cunarro Otero, D., Gutscher, M.‐A., Barreca, G., … Urlaub, M. (2018). Evidence of the Zanclean megafood in the eastern Mediterranean Basin. Scientific Reports, 8, 1078. https://doi.org/10.1038/s41598-018-19446-3
    [Google Scholar]
  74. Minervini, M., Rogledi, S., & Rossi, M. (2009). Timing, hierarchy and significance of the Messinian and Lower Pliocene erosional surfaces in the Southern Alps margin (Northern Italy). Earth system evolution and the Mediterranean area from 23 Ma to the present. In 13th RCMNS Congress, Napoli (Italy), 2–6 September 2009.
    [Google Scholar]
  75. Mutti, E., Tinterr, I. R., Remacha, E., Mavilla, N., Angella, S., & Fava, L. (1999). An introduction to the analysis of ancient turbidite basins from an outcrop perspective. AAPG Course Notes, 39, 93.
    [Google Scholar]
  76. Mutti, E. (1985). Turbidite systems and their relations to depositional sequences. In G. G.Zuffa (Eds.), Provenance of Arenites. NATO ASI series (Series C: Mathematical and physical sciences) (p. 148). Dordrecht, Netherlands: Springer.
    [Google Scholar]
  77. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., … Sciunnach, D. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989–992. https://doi.org/10.1130/G19445.1
    [Google Scholar]
  78. Muttoni, G., Garzanti, E., Alfonsi, L., Cirilli, S., Germani, D., & Lowrie, W. (2001). Motion of Africa and Adria since the Permian: Paleomagnetic and paleoclimatic constraints from northern Libya. Earth and Planetary Science Letters, 192(2), 159–174. https://doi.org/10.1016/S0012-821X(01)00439-3
    [Google Scholar]
  79. Ori, G. G., & Friend, P. F. (1984). Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12(8), 475–478. https://doi.org/10.1130/0091-7613(1984)12%3C475:SBFACP%3E2.0.CO;2.
    [Google Scholar]
  80. Perotti, C. R. (1991). Osservazioni sull’assetto strutturale del versante padano dell’Appennino Nord‐Occidentale. Atti Ticinensi di Scienze della Terra, 34, 11–22.
    [Google Scholar]
  81. Pieri, M., & Groppi, G. (1981). Subsurface geological structure of the Po Plain, Italy. In C.N.R. (Ed.), Progetto Finalizzato Geodinamica (Vol. 414, 1–13).
    [Google Scholar]
  82. Ravaglia, A., Seno, S., Toscani, G., & Fantoni, R. (2006). Mesozoic extension controlling the Southern Alps thrust front geometry under the Po Plain, Italy: Insights from sandbox models. Journal of Structural Geology, 28, 2084–2096. https://doi.org/10.1016/j.jsg.2006.07.011
    [Google Scholar]
  83. Ravaglia, A., Turrini, C., & Seno, S. (2004). Mechanical stratigraphy as a factor controlling the development of a sandbox transfer zone: A three‐dimensional analysis. Journal of Structural Geology, 26, 2269–2283. https://doi.org/10.1016/j.jsg.2004.04.009
    [Google Scholar]
  84. Regione Emilia‐Romagna (R.E.R.) & ENI‐AGIP
    Regione Emilia‐Romagna (R.E.R.) & ENI‐AGIP . (1998). Riserve idriche sotterranee nella Regione Emilia‐Romagna. In G.DiDio (Ed.), (p. 119). Firenze, Italy: S.EL.CA., 9 sheets.
  85. Regione Lombardia (R.L.) & ENI‐AGIP
    Regione Lombardia (R.L.) & ENI‐AGIP . (2002). Geologia degli Acquiferi Padani della Regione Lombardia. In C.Carcano & A.Piccin (Eds.), (p. 130). Firenze, Italy: S.EL.CA., 9 sheets.
  86. Ricci Lucchi, F. (1978). Turbidite dispersal in a Miocene deep‐sea plain. Geologie en Mijnbouw, 57, 559–576.
    [Google Scholar]
  87. Ricci Lucchi, F. (1986). The Oligocene to recent foreland basins of the Northern Apennines. In P. A.Allen & P.Homewood (Eds.), Foreland basins (Vol. 8, pp. 105–139). IAS Special Publications, Oxford, UK: Blackwell Scientific.
    [Google Scholar]
  88. Ricci Lucchi, F., & Valmori, E. (1980). Basin‐wide turbidites in a Miocene, over‐supplied deep‐sea plain: A geometrical analysis. Sedimentology, 27, 241–270. https://doi.org/10.1111/j.1365-3091.1980.tb01177.x
    [Google Scholar]
  89. Robertson, A., & Grasso, M. (1995). Later Tertiary‐Quaternary Mediterranean tectonics and palaeo‐environments—An introduction. Terra Nova, 7(2), 112–113. https://doi.org/10.1111/j.1365-3121.1995.tb00679.x
    [Google Scholar]
  90. Rossi, M., Minervini, M., & Ghielmi, M. (2018). Drowing unconformities on hinged clastic shelves. Geology, 46(5), 439–442. https://doi.org/10.1130/G40123.1
    [Google Scholar]
  91. Rossi, M., Minervini, M., Ghielmi, M., & Rogledi, S. (2015). Messinian and Pliocene erosional surfaces in the Po Plain‐Adriatic Basin: Insights from allostratigraphy and sequence stratigraphy in assessing play concepts related to accommodation and gateway turnarounds in tectonically active margins. Marine and Petroleum Geology, 66, 192–216. https://doi.org/10.1016/j.marpetgeo.2014.12.012
    [Google Scholar]
  92. Royden, L., Patacca, E., & Scandone, P. (1987). Segmentation and configuration of subducted lithosphere in Italy: An important control on thrust‐belt and foredeep‐basin evolution. Geology, 15(8), 714–717. https://doi.org/10.1130/0091-7613(1987)15<714:SACOSL>2.0.CO;2
    [Google Scholar]
  93. Scardia, G., Festa, A., Monegato, G., Pini, R., Rogledi, S., Tremolada, F., & Galadini, F. (2015). Evidence for late Alpine tectonics in the Lake Garda area (northern Italy) and seismogenic implications. Bulletin of the Geological Society of America, 127(1–2), 113–130. https://doi.org/10.1130/B30990.1
    [Google Scholar]
  94. Scrocca, D., Carminati, E., Doglioni, C., & Marcantoni, D. (2007). Slab retreat and active shortening along the central‐northern Apennines. In O.Lacombe, F.Roure, J.Lavé, & J.Vergés (Eds.), Thrust belts and foreland basins SE ‐ 25, frontiers in earth sciences (pp. 471–487). Berlin, Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-540-69426-7_25
    [Google Scholar]
  95. Toscani, G., Bonini, L., Ahmad, M. I., Di Bucci, D. D., Di Giulio, A., Seno, S., & Galuppo, C. (2014). Opposite verging chains sharing the same foreland: Kinematics and interactions through analogue models (Central Po Plain, Italy). Tectonophysics, 633(1), 268–282. https://doi.org/10.1016/j.tecto.2014.07.019
    [Google Scholar]
  96. Toscani, G., Burrato, P., Di Bucci, D., Seno, S., & Valensise, G. (2009). Plio‐Quaternary tectonic evolution of the Northern Apennines thrust fronts (Bologna‐Ferrara section, Italy): Seismotectonic implications. Italian Journal of Geosciences (Bollettino della Società Geologica Italiana), 128(2), 605–613. https://doi.org/10.3301/IJG.2009.128.2.605
    [Google Scholar]
  97. Toscani, G., Seno, S., Fantoni, R., & Rogledi, S. (2006). Geometry and timing of deformation inside a structural arc; the case of the western Emilian folds (Northern Apennine front, Italy). Bollettino della Società Geologica Italiana, 125(1), 59–65.
    [Google Scholar]
  98. Toscani, G., Marchesini, A., Barbieri, C., Di Giulio, A., Fantoni, R., Mancin, N., & Zanferrari, A. (2016). The Friulian-Venetian Basin I: architecture and sediment flux into a shared foreland basin. Ital. J. Geosci., 135(3), 444–459. https://doi.org/10.3301/IJG.2015.35
    [Google Scholar]
  99. Turrini, C., Lacombe, O., & Roure, F. (2014). Present‐day 3D structural model of the Po Valley basin, Northern Italy. Marine and Petroleum Geology, 56, 266–289. https://doi.org/10.1016/j.marpetgeo.2014.02.006
    [Google Scholar]
  100. Turrini, C., Toscani, G., Lacombe, O., & Roure, F. (2016). Influence of structural inheritance on foreland‐foredeep system evolution: An example from the Po valley region (northern Italy). Marine and Petroleum Geology, 77, 376–398. https://doi.org/10.1016/j.marpetgeo.2016.06.022
    [Google Scholar]
  101. Uba, C. E., Heubeck, C., & Hulka, C. (2006). Evolution of the late Cenozoic Chaco foreland basin, southern Bolivia. Basin Research, 18, 145–170. https://doi.org/10.1111/j.1365-2117.2006.00291.x
    [Google Scholar]
  102. Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M., Thompson, S., Sangree, J. B., … Hatleid, W. G. (1977). Seismic stratigraphy and global changes in sea level. In C. E.Payton (Ed.), Seismic stratigraphy: Application to hydrocarbon exploration (pp. 49–212). Tulsa, OK: AAPG.
    [Google Scholar]
  103. Vannoli, P., Burrato, P., & Valensise, G. (2015). The seismotectonics of the Po Plain (Northern Italy): Tectonics diversity in a blind faulting domain. Pure and Applied Geophysics, 172, 1105–1142. https://doi.org/10.1007/s00024-014-0873-0
    [Google Scholar]
  104. Vanossi, M., Perotti, C. R., & Seno, S. (1994). The Maritime Alps arc in the Ligurian and Tyrrhenian systems. Tectonoph, 230, 75–89.
    [Google Scholar]
  105. Willett, S. D., & Schlunegger, F. (2010). The last phase of deposition in the Swiss Molasse Basin: From foredeep to negative‐alpha basin. Basin Research, 22, 623–638. https://doi.org/10.1111/j.1365-2117.2009.00435.x
    [Google Scholar]
  106. Zattin, M., & Zuffa, G. G. (2004). Unravelling the source rocks of Late Eocene‐Miocene orogenic wedge and foredeep arenites of the northern Apennines and southern Alps [Aree fonti delle successioni di prisma orogenico e di avanfossa nell'Appennino settentrionale e nelle Alpi meridionali]. Bollettino della Societa Geologica Italiana, 123(1), 67–76.
    [Google Scholar]
  107. Zuffetti, C., Bersezio, R., Contini, D., & Petrizzo, M. R. (2018). Geology of the San Colombano hill, a quaternary isolated tectonic relief in the Po Plain of Lombardy (Northern Italy). Journal of Maps, 14(2), 199–211. https://doi.org/10.1080/17445647.2018.1443166
    [Google Scholar]
  108. Zuffetti, C., Bersezio, R., & Trombino, L. (2018). Significance of the morphological and stratigraphic surfaces in the Quaternary Po Plain: The San Colombano tectonic relief (Lombardy, Italy). Alpine and Mediterranean Quaternary, 31(1), 257–260.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12369
Loading
/content/journals/10.1111/bre.12369
Loading

Data & Media loading...

Keyword(s): Adriatic basin; foreland‐foredeep basin; Northern Apennines; Plio–Pleistocene; Po Plain; tectonics and sedimentation

Most Cited This Month Most Cited RSS feed