1887
Volume 32, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

Base‐salt relief influences salt flow, producing three‐dimensionally complex strains and multiphase deformation within the salt and its overburden. Understanding how base‐salt relief influences salt‐related deformation is important to correctly interpret salt basin kinematics and distribution of structural domains, which have important implications to understand the development of key petroleum system elements. The São Paulo Plateau, Santos Basin, Brazil is characterized by a >2 km thick, mechanically layered Aptian salt layer deposited above prominent base‐salt relief. We use 3D seismic reflection data, and physical and conceptual kinematic models to investigate how gravity‐driven translation above thick salt, underlain by complex base‐salt relief, generated a complex framework of salt structures and minibasins. We show that ramp‐syncline basins developed above and downdip of the main pre‐salt highs record c. 30 km of Late Cretaceous‐Paleocene basinward translation. As salt and overburden translated downdip, salt flux variations caused by the base‐salt relief resulted in non‐uniform motion of the cover, and the simultaneous development of extensional and contractional structures. Contraction preferentially occurred where salt flow locally decelerated, above landward‐dipping base‐salt and downdip of basinward‐dipping ramps. Extension occurred at the top of basinward‐dipping ramps and base‐salt plateaus, where salt flow locally accelerated. Where the base of the salt layer was broadly flat, structures evolved primarily by load‐driven passive diapirism. At the edge of or around smaller base‐salt highs, salt structures were affected by plan‐view rotation, shearing and divergent flow. The magnitude of translation (c. 30 km) and the style of salt‐related deformation observed on the São Paulo Plateau afford an improved kinematic model for the enigmatic Albian Gap, suggesting this structure formed by a combination of basinward salt expulsion and regional extension. These observations contribute to the long‐lived debate regarding the mechanisms of salt tectonics on the São Paulo Plateau, ultimately improving our general understanding of the effects of base‐salt relief on salt tectonics in other basins.

,

Zooms of the key, most distinctive types of structures associated with complex, multiphase deformation and salt flux variations observed in different domains in the study area: (a) salt‐cored bucklefolds; (b) collapsed folds; (a‐b) transition from buckle‐folds into collapsed folds over extensional hinge at the crest of the Tupi Sub‐High; (c) reactive diapirs; (d) reactive diapirs nucleating onto salt‐cored buckle‐folds; (e) passive diapirs; (f) squeezed diapirs; (g) fold‐injection; (h) thrust‐piercement; and (i) multiphase diapirs.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12375
2019-07-07
2020-07-12
Loading full text...

Full text loading...

References

  1. Albertz, M., & Ings, S. J. (2012). Some consequences of mechanical stratification in basin‐scale numerical models of passive‐margin salt tectonics. Geological Society, London, Special Publications, 363(1), 303–330. https://doi.org/10.1144/SP363.14
    [Google Scholar]
  2. Allen, H., Jackson, C. A. L., & Fraser, A. J. (2016). Gravity‐driven deformation of a youthful saline giant: The interplay between gliding and spreading in the Messinian basins of the Eastern Mediterranean. Petroleum Geoscience, 22(4), 340–356. https://doi.org/10.1144/petgeo2016-034
    [Google Scholar]
  3. Alves, T. M., Fetter, M., Lima, C., Cartwright, J. A., Cosgrove, J., Gangá, A., … Strugale, M. (2017). An incomplete correlation between pre‐salt topography, top reservoir erosion, and salt deformation in deep‐water Santos Basin (SE Brazil). Marine and Petroleum Geology, 79, 300–320. https://doi.org/10.1016/j.marpetgeo.2016.10.015
    [Google Scholar]
  4. Beloussov, V. V. (1959). Types of folding and their origin. International Geology Review, 1(2), 1–21. https://doi.org/10.1080/00206815909473393
    [Google Scholar]
  5. Brown, A. R. (2011). Interpretation of three‐dimensional seismic data. Tulsa, Oklahoma: Society of Exploration Geophysicists and American Association of Petroleum Geologists.
    [Google Scholar]
  6. Brun, J. P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28(6), 1123–1145. https://doi.org/10.1016/j.marpetgeo.2011.03.004
    [Google Scholar]
  7. Cartwright, J., Jackson, M., Dooley, T., & Higgins, S. (2012). Strain partitioning in gravity‐driven shortening of a thick, multilayered evaporite sequence. Geological Society, London, Special Publications, 363(1), 449–470. https://doi.org/10.1144/SP363.21
    [Google Scholar]
  8. Cobbold, P. R., Szatmari, P., Demercian, L. S., Coelho, D., & Rossello, E. A.. (1995). Seismic and experimental evidence for thin‐skinned horizontal shortening by convergent radial gliding on evaporites, deep‐water Santos Basin, Brazil. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective (Vol. 65, pp. 305–321). Tulsa, Oklahoma: AAPG Memoir.
    [Google Scholar]
  9. Contreras, J., Zühlke, R., Bowman, S., & Bechstädt, T. (2010). Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Marine and Petroleum Geology, 27(9), 1952–1980. https://doi.org/10.1016/j.marpetgeo.2010.06.007
    [Google Scholar]
  10. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society of London Special Publications, 363(1), 159–174. https://doi.org/10.1144/SP363.8
    [Google Scholar]
  11. Demercian, S., Szatmari, P., & Cobbold, P. R. (1993). Style and pattern of salt diapirs due to thin‐skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228(3–4), 393–433. https://doi.org/10.1016/0040-1951(93)90351-J
    [Google Scholar]
  12. Dooley, T. P., & Hudec, M. R. (2016). The effects of base‐salt relief on salt flow and suprasalt deformation patterns—Part 2: Application to the eastern Gulf of Mexico. Interpretation, 5(1), SD25‐SD38. https://doi.org/10.1190/INT-2016-0088.1
    [Google Scholar]
  13. Dooley, T. P., Hudec, M. R., Carruthers, D., Jackson, M. P., & Luo, G. (2018). The effects of base‐salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation, 5(1), SD1–SD23. https://doi.org/10.1190/INT-2016-0087.1
    [Google Scholar]
  14. Dooley, T. P., Hudec, M. R., Pichel, L. M., & Jackson, M. P. (2018). The impact of base‐salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: Insights from physical models. Geological Society, London, Special Publications, 476, SP476‐13. https://doi.org/10.1144/SP476.13
    [Google Scholar]
  15. Dooley, T. P., Jackson, M. P., Jackson, C. A. L., Hudec, M. R., & Rodriguez, C. R. (2015). Enigmatic structures within salt walls of the Santos Basin—Part 2: Mechanical explanation from physical modelling. Journal of Structural Geology, 75, 163–187. https://doi.org/10.1016/j.jsg.2015.01.009
    [Google Scholar]
  16. Fiduk, J. C., & Rowan, M. G. (2012). Analysis of folding and deformation within layered evaporites in Blocks BM‐S‐8 & ‐9, Santos Basin, Brazil. Geological Society, London, Special Publications, 363(1), 471–487.
    [Google Scholar]
  17. Gamboa, L. A. P., Machado, M. A. P., Silveira, D. P., Freitas, J. T. R., & Silva, S. R. P. (2008). Evaporitos estratificados no Atlântico Sul: interpretação sísmica e controle tectono‐estratigráfico na Bacia de Santos. In W.Mohriak, P.Szatmari, & S. M. C.Anjos (Org.), Sal: Geologia e Tectônica (2ed., pp. 343–361). São Paulo, Brazil: Editora Beca.
    [Google Scholar]
  18. Ge, H., Jackson, M. P., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423.
    [Google Scholar]
  19. Gemmer, L., Ings, S. J., Medvedev, S., & Beaumont, C. (2004). Salt tectonics driven by differential sediment loading: Stability analysis and finite‐element experiments. Basin Research, 16(2), 199–218. https://doi.org/10.1111/j.1365-2117.2004.00229.x
    [Google Scholar]
  20. Guerra, M. C., & Underhill, J. R. (2012). Role of halokinesis in controlling structural styles and sediment dispersal in the Santos Basin, offshore Brazil. Geological Society, London, Special Publications, 363(1), 175–206. https://doi.org/10.1144/SP363.9
    [Google Scholar]
  21. Hudec, M. R., & Jackson, M. P. (2006). Advance of allochthonous salt sheets in passive margins and orogens. AAPG Bulletin, 90(10), 1535–1564. https://doi.org/10.1306/05080605143
    [Google Scholar]
  22. Hudec, M. R., & Jackson, M. P. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1), 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  23. Hudec, M. R., & Jackson, M. P. A. (2004). Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 88(7), 971–990. https://doi.org/10.1306/02050403061
    [Google Scholar]
  24. Hudec, M. R., Jackson, M. P., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121(1–2), 201–221.
    [Google Scholar]
  25. Jackson, M. P. A., Hudec, M. R., Fraenkl, R., Sikkema, W., Binga, L., & Da Silva, J. (2001). Minibasins translating down a basement ramp in the deepwater monocline province of the Kwanza Basin, Angola [abs.]. In American Association of Petroleum Geologists Annual Meeting Official Program (Vol. 10, p. A99). Tulsa, Oklahoma.
  26. Jackson, C. A. L., Jackson, M. P., & Hudec, M. R. (2015). Understanding the kinematics of salt‐bearing passive margins: A critical test of competing hypotheses for the origin of the Albian Gap, Santos Basin, offshore Brazil. Geological Society of America Bulletin, 127(11–12), 1730–1751. https://doi.org/10.1130/B31290.1
    [Google Scholar]
  27. Jackson, C. A., Jackson, M. P., Hudec, M. R., & Rodriguez, C. (2014). Internal structure, kinematics, and growth of a salt wall: Insights from 3‐D seismic data. Geology, 42(4), 307–310. https://doi.org/10.1130/G34865.1
    [Google Scholar]
  28. Jackson, C. A. L., Jackson, M. P., Hudec, M. R., & Rodriguez, C. R. (2015). Enigmatic structures within salt walls of the Santos Basin—Part 1: Geometry and kinematics from 3D seismic reflection and well data. Journal of Structural Geology, 75, 135–162.
    [Google Scholar]
  29. Jackson, C. A. L., Rodriguez, C. R., Rotevatn, A., & Bell, R. E. (2014). Geological and geophysical expression of a primary salt weld: An example from the Santos Basin, Brazil. Interpretation, 2(4), SM77–SM89. https://doi.org/10.1190/INT-2014-0066.1
    [Google Scholar]
  30. Jackson, M. P., & Hudec, M. R. (2005). Stratigraphic record of translation down ramps in a passive‐margin salt detachment. Journal of Structural Geology, 27(5), 889–911. https://doi.org/10.1016/j.jsg.2005.01.010
    [Google Scholar]
  31. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  32. Karner, G. D., & Gambôa, L. A. P. (2007). Timing and origin of the South Atlantic pre‐salt sag basins and their capping evaporites. Geological Society, London, Special Publications, 285(1), 15–35. https://doi.org/10.1144/SP285.2
    [Google Scholar]
  33. Marton, G., Tari, G., & Lehmann, C. (1998). Evolution of salt‐related structures and their impact on the post‐salt petroleum systems of the Lower Congo Basin, offshore Angola. In American Association of Petroleum Geologists International Conference and Exhibition, Rio de Janeiro. Extended Abstracts Volume, 834–834. Tulsa, Oklahoma.
    [Google Scholar]
  34. Meisling, K. E., Cobbold, P. R., & Mount, V. S. (2001). Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin, 85(11), 1903–1924. https://doi.org/10.1306/8626D0A9-173B-11D7-8645000102C1865D
    [Google Scholar]
  35. Modica, C. J., & Brush, E. R. (2004). Postrift sequence stratigraphy, paleogeography, and fill history of the deep‐water Santos Basin, offshore southeast Brazil. AAPG Bulletin, 88(7), 923–945. https://doi.org/10.1306/01220403043
    [Google Scholar]
  36. Mohriak, W. U., Macedo, J. M., Castellani, R. T., Rangel, H. D., Barros, A. Z. N., Latgé, M. A. L., …Aires, J. R. (1995). Salt tectonics and structural styles in the deep‐water province of the Cabo Frio region, Rio de Janeiro, Brazil. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective (pp. 273–304). Tulsa, Oklahoma: AAPG Memoir 65.
    [Google Scholar]
  37. Mohriak, W., Nemčok, M., & Enciso, G. (2008). South Atlantic divergent margin evolution: Rift‐border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications, 294(1), 365–398. https://doi.org/10.1144/SP294.19
    [Google Scholar]
  38. Mohriak, W. U., Szatmari, P., & Anjos, S. (2012). Salt: Geology and tectonics of selected Brazilian basins in their global context. Geological Society, London, Special Publications, 363(1), 131–158. https://doi.org/10.1144/SP363.7
    [Google Scholar]
  39. Mohriak, W. U., Szatmari, P., & Anjos, S. M. C. (2009). Sal: Geologia e Tectônica (p. 450). São Paulo, Brazil: Editora Beca.
    [Google Scholar]
  40. Peel, F., Jackson, M. P., & Ormerod, D. (1998, November). Influence of major steps in the base of salt on the structural style of overlying thin‐skinned structures in deep water Angola. In American Association of Petroleum Geologists International Conference and Exhibition (pp. 366–367). Extended Abstracts Volume. Rio de Janeiro, Brazil.
    [Google Scholar]
  41. Peel, F. J. (2014). The engines of gravity‐driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142. https://doi.org/10.1016/j.tecto.2014.06.023
    [Google Scholar]
  42. Pichel, L. M., Finch, E., & Gawthorpe, R. (2018). Impacts of pre‐salt rift topography on salt tectonics.
  43. Pichel, L. M., Peel, F., Jackson, C. A.‐L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  44. Pichel, L. M., Finch, E., & Gawthorpe, R. L. (2019). The Impact of Pre-Salt Rift Topography on Salt Tectonics: A Discrete-Element Modeling Approach. Tectonics, 38(4), 1466–1488.
    [Google Scholar]
  45. Pichel, L. M., Huuse, M., Redfern, J., & Finch, E. (2019). The influence of base-salt relief, rift topography and regional events on salt tectonics offshore Morocco. Marine and Petroleum Geology, 103, 87–113.
    [Google Scholar]
  46. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and Kwanza basins. Geological Society, London, Special Publications, 363(1), 207–244. https://doi.org/10.1144/SP363.10
    [Google Scholar]
  47. Rodriguez, C. R., Jackson, C. L., Rotevatn, A., Bell, R. E., & Francis, M. (2018). Dual tectonic‐climatic controls on salt giant deposition in the Santos Basin, offshore Brazil. Geosphere, 14(1), 215–242. https://doi.org/10.1130/GES01434.1
    [Google Scholar]
  48. Rowan, M. G., Giles, K. A., Hearon, T. E.IV, & Fiduk, J. C. (2016). Megaflaps adjacent to salt diapirs. AAPG Bulletin, 100(11), 1723–1747. https://doi.org/10.1306/05241616009
    [Google Scholar]
  49. Rowan, M. G., Jackson, M. P., & Trudgill, B. D. (1999). Salt‐related fault families and fault welds in the northern Gulf of Mexico. AAPG Bulletin, 83(9), 1454–1484. https://doi.org/10.1306/E4FD41E3-1732-11D7-8645000102C1865D
    [Google Scholar]
  50. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold‐belts on passive margins. In: K. R.McClay (Ed.) Thrust Tectonics and Hydrocarbon Systems. AAPG Memoir, vol. 82, pp. 157–182.
    [Google Scholar]
  51. Rowan, M. G., Trudgill, B. D., & Fiduk, J. C. (2000). Deep‐water, salt‐cored fold‐belts: Lessons from the Mississippi Fan and Perdido fold‐belts, Northern Gulf of Mexico. Geophysical monograph-American geophysical union, 115, 173–192.
    [Google Scholar]
  52. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82(5), 1055–1082.
    [Google Scholar]
  53. Szatmari, P. M. C. M., Guerra, M. C. M., & Pequeno, M. A. (1996). Genesis of large counter‐regional normal fault by flow of Cretaceous salt in the South Atlantic Santos Basin, Brazil. Geological Society, London, Special Publications, 100(1), 259–264. https://doi.org/10.1144/GSL.SP.1996.100.01.16
    [Google Scholar]
  54. Van Keken, P. E., Spiers, C. J., Van den Berg, A. P., & Muyzert, E. J. (1993). The effective viscosity of rocksalt: Implementation of steady‐state creep laws in numerical models of did not however detail the way in salt diapirism. Tectonophysics, 225(4), 457–476. https://doi.org/10.1016/0040-1951(93)90310-G
    [Google Scholar]
  55. Weijermars, R., Jackson, M. P., & Dooley, T. (2014). Predicting the depth of viscous stress peaks in moving salt sheets: Conceptual framework and implications for drilling viscous stress peaks in moving salt sheets. AAPG Bulletin, 98(5), 911–945. https://doi.org/10.1306/09121313044
    [Google Scholar]
  56. Weijermars, R., Jackson, M. T., & Vendeville, B. (1993). Rheological and tectonic modeling ofsalt provinces. Tectonophysics, 217(1–2), 143–174. https://doi.org/10.1016/0040-1951(93)90208-2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12375
Loading
/content/journals/10.1111/bre.12375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error