1887
Volume 32, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

A provenance shift occurred during the Early Eocene in the Ager Basin. A sediment source region in the southern foreland dominated by Variscan granitic basement of the Ebro Massif is interpreted for the Cretaceous ‐ Paleocene strata. This changes to a source region in the northern fold‐and‐thrust belt for Early Eocene strata, eroding recycled Mesozoic strata with plutonic and metamorphic Paleozoic basement exhumed during the early stages of Pyrenean shortening.

, Abstract

This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south‐central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U‐Pb‐He double dating. Here we present and interpret 837 new DZ U‐Pb ages, 113 of which are new DZ (U‐Th)/He double‐dated zircons. U‐Pb‐He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U‐Th)/He (ZHe) ages, despite their indistinguishable U‐Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U‐Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north‐east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U‐Pb signatures to age distributions dominated by Cambro‐Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12376
2019-06-17
2024-04-25
Loading full text...

Full text loading...

References

  1. Allen, P. A. (2017). Sediment routing systems: The fate of sediment from source to sink. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  2. Anderson, A. J., Hodges, K. V., & van Soest, M. C. (2017). Empirical constraints on the effects of radiation damage on helium diffusion in zircon. Geochimica et Cosmochimica Acta, 218, 308–322. https://doi.org/10.1016/j.gca.2017.09.006
    [Google Scholar]
  3. Beamud, E., Muñoz, J. A., Fitzgerald, P. G., Baldwin, S. L., Garcés, M., Cabrera, L., & Metcalf, J. R. (2011). Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: Constraints on the exhumation of the South‐Central Pyrenees: South‐Central Pyrenees magnetostratigraphy and thermochronology. Basin Research, 23(3), 309–331. https://doi.org/10.1111/j.1365-2117.2010.00492.x
    [Google Scholar]
  4. Beaumont, C., Muñoz, J. A., Hamilton, J., & Fullsack, P. (2000). Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth, 105(B4), 8121–8145. https://doi.org/10.1029/1999JB900390
    [Google Scholar]
  5. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42(7), 607–610. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  6. Bosch, G. V., Teixell, A., Jolivet, M., Labaume, P., Stockli, D., Domenech, M., & Monie, P. (2016). Timing of Eocene‐Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west‐central Pyrenees) revealed by multi‐method thermochronology. Comptes Rendus Géoscience, 348(3), 246–256. https://doi.org/10.1016/j.crte.2016.01.001
    [Google Scholar]
  7. Brandon, M. T., Roden‐Tice, M. K., & Garver, J. I. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8), 985–1009. https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2
    [Google Scholar]
  8. Cabello, P., Domínguez, D., Murillo‐López, M. H., López‐Blanco, M., García‐Sellés, D., Cuevas, J. L., … Arbués, P. (2018). From conventional outcrop datasets and digital outcrop models to flow simulation in the Pont de Montanyana point‐bar deposits (Ypresian, Southern Pyrenees). Marine and Petroleum Geology, 94, 19–42. https://doi.org/10.1016/j.marpetgeo.2018.03.040
    [Google Scholar]
  9. Campbell, I. H., Reiners, P. W., Allen, C. M., Nicolescu, S., & Upadhyay, R. (2005). He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, 237(3), 402–432. https://doi.org/10.1016/j.epsl.2005.06.043
    [Google Scholar]
  10. Carrapa, B. (2010). Resolving tectonic problems by dating detrital minerals. Geology, 38(2), 191–192. https://doi.org/10.1130/focus022010.1
    [Google Scholar]
  11. Carrapa, B., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., & Sudo, M. (2009). Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history. Geology, 37(5), 407–410. https://doi.org/10.1130/G25698A.1
    [Google Scholar]
  12. Castiñeiras, P., Navidad, M., Liesa, M., Carreras, J., & Casas, J. M. (2008). U‐Pb zircon ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the Eastern Pyrenees: New insights into the pre‐Variscan evolution of the northern Gondwana margin. Tectonophysics, 461(1–4), 228–239. https://doi.org/10.1016/j.tecto.2008.04.005
    [Google Scholar]
  13. Chanvry, E., Deschamps, R., Joseph, P., Puigdefàbregas, C., Poyatos‐Moré, M., Serra‐Kiel, J., … Teinturier, S. (2018). The influence of intrabasinal tectonics in the stratigraphic evolution of piggyback basin fills: Towards a model from the Tremp‐Graus‐Ainsa Basin (South‐Pyrenean Zone, Spain). Sedimentary Geology, 377, 34–62https://doi.org/10.1016/j.sedgeo.2018.09.007
    [Google Scholar]
  14. Choukroune, P. (1992). Tectonic evolution of the Pyrenees. Annual Review of Earth and Planetary Sciences, 20, 143–158. https://doi.org/10.1146/annurev.ea.20.050192.001043
    [Google Scholar]
  15. Clark, J. D., Puigdefabregas, C., Castelltort, S., & Fildani, A. (2017). Propagation of environmental signals within source‐to‐sink stratigraphy. Tulsa, OK: SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  16. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013). The ICS international chronostratigraphic chart. Episodes, 36(3), 199–204.
    [Google Scholar]
  17. Colombo, F., & Cuevas, J. L. (1993). Características estratigráficas y sedimentológicas del" Garumniense" en el sector de Ager (Pre‐Pirineo, Lleida). Acta Geologica Hispanica, 28(4), 15–32.
    [Google Scholar]
  18. de Reuver, F. (1981). Een sediment ‐ Petrografisch Onderzoek Aan Zandstenen van de Eocene Montanana ‐ Groep Zuidelijke Pyreneeen ‐ Spanje (Ms Thesis). Utrecht University, Utrecht, Netherlands.
    [Google Scholar]
  19. Decelles, P. G., Gray, M. B., Ridgway, K. D., Cole, R. B., Srivastava, P., Pequera, N., & Pivnik, D. A. (1991). Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geological Society of America Bulletin, 103(11), 1458. https://doi.org/10.1130/0016-7606(1991)103<1458:KHOAFU>2.3.CO;2
    [Google Scholar]
  20. Denèle, Y., Laumonier, B., Paquette, J.‐L., Olivier, P., Gleizes, G., & Barbey, P. (2014). Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. Geological Society, London, Special Publications, 405(1), 265–287. https://doi.org/10.1144/SP405.5
    [Google Scholar]
  21. Dias, A., Chemale, F., Hackspacher, P. C., Soares, C. J., O‐Aristizabal, C. I., & Tello, C. (2018). Fission track and U‐Pb double dating of detrital zircon applied to the intracratonic Mesozoic Bauru Basin, Brazil. Geological Journal, 53(5), 1767–1780. https://doi.org/10.1002/gj.3005
    [Google Scholar]
  22. Dickinson, W. R. (1988). Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In K. L.Kleinspehn & C. Paola (Eds), New perspectives in basin analysis (pp. 3–25). New York, NY: Springer.
    [Google Scholar]
  23. Dickinson, W. R. (2008). Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth and Planetary Science Letters, 275(1), 80–92. https://doi.org/10.1016/j.epsl.2008.08.003
    [Google Scholar]
  24. Díez‐Canseco, D., Arz, J. A., Benito, M. I., Díaz‐Molina, M., & Arenillas, I. (2014). Tidal influence in redbeds: A palaeoenvironmental and biochronostratigraphic reconstruction of the Lower Tremp Formation (South‐Central Pyrenees, Spain) around the Cretaceous/Paleogene boundary. Sedimentary Geology, 312, 31–49. https://doi.org/10.1016/j.sedgeo.2014.06.008
    [Google Scholar]
  25. Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), 259–274. https://doi.org/10.1007/BF00373790
    [Google Scholar]
  26. Dominici, S., & Kowalke, T. (2007). Depositional dynamics and the record of ecosystem stability: Early Eocene faunal gradients in the Pyrenean Foreland, Spain. PALAIOS, 22(3), 268–284. https://doi.org/10.2110/palo.2005.p05-022r
    [Google Scholar]
  27. Dreyer, T., & Fält, L. M. (1993). Facies analysis and high‐resolution sequence stratigraphy of the Lower Eocene shallow marine Ametlla Formation, Spanish Pyrenees. Sedimentology, 40(4), 667–697. https://doi.org/10.1111/j.1365-3091.1993.tb01355.x
    [Google Scholar]
  28. Ehlers, T. A., Chaudhri, T., Kumar, S., Fuller, C. W., Willett, S. D., Ketcham, R. A., … Gleadow, A. J. (2005). Computational tools for low‐temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58(1), 589–622. https://doi.org/10.2138/rmg.2005.58.22
    [Google Scholar]
  29. Erdos, Z., Beek, P., & Huismans, R. S. (2014). Evaluating balanced section restoration with thermochronology data: A case study from the Central Pyrenees. Tectonics, 33(5), 617–634. https://doi.org/10.1002/2013TC003481
    [Google Scholar]
  30. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1), 277–303. https://doi.org/10.2113/0530277
    [Google Scholar]
  31. Fildani, A., & Hessler, A. M. (2005). Stratigraphic record across a retroarc basin inversion: Rocas Verdes‐Magallanes Basin, Patagonian Andes, Chile. Geological Society of America Bulletin, 117(11), 1596. https://doi.org/10.1130/B25708.1
    [Google Scholar]
  32. Fildani, A., McKay, M. P., Stockli, D., Clark, J., Dykstra, M. L., Stockli, L., & Hessler, A. M. (2016). The ancestral Mississippi drainage archived in the late Wisconsin Mississippi deep‐sea fan. Geology, 44(6), 479–482. https://doi.org/10.1130/G37657.1
    [Google Scholar]
  33. Filleaudeau, P.‐Y., Mouthereau, F., & Pik, R. (2012). Thermo‐tectonic evolution of the south‐central Pyrenees from rifting to orogeny: Insights from detrital zircon U/Pb and (U‐Th)/He thermochronometry. Basin Research, 24(4), 401–417. https://doi.org/10.1111/j.1365-2117.2011.00535.x
    [Google Scholar]
  34. Fillon, C., Gautheron, C., & van der Beek, P. (2013). Oligocene‐Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low‐temperature thermochronology. Journal of the Geological Society, 170(1), 67–77. https://doi.org/10.1144/jgs2012-051
    [Google Scholar]
  35. Fitzgerald, P. G., Muñoz, J. A., Coney, P. J., & Baldwin, S. L. (1999). Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters, 173(3), 157–170. https://doi.org/10.1016/S0012-821X(99)00225-3
    [Google Scholar]
  36. Fosdick, J. C., Grove, M., Graham, S. A., Hourigan, J. K., Lovera, O., & Romans, B. W. (2015). Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes. Basin Research, 27(4), 546–572. https://doi.org/10.1111/bre.12088
    [Google Scholar]
  37. Fox, M., Dai, J.‐G., & Carter, A. (2019). Badly behaved detrital (U‐Th)/He ages: Problems with He diffusion models or geological models?Geochemistry, Geophysics, Geosystems, 20. https://doi.org/10.1029/2018GC008102
    [Google Scholar]
  38. Galán‐Abellán, B., López‐Gómez, J., Barrenechea, J. F., Marzo, M., De la Horra, R., & Arche, A. (2013). The beginning of the Buntsandstein cycle (Early–Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications. Sedimentary Geology, 296, 86–102. https://doi.org/10.1016/j.sedgeo.2013.08.006
    [Google Scholar]
  39. Galbrun, B., Feist, M., Colombo, F., Rocchia, R., & Tambareau, Y. (1993). Magnetostratigraphy and biostratigraphy of Cretaceous‐Tertiary continental deposits, Ager Basin, Province of Lerida, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 102(1), 41–52. https://doi.org/10.1016/0031-0182(93)90004-3
    [Google Scholar]
  40. Garcia‐Castellanos, D., & Larrasoaña, J. C. (2015). Quantifying the post‐tectonic topographic evolution of closed basins: The Ebro basin (northeast Iberia). Geology, 43(8), 663–666. https://doi.org/10.1130/G36673.1
    [Google Scholar]
  41. Garver, J. I., Brandon, M. T., Roden‐Tice, M., & Kamp, P. J. (1999). Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. Geological Society, London, Special Publications, 154(1), 283–304. https://doi.org/10.1144/GSL.SP.1999.154.01.13
    [Google Scholar]
  42. Garzanti, E., Doglioni, C., Vezzoli, G., & Ando, S. (2007). Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115(3), 315–334. https://doi.org/10.1086/512755
    [Google Scholar]
  43. Gehrels, G. (2014). Detrital zircon U‐Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42(1), 127–149. https://doi.org/10.1146/annurev-earth-050212-124012
    [Google Scholar]
  44. Gómez‐Gras, D., Collado, R., Coll, X., & Roigé, M. (2017). Caracterización composicional de las areniscas del Cretácico Superior en las Sierras Marginales y Exteriores (cuenca surpirenaica): análisis mediante minerales pesados y petrografía óptica. Geogaceta, 61, 163–166.
    [Google Scholar]
  45. Gómez‐Gras, D., Roigé, M., Fondevilla, V., Oms, O., Boya, S., & Remacha, E. (2016). Provenance constraints on the Tremp Formation paleogeography (southern Pyrenees): Ebro Massif VS Pyrenees sources. Cretaceous Research, 57, 414–427. https://doi.org/10.1016/j.cretres.2015.09.010
    [Google Scholar]
  46. Graham, S. A., Tolson, R. B., DeCelles, P. G., Ingersoll, R. V., Bargar, E., Caldwell, M., … Handschy, J. W. (1986). Provenance modeling as a technique for analyzing source terrane evolution and controls on foreland sedimentation. Foreland Basins, 8, 425–436. https://doi.org/10.1002/9781444303810.ch23
    [Google Scholar]
  47. Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., & Giester, G. (2013). Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U‐Th)/He thermochronology. American Journal of Science, 313(3), 145–198. https://doi.org/10.2475/03.2013.01
    [Google Scholar]
  48. Hadlari, T., Swindles, G. T., Galloway, J. M., Bell, K. M., Sulphur, K. C., Heaman, L. M., … Fallas, K. M. (2015). 1.8 billion years of detrital zircon recycling calibrates a refractory part of Earth's sedimentary cycle. PLoS One, 10(12), e0144727. https://doi.org/10.1371/journal.pone.0144727
    [Google Scholar]
  49. Hart, N. R., Stockli, D. F., & Hayman, N. W. (2016). Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U‐Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere, 12(4), 1166–1186. https://doi.org/10.1130/GES01273.1
    [Google Scholar]
  50. Hart, N. R., Stockli, D. F., Lavier, L. L., & Hayman, N. W. (2017). Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics, 36(6), 1103–1128. https://doi.org/10.1002/2016TC004365
    [Google Scholar]
  51. Horton, B., Parra, M., Saylor, J., Nie, J., Mora, A., Torres, V., … Strecker, M. (2010). Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today, 20(7), 4–10. https://doi.org/10.1130/GSATG76A.1
    [Google Scholar]
  52. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54(1), 103–116. https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D
    [Google Scholar]
  53. Institut Cartogràfic i Geològic de Catalunya
    Institut Cartogràfic i Geològic de Catalunya . (2016). Mapa geològic comarcal de Catalunya 1:50.000. Retrieved from http://www.icgc.cat/en/Public-Administration-and-Enterprises/Downloads/Geological-and-geothematic-cartography/Geological-cartography/Geological-map-of-Catalonia-1-50-000
    [Google Scholar]
  54. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211(1), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  55. Johnson, S. P., Kirkland, C. L., Evans, N. J., McDonald, B. J., & Cutten, H. N. (2018). The complexity of sediment recycling as revealed by common Pb isotopes in K‐feldspar. Geoscience Frontiers, 9(5), 1515–1527. https://doi.org/10.1016/j.gsf.2018.03.009
    [Google Scholar]
  56. Juez‐Larré, J., & Andriessen, P. A. M. (2006). Tectonothermal evolution of the northeastern margin of Iberia since the break‐up of Pangea to present, revealed by low‐temperature fission‐track and (U–Th)/He thermochronology: A case history of the Catalan Coastal Ranges. Earth and Planetary Science Letters, 243(1–2), 159–180. https://doi.org/10.1016/j.epsl.2005.12.026
    [Google Scholar]
  57. Koshnaw, R. I., Stockli, D. F., & Schlunegger, F. (2018). Timing of the Arabia‐Eurasia continental collision—Evidence from detrital zircon U‐Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology, 47(1), 4. https://doi.org/10.1130/G45499.1
    [Google Scholar]
  58. Labaume, P., Meresse, F., Jolivet, M., & Teixell, A. (2016). Exhumation sequence of the basement thrust units in the west‐central Pyrenees. Constraints from apatite fission track analysis. Geogaceta, 60, 11–14.
    [Google Scholar]
  59. Laskowski, A. K., DeCelles, P. G., & Gehrels, G. E. (2013). Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics, 32(5), 1027–1048. https://doi.org/10.1002/tect.20065
    [Google Scholar]
  60. Lawton, T. F. (2014). Small grains, big rivers, continental concepts. Geology, 42(7), 639–640. https://doi.org/10.1130/focus072014.1
    [Google Scholar]
  61. Lister, C. (1987). Terrestrial heat flow and lithosphere structure. Eos, Transactions American Geophysical Union, 68(39), 775–776. https://doi.org/10.1029/EO068i039p00775-02
    [Google Scholar]
  62. Ludwig, K. R. (2011). Isoplot v. 4.15: A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special. Publication, 4, 75.
    [Google Scholar]
  63. Mackaman‐Lofland, C., Horton, B. K., Fuentes, F., Constenius, K. N., & Stockli, D. F. (2018). Mesozoic to Cenozoic retroarc basin evolution during changes in tectonic regime, southern Central Andes (31–33°S): Insights from zircon U Pb geochronology. Journal of South American Earth Sciences, 89, 299–318. https://doi.org/10.1016/j.jsames.2018.10.004
    [Google Scholar]
  64. Malkowski, M. A., Schwartz, T. M., Sharman, G. R., Sickmann, Z. T., & Graham, S. A. (2017). Stratigraphic and provenance variations in the early evolution of the Magallanes‐Austral foreland basin: Implications for the role of longitudinal versus transverse sediment dispersal during arc‐continent collision. Geological Society of America Bulletin, 129(3–4), 349–371. https://doi.org/10.1130/B31549.1
    [Google Scholar]
  65. Malusà, M. G., Carter, A., Limoncelli, M., Villa, I. M., & Garzanti, E. (2013). Bias in detrital zircon geochronology and thermochronometry. Chemical Geology, 359, 90–107. https://doi.org/10.1016/j.chemgeo.2013.09.016
    [Google Scholar]
  66. Margalef, A., Castiñeiras, P., Casas, J. M., Navidad, M., Liesa, M., Linnemann, U., … Gärtner, A. (2016). Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance. Tectonophysics, 681, 124–134. https://doi.org/10.1016/j.tecto.2016.03.015
    [Google Scholar]
  67. Martí, J., Solari, L., Casas, J. M., & Chichorro, M. (2019). New late Middle to early Late Ordovician U‐Pb zircon ages of extension‐related felsic volcanic rocks in the Eastern Pyrenees (NE Iberia): Tectonic implications. Geological Magazine, 1–10. https://doi.org/10.1017/S0016756819000116
    [Google Scholar]
  68. Martínez, F. J., Dietsch, C., Aleinikoff, J., Cirés, J., Arboleya, M. L., Reche, J., & Gómez‐Gras, D. (2016). Provenance, age, and tectonic evolution of Variscan flysch, southeastern France and northeastern Spain, based on zircon geochronology. Geological Society of America Bulletin, 128(5–6), 842–859. https://doi.org/10.1130/B31316.1
    [Google Scholar]
  69. Martínez, F. J., Reche, J., & Iriondo, A. (2008). U‐Pb Shrimp‐RG zircon ages of Variscan igneous rocks from the Guilleries massif (NE Iberia pre‐Mesozoic basement). Geological Implications. Comptes Rendus Geoscience, 340(4), 223–232. https://doi.org/10.1016/j.crte.2007.12.006
    [Google Scholar]
  70. Marzo, M., Nijman, W., & Puigdefabregas, C. (1988). Architecture of the Castissent fluvial sheet sandstones, Eocene, south Pyrenees, Spain. Sedimentology, 35(5), 719–738. https://doi.org/10.1111/j.1365-3091.1988.tb01247.x
    [Google Scholar]
  71. Masriera, A., & Ullastre, J. (1982). Hipótesis y problemas acerca del origen de las Asociaciones de minerales pesados del Senoniense del Pirineo Catalán. Cuadernos de Geología Ibérica, 8, 949–963.
    [Google Scholar]
  72. Maurel, O., Respaut, J.-P., Monié, P., Arnaud, N., & Brunel, M. (2004). U-Pb emplacement and 40Ar/39Ar cooling ages of the eastern Mont-Louis granite massif (Eastern Pyrenees, France). Comptes Rendus Geoscience, 336(12), 1091–1098. https://doi.org/10.1016/j.crte.2004.04.005
    [Google Scholar]
  73. Maurel, O., Monie, P., Pik, R., Arnaud, N., Brunel, M., & Jolivet, M. (2008). The Meso‐Cenozoic thermo‐tectonic evolution of the Eastern Pyrenees: An 40Ar/39Ar fission track and (U–Th)/He thermochronological study of the Canigou and Mont‐Louis massifs. International Journal of Earth Sciences, 97(3), 565–584. https://doi.org/10.1007/s00531-007-0179-x
    [Google Scholar]
  74. Metcalf, J. R., Fitzgerald, P. G., Baldwin, S. L., & Muñoz, J.‐A. (2009). Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Science Letters, 287(3), 488–503. https://doi.org/10.1016/j.epsl.2009.08.036
    [Google Scholar]
  75. Mey, P. H. W., Nagtegaal, P. J. C., Roberti, K. J., & Hartevelt, J. J. A. (1968). Lithostratigraphic subdivision of post‐Hercynian deposits in the south‐central Pyrenees, Spain. Leidse Geologische Mededelingen, 41(1), 221–228.
    [Google Scholar]
  76. Miall, A. D. (1974). Paleocurrent analysis of alluvial sediments; a discussion of directional variance and vector magnitude. Journal of Sedimentary Research, 44(4), 1174–1185. https://doi.org/10.1306/212F6C6C-2B24-11D7-8648000102C1865D
    [Google Scholar]
  77. Moecher, D. P., & Samson, S. D. (2006). Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters, 247(3), 252–266. https://doi.org/10.1016/j.epsl.2006.04.035
    [Google Scholar]
  78. Morris, R. G., Sinclair, H. D., & Yelland, A. J. (1998). Exhumation of the Pyrenean orogen: Implications for sediment discharge. Basin Research, 10(1), 69–85. https://doi.org/10.1046/j.1365-2117.1998.00053.x
    [Google Scholar]
  79. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124(1), 3–29. https://doi.org/10.1016/S0037-0738(98)00118-3
    [Google Scholar]
  80. Mouthereau, F., Filleaudeau, P.‐Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., … Masini, E. (2014). Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics, 33(12), 2283–2314. https://doi.org/10.1002/2014TC003663
    [Google Scholar]
  81. Muñoz, J. A. (1992). Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In Thrust tectonics (pp. 235–246). Retrieved from http://link.springer.com/chapter/10.1007/978-94-011-3066-0_21
    [Google Scholar]
  82. Mutti, E., Séguret, M., & Sgavetti, M. (1988). Sedimentation and deformation in the Tertiary sequences of the southern Pyrenees: field trip 7. University of Parma, 153–198.
  83. Nijman, W. (1990). Thrust sheet rotation?—The South Pyrenean Tertiary basin configuration reconsidered. Geodinamica Acta, 4(1), 17–42. https://doi.org/10.1080/09853111.1990.11105198
    [Google Scholar]
  84. Nijman, W. (1998). Cyclicity and basin axis shift in a piggyback basin: Towards modelling of the Eocene Tremp‐Ager Basin, South Pyrenees, Spain. Geological Society, London, Special Publications, 134(1), 135–162. https://doi.org/10.1144/GSL.SP.1998.134.01.07
    [Google Scholar]
  85. Odlum, M. L., & Stockli, D. F. (2019). Thermotectonic evolution of the North Pyrenean Agly Massif during Early Cretaceous hyperextension using multi‐mineral U‐Pb thermochronometry. Tectonics, 38. https://doi.org/10.1029/2018TC005298
    [Google Scholar]
  86. Odlum, M. L., Stockli, D. F., Capaldi, T. N., Thomson, K. D., Clark, J., Puigdefàbregas, C., & Fildani, A. (2019), Tectonic and sediment provenance evolution of the South Eastern Pyrenean foreland basins during rift margin inversion and orogenic uplift. Tectonophysics. https://doi.org/10.1016/j.tecto.2019.05.008
    [Google Scholar]
  87. Ogg, J. G., Ogg, G., & Gradstein, F. M. (2016). A concise geologic time scale: 2016. Elsevier.
    [Google Scholar]
  88. Olariu, C., Steel, R. J., Dalrymple, R. W., & Gingras, M. K. (2012). Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sedimentary Geology, 279, 134–155. https://doi.org/10.1016/j.sedgeo.2012.07.018
    [Google Scholar]
  89. Orme, D. A., Guenthner, W. R., Laskowski, A. K., & Reiners, P. W. (2016). Long‐term tectonothermal history of Laramide basement from zircon–He age‐eU correlations. Earth and Planetary Science Letters, 453, 119–130. https://doi.org/10.1016/j.epsl.2016.07.046
    [Google Scholar]
  90. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  91. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. https://doi.org/10.1111/j.1751-908X.2012.00158.x
    [Google Scholar]
  92. Poyatos‐Moré, M., Roigé, M., Gómez‐Gras, D., Solé, X., Duller, R. A., & Boya, S. (2017, June). Sediment routing and fluvial architecture in the Ypresian‐Lutetian Corçà Fm. (Àger subbasin, south‐central Pyrenees, Spain). Presented at the SEPM Research Conference Propagation of Environmental Signals within Source‐to‐Sink Stratigraphy, Ainsa, Spain.
    [Google Scholar]
  93. Puigdefàbregas, C., Muñoz, J. A., & Vergés, J. (1992). Thrusting and foreland basin evolution in the Southern Pyrenees. In K. R.McClay (Ed.), Thrust tectonics (pp. 247–254). Dordrecht: Springer.
    [Google Scholar]
  94. Puigdefàbregas, C., & Souquet, P. (1986). Tecto‐sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics, 129(1), 173–203. https://doi.org/10.1016/0040-1951(86)90251-9
    [Google Scholar]
  95. Pujols, E. J., Leva López, J., Stockli, D. F., Rossi, V. M., & Steel, R. J. (2018). New insights into the stratigraphic and structural evolution of the middle Jurassic S. Neuquén Basin from Detrital Zircon (U‐Th)/(He‐Pb) and Apatite (U‐Th)/He ages. Basin Research, 30(6), 1280–1297. https://doi.org/10.1111/bre.12304
    [Google Scholar]
  96. Rahl, J. M., Ehlers, T. A., & van der Pluijm, B. A. (2007). Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth and Planetary Science Letters, 256(1), 147–161. https://doi.org/10.1016/j.epsl.2007.01.020
    [Google Scholar]
  97. Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S., & Allen, C. M. (2003). Combined single‐grain (U‐Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 31(9), 761–764. https://doi.org/10.1130/G19653.1
    [Google Scholar]
  98. Rahl, J. M., Haines, S. H., & Van der Pluijm, B. A. (2011). Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, 307(1–2), 180–190. https://doi.org/10.1016/j.epsl.2011.04.036
    [Google Scholar]
  99. Reiners, P. W. (2005). Zircon (U‐Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1), 151–179. https://doi.org/10.2138/rmg.2005.58.6
    [Google Scholar]
  100. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202
    [Google Scholar]
  101. Reiners, P. W., Campbell, I. H., Nicolescu, S., Allen, C. M., Hourigan, J. K., Garver, J. I., … Cowen, D. S. (2005). (U‐Th)/(He‐Pb) double dating of detrital zircons. American Journal of Science, 305(4), 259–311. https://doi.org/10.2475/ajs.305.4.259
    [Google Scholar]
  102. Reiners, P. W., Farley, K. A., & Hickes, H. J. (2002). He diffusion and (U–Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1), 297–308. https://doi.org/10.1016/S0040-1951(02)00058-6
    [Google Scholar]
  103. Reiners, P. W., Spell, T. L., Nicolescu, S., & Zanetti, K. A. (2004). Zircon (U‐Th)/He thermochronometry: He diffusion and comparisons with 40 Ar/39 Ar dating. Geochimica et Cosmochimica Acta, 68(8), 1857–1887. https://doi.org/10.1016/j.gca.2003.10.021
    [Google Scholar]
  104. Roigé, M., Gómez‐Gras, D., Remacha, E., Boya, S., Viaplana‐Muzas, M., & Teixell, A. (2017). Recycling an uplifted early foreland basin fill: An example from the Jaca basin (Southern Pyrenees, Spain). Sedimentary Geology, 360, 1–21. https://doi.org/10.1016/j.sedgeo.2017.08.007
    [Google Scholar]
  105. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  106. Sambridge, M. S., & Compston, W. (1994). Mixture modeling of multi‐component data sets with application to ion‐probe zircon ages. Earth and Planetary Science Letters, 128(3–4), 373–390. https://doi.org/10.1016/0012-821X(94)90157-0
    [Google Scholar]
  107. Saylor, J. E., Stockli, D. F., Horton, B. K., Nie, J., & Mora, A. (2012). Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124(5–6), 762–779. https://doi.org/10.1130/B30534.1
    [Google Scholar]
  108. Sharman, G. R., Hubbard, S. M., Covault, J. A., Hinsch, R., Linzer, H.‐G., & Graham, S. A. (2017). Sediment routing evolution in the North Alpine Foreland Basin, Austria: Interplay of transverse and longitudinal sediment dispersal. Basin Research, 30(3), 426–447. https://doi.org/10.1111/bre.12259
    [Google Scholar]
  109. Simó, A. (1986). Carbonate platform depositional sequences, Upper Cretaceous, south‐central Pyrenees (Spain). Tectonophysics, 129(1), 205–231. https://doi.org/10.1016/0040-1951(86)90252-0
    [Google Scholar]
  110. Sinclair, H. D., Gibson, M., Naylor, M., & Morris, R. G. (2005). Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science, 305(5), 369–406. https://doi.org/10.2475/ajs.305.5.369
    [Google Scholar]
  111. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., … Whitehouse, M. J., 2008). Plešovice zircon—a new natural reference material for U‐Pb and Hf isotopic microanalysis. Chemical Geology, 249(1), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005others
    [Google Scholar]
  112. Solé, J., Pi, T., & Enrique, P. (2003). New geochronological data on the Late Cretaceous alkaline magmatism of the northeast Iberian Peninsula. Cretaceous Research, 24(2), 135–140. https://doi.org/10.1016/S0195-6671(03)00030-2
    [Google Scholar]
  113. Stockli, D. F. (2005). Application of low‐temperature thermochronometry to extensional tectonic settings. Reviews in Mineralogy and Geochemistry, 58(1), 411–448. https://doi.org/10.2138/rmg.2005.58.16
    [Google Scholar]
  114. Teixell, A. (1996). The Ansó transect of the southern Pyrenees: Basement and cover thrust geometries. Journal of the Geological Society, 153(2), 301–310. https://doi.org/10.1144/gsjgs.153.2.0301
    [Google Scholar]
  115. Ternois, S., Odlum, M., Ford, M., Pik, R., Stockli, D., Tibari, B., … Bernard, V. (2019). Thermochronological evidence of early orogenesis, Eastern Pyrenees, France. Tectonics, 38(4), 1308–1336. https://doi.org/10.1029/2018TC005254
    [Google Scholar]
  116. Thomson, K. D., Stockli, D. F., Clark, J. D., Puigdefàbregas, C., & Fildani, A. (2017). Detrital zircon (U‐Th)/(He‐Pb) double‐dating constraints on provenance and foreland basin evolution of the Ainsa Basin, south‐central Pyrenees, Spain. Tectonics, 36(7), 1352–1375. https://doi.org/10.1002/2017TC004504
    [Google Scholar]
  117. Vacherat, A., Mouthereau, F., Pik, R., Bernet, M., Gautheron, C., Masini, E., … Lahfid, A. (2014). Thermal imprint of rift‐related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters, 408, 296–306. https://doi.org/10.1016/j.epsl.2014.10.014
    [Google Scholar]
  118. Vacherat, A., Mouthereau, F., Pik, R., Huyghe, D., Paquette, J.‐L., Christophoul, F., … Tibari, B. (2017). Rift‐to‐collision sediment routing in the Pyrenees: A synthesis from sedimentological, geochronological and kinematic constraints. Earth‐Science Reviews, 172, 43–74. https://doi.org/10.1016/j.earscirev.2017.07.004
    [Google Scholar]
  119. Van Hoorn, B. (1970). Sedimentology and paleogeography of an Upper Cretaceous turbidite basin in the South‐Central Pyrenees, Spain. Leidse Geologische Mededelingen, 45, 73–154.
    [Google Scholar]
  120. Vergés, J., Fernàndez, M., & Martìnez, A. (2002). The Pyrenean orogen: Pre‐, syn‐, and post‐collisional evolution. Journal of the Virtual Explorer, 8, 55–74. https://doi.org/10.3809/jvirtex.2002.00058
    [Google Scholar]
  121. Vergés, J., Millán, H., Roca, E., Muñoz, J. A., Marzo, M., Cirés, J., … Cloetingh, S. (1995). Eastern Pyrenees and related foreland basins: Pre‐, syn‐and post‐collisional crustal‐scale cross‐sections. Marine and Petroleum Geology, 12(8), 903–915. https://doi.org/10.1016/0264-8172(95)98854-X
    [Google Scholar]
  122. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224(3), 441–451. https://doi.org/10.1016/j.epsl.2004.05.037
    [Google Scholar]
  123. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  124. Wang, C. Y., Campbell, I. H., Reiners, P. W., & Allen, C. M. (2014). Detrital zircon U‐Pb‐He double dating: A method of quantifying long‐ and short‐term exhumation rates in collisional orogens. Science China Earth Sciences, 57(11), 2702–2711. https://doi.org/10.1007/s11430-014-4970-9
    [Google Scholar]
  125. Whipple, K. X. (2001). Fluvial landscape response time: How plausible is steady‐state denudation?American Journal of Science, 301(4–5), 313–325. https://doi.org/10.2475/ajs.301.4-5.313
    [Google Scholar]
  126. Whitchurch, A. L., Carter, A., Sinclair, H. D., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South‐Central Pyrenees. American Journal of Science, 311(5), 442–482. https://doi.org/10.2475/05.2011.03
    [Google Scholar]
  127. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., … Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newsletter, 19(1), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
    [Google Scholar]
  128. Wolfe, M. R., & Stockli, D. F. (2010). Zircon (U–Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon. Earth and Planetary Science Letters, 295(1), 69–82. https://doi.org/10.1016/j.epsl.2010.03.025
    [Google Scholar]
  129. Xu, J., Stockli, D. F., & Snedden, J. W. (2017). Enhanced provenance interpretation using combined U‐Pb and (U–Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America. Earth and Planetary Science Letters, 475, 44–57. https://doi.org/10.1016/j.epsl.2017.07.024
    [Google Scholar]
  130. Zeyen, H., & Fernàndez, M. (1994). Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis: Application to the NE Spanish Geotransect. Journal of Geophysical Research: Solid Earth, 99(B9), 18089–18102. https://doi.org/10.1029/94JB00898
    [Google Scholar]
  131. Ziegler, P. A. (1990). Geological atlas of Western and Central Europe, 1990. Mijdrecht: Shell Internationale Petroleum Maatschappij B.V.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12376
Loading
/content/journals/10.1111/bre.12376
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error