1887
Volume 32, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Investigation of a >6‐km‐thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid‐Cretaceous succession, an Upper Cretaceous–Lower Eocene succession and an Eocene–Neogene succession. The Lower to mid‐Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul–Mazar subduction–accretion complex in the northern Pamir. This succession is characterized by a convex‐up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine‐grained, marginal marine and sabkha deposits. The succession is characterized by a concave‐up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea‐level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous–early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50–30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10–30 Myr younger than estimates for the initiation of India–Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4‐km‐thick upper Eocene–Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro‐foreland basin associated with crustal thickening of the Pamir during India–Asia collision. Thus, the Tajik Basin provides an example of a long‐lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin‐forming mechanisms are influenced by subduction dynamics, including periods of slab‐shallowing and retreat.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12381
2019-07-06
2024-04-18
Loading full text...

Full text loading...

References

  1. Alsharhan, A. S., & Kendall, C. S. C. (2003). Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth‐Science Reviews, 61, 191–243. https://doi.org/10.1016/S0012-8252(02)00110-1
    [Google Scholar]
  2. Angiolini, L., Zanchi, A., Zanchetta, S., Nicora, A., & Vezzoli, G. (2013). The Cimmerian geopuzzle: New data from South Pamir. Terra Nova, 25, 352–360. https://doi.org/10.1111/ter.12042
    [Google Scholar]
  3. Beaumont, C. (1981). Foreland basins. Geophysical Journal International, 65, 291–329. https://doi.org/10.1111/j.1365-246X.1981.tb02715.x
    [Google Scholar]
  4. Blayney, T., Dupont‐Nivet, G., Najman, Y., Proust, J. N., Meijer, N., Roperch, P., … Guo, Z. (2019). Tectonic evolution of the Pamir Recorded in the Western Tarim Basin (China): Sedimentologic and magnetostratigraphic analyses of the Aertashi section. Tectonics, 38, 492–515. https://doi.org/10.1029/2018TC005146
    [Google Scholar]
  5. Boothroyd, J. C., & Ashley, G. M. (1975). Processes, bar morphology, and sedimentary structures on braided outwash fans, northeastern Gulf of Alaska. In A. V. Jopling & B. C. McDonald (Eds.), Glaciofluvial and Glaciolacustrine Sedimentation, (pp. 193–222). Broken Arrow, Ok, USA: SEPM Special Publication
    [Google Scholar]
  6. Bosboom, R., Dupont‐Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., … Krijgsman, W. (2013). Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Research, 26, 621–640. https://doi.org/10.1111/bre.12054
    [Google Scholar]
  7. Bosboom, R., Mandic, O., Dupont‐Nivet, G., Proust, J. N., Ormukov, C., & Aminov, J. (2017). Late Eocene palaeogeography of the proto‐Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). Geological Society, London, Special Publications, 427, 565–588. https://doi.org/10.1144/SP427.11
    [Google Scholar]
  8. Boulin, J. (1988). Hercynian and Eocimmerian events in Afghanistan and adjoining regions. Tectonophysics, 148, 253–278. https://doi.org/10.1016/0040-1951(88)90134-5
    [Google Scholar]
  9. Bourgeois, O., Cobbold, P. R., Rouby, D., Thomas, J. C., & Shein, V. (1997). Least squares restoration of Tertiary thrust sheets in map view, Tajik depression, central Asia. Journal of Geophysical Research: Solid Earth, 102, 27553–27573. https://doi.org/10.1029/97JB02477
    [Google Scholar]
  10. Bown, T. M., & Kraus, M. J. (1987). Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Research, 57, 587–601.
    [Google Scholar]
  11. Bratash, V. I., Egupov, S. V., Pechnikov, V. V., & Shelomentsev, A. I. (1970). The geology and petroleum potential of northern Afghanistan (288 pp.). Moscow, Russia: Nedra.
    [Google Scholar]
  12. Brookfield, M. E., & Hashmat, A. (2001). The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan). Earth‐Science Reviews, 55, 41–71. https://doi.org/10.1016/S0012-8252(01)00036-8
    [Google Scholar]
  13. Burg, J. P. (2011). The Asia–Kohistan–India collision: Review and discussion. In D.Brown & P. D.Ryan (Eds.), Arc‐continent collision (pp. 279–309). Berlin, Germany: Springer.
    [Google Scholar]
  14. Burtman, V. S. (2000). Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir‐Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics, 319, 69–92. https://doi.org/10.1016/S0040-1951(00)00022-6
    [Google Scholar]
  15. Burtman, V. S., & Molnar, P. H. (1993). Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Boulder, Co, USA: Geological Society of America, Special Publication v. 281, 76p.
    [Google Scholar]
  16. Carrapa, B., DeCelles, P. G., Wang, X., Clementz, M. T., Mancin, N., Stoica, M., … Chen, F. (2015). Tectono‐climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia. Earth and Planetary Science Letters, 424, 168–178. https://doi.org/10.1016/j.epsl.2015.05.034
    [Google Scholar]
  17. Carrapa, B., Mustapha, F. S., Cosca, M., Gehrels, G., Schoenbohm, L. M., Sobel, E. R., … Goodman, P. (2014). Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir. Lithosphere, 6, 443–455. https://doi.org/10.1130/L360.1
    [Google Scholar]
  18. Chapman, J. B., Carrapa, B., Ballato, P., DeCelles, P. G., Worthington, J., Oimahmadov, I., … Ketcham, R. (2017). Intracontinental subduction beneath the Pamir Mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold‐and‐thrust belt. GSA Bulletin, 129, 1450–1471.
    [Google Scholar]
  19. Chapman, J. B., Robinson, A. C., Carrapa, B., Villarreal, D., Worthington, J., DeCelles, P., … Gehrels, G. (2018). Cretaceous shortening and exhumation history of the South Pamir terrane. Lithosphere, 10, 494–511. https://doi.org/10.1130/L691.1
    [Google Scholar]
  20. Chapman, J. B., Scoggin, S. H., Kapp, P., Carrapa, B., Ducea, M. N., Worthington, J., … Gadoev, M. (2018). Mesozoic to Cenozoic magmatic history of the Pamir. Earth and Planetary Science Letters, 482, 181–192. https://doi.org/10.1016/j.epsl.2017.10.041
    [Google Scholar]
  21. Chatelain, J. L., Roecker, S. W., Hatzfeld, D., & Molnar, P. (1980). Microearthquake seismicity and fault plane solutions in the Hindu Kush region and their tectonic implications. Journal of Geophysical Research: Solid Earth, 85, 1365–1387. https://doi.org/10.1029/JB085iB03p01365
    [Google Scholar]
  22. Chen, X., Chen, H., Lin, X., Cheng, X., Yang, R., Ding, W., … Zhang, Y. (2018). Arcuate Pamir in the Paleogene? Insights from a review of stratigraphy and sedimentology of the basin fills in the foreland of NE Chinese Pamir, western Tarim Basin: Earth Science Reviews, 180, 1–16.
  23. Coutand, I., Strecker, M. R., Arrowsmith, J. R., Hilley, G., Thiede, R. C., Korjenkov, A., … Omuraliev, M. (2002). Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir-Tien Shan region, central Asia): An example of intracontinental deformation due to the Indo-Eurasia collision: Tectonics, v. 21, n. 6. https://doi.org/10.1029/2002TC001358
  24. Cowgill, E. (2010). Cenozoic right‐slip faulting along the eastern margin of the Pamir salient, northwestern China. Geological Society of America Bulletin, 122, 145–161. https://doi.org/10.1130/B26520.1
    [Google Scholar]
  25. Crampton, S. L., & Allen, P. A. (1995). Recognition of forebulge unconformities associated with early stage foreland basin development: Example from the North Alpine Foreland Basin. AAPG Bulletin, 79, 1495–1514. https://doi.org/10.1306/7834DA1C-1721-11D7-8645000102C1865D
    [Google Scholar]
  26. Dalrymple, R. W., Zaitlin, B. A., & Boyd, R. (1992). Estuarine facies models: Conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 62, 1130–1146. https://doi.org/10.1306/D4267A69-2B26-11D7-8648000102C1865D
    [Google Scholar]
  27. Davidzon, R. M., Kreidenkov, G. P., & Salibaev, G. K. (1982). Stratigraphy of paleogene deposits of the Tajik depression and adjacent areas (119 pp.). Dushanbe, Tajikistan: Donish.
  28. De Grave, J., Glorie, S., Ryabinin, A., Zhimulev, F., Buslov, M. M., Izmer, A., … Van den haute, P. (2012). Late Palaeozoic and Meso‐Cenozoic tectonic evolution of the southern Kyrgyz Tien Shan: Constraints from multi‐method thermochronology in the Trans‐Alai, Turkestan‐Alai segment and the southeastern Ferghana Basin. Journal of Asian Earth Sciences, 44, 149–168. https://doi.org/10.1016/j.jseaes.2011.04.019
    [Google Scholar]
  29. De Pelsmaeker, E., Jolivet, M., Laborde, A., Poujol, M., Robin, C., Zhimulev, F. I., … De Grave, J. (2018). Source‐to‐sink dynamics in the Kyrgyz Tien Shan from the Jurassic to the Paleogene: Insights from sedimentological and detrital zircon U‐Pb analyses. Gondwana Research, 54, 180–204. https://doi.org/10.1016/j.gr.2017.09.004
    [Google Scholar]
  30. Debon, F., & Ali‐Khan, N. (1996). Alkaline orogenic plutonism in the Karakorum batholith: The Upper Cretaceous KozSar complex (Karambar valley, N. Pakistan). Geodinamica Acta, 9, 145–160. https://doi.org/10.1080/09853111.1996.11105282
    [Google Scholar]
  31. DeCelles, P. G. (2012). Foreland basin systems revisited: Variations in response to tectonic settings. In C. Busby & A. Azor, (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 405–426). Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  32. DeCelles, P. G., & DeCelles, P. C. (2001). Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems. Geology, 29, 135–138. https://doi.org/10.1130/0091-7613(2001)029<0135:ROSPUA>2.0.CO;2
    [Google Scholar]
  33. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123.
    [Google Scholar]
  34. DeCelles, P. G., Gray, M. B., Ridgway, K. D., Cole, R. B., Pivnik, D. A., Pequera, N., & Srivastava, P. (1991). Controls on synorogenic alluvial‐fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology, 38, 567–590. https://doi.org/10.1111/j.1365-3091.1991.tb01009.x
    [Google Scholar]
  35. DeCelles, P. G., Kapp, P., Gehrels, G. E., & Ding, L. (2014). Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision. Tectonics, 33, 824–849. https://doi.org/10.1002/2014TC003522
    [Google Scholar]
  36. Dewey, J. F. (1982). Plate tectonics and the evolution of the British Isles: Thirty‐fifth William Smith Lecture. Journal of the Geological Society, 139, 371–412. https://doi.org/10.1144/gsjgs.139.4.0371
    [Google Scholar]
  37. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G. Zuffa, (Ed.), Provenance of arenites (pp. 333–361). Dordrecht: Springer.
    [Google Scholar]
  38. Ding, L., Qasim, M., Jadoon, I. A., Khan, M. A., Xu, Q., Cai, F., … Yue, Y. (2016). The India‐Asia collision in north Pakistan: Insight from the U‐Pb detrital zircon provenance of Cenozoic foreland basin. Earth and Planetary Science Letters, 455, 49–61. https://doi.org/10.1016/j.epsl.2016.09.003
    [Google Scholar]
  39. Djalilov, M. R. (1971). Stratigraphy of Upper Cretaceous deposits of the Tadjik Depression. Dushanbe, Tajikistan: Donish (in Russian).
    [Google Scholar]
  40. Filonov, A. I., & Koroly, A. N. (1966). Explanatory Note for the Geological Map, Sheet J‐42‐XVI. Moscow, Russia: Nedra (in Russian).
    [Google Scholar]
  41. Fürsich, F. T., Brunet, M. F., Auxiètre, J. L., & Munsch, H. (2017). Lower‐Middle Jurassic facies patterns in the NW Afghan‐Tajik Basin of southern Uzbekistan and their geodynamic context. Geological Society, London, Special Publications, 427, 357–409. https://doi.org/10.1144/SP427.9
    [Google Scholar]
  42. Garzanti, E., Doglioni, C., Vezzoli, G., & Ando, S. (2007). Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115, 315–334. https://doi.org/10.1086/512755
    [Google Scholar]
  43. Hacker, B. R., Ratschbacher, L., Rutte, D., Stearns, M. A., Malz, N., Stübner, K., … Everson, A. (2017). Building the Pamir‐Tibet Plateau‐Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust. Tectonics, 36(9), 1743–1766.
    [Google Scholar]
  44. Hamburger, M. W., Sarewitz, D. R., Pavlis, T. L., & Popandopulo, G. A. (1992). Structural and seismic evidence for intracontinental subduction in the Peter the First Range, central Asia. Geological Society of America Bulletin, 104, 397–408. https://doi.org/10.1130/0016-7606(1992)104<0397:SASEFI>2.3.CO;2
    [Google Scholar]
  45. Handford, C. R. (1981). Coastal sabkha and salt pan deposition of the lower Clear Fork Formation (Permian), Texas. Journal of Sedimentary Research, 51, 761–778. https://doi.org/10.1306/212F7DA1-2B24-11D7-8648000102C1865D
    [Google Scholar]
  46. Hart, B. S., & Plint, A. G. (1995). Gravelly shoreface and beachface deposits. In A. G. Plint (Ed.), Sedimentary facies analysis: A tribute to the research and teaching of Harold G. Reading (pp. 75–99). Blackwell, Oxford, UK: Special publication v. 22.
    [Google Scholar]
  47. Hein, F. J., & Walker, R. G. (1977). Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. Canadian Journal of Earth Sciences, 14, 562–570. https://doi.org/10.1139/e77-058
    [Google Scholar]
  48. Horton, B. K., & Fuentes, F. (2016). Sedimentary record of plate coupling and decoupling during growth of the Andes. Geology, 44, 647–650. https://doi.org/10.1130/G37918.1
    [Google Scholar]
  49. Ingersoll, R. V. (1990). Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks. Geology, 18, 733–736. https://doi.org/10.1130/0091-7613(1990)018<0733:ASPDMA>2.3.CO;2
    [Google Scholar]
  50. Ingersoll, R. V. (2012). Tectonics of sedimentary basins, with revised nomenclature. In C. J.Busby & A.Azor (Eds.), Tectonics of sedimentary basins, recent advances (pp. 1–43). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  51. Jepson, G., Glorie, S., Konopelko, D., Gillespie, J., Danišík, M., Evans, N. J., … Collins, A. S. (2018). Thermochronological insights into the structural contact between the Tian Shan and Pamirs, Tajikistan. Terra Nova, 30, 95–104. https://doi.org/10.1111/ter.12313
    [Google Scholar]
  52. Jiang, Y. H., Liu, Z., Jia, R. Y., Liao, S. Y., Zhou, Q., & Zhao, P. (2012). Miocene potassic granite–syenite association in western Tibetan Plateau: Implications for shoshonitic and high Ba–Sr granite genesis. Lithos, 134, 146–162. https://doi.org/10.1016/j.lithos.2011.12.012
    [Google Scholar]
  53. Käßner, A., Ratschbacher, L., Pfänder, J. A., Hacker, B. R., Zack, G., Sonntag, B. L., … Oimahmadov, I. (2016). Proterozoic‐Mesozoic history of the Central Asian orogenic belt in the Tajik and southwestern Kyrgyz Tian Shan: U‐Pb, 40Ar/39Ar, and fission‐track geochronology and geochemistry of granitoids. Geological Society of America Bulletin, 129, 281–303.
    [Google Scholar]
  54. Kaya, M. Y., Dupont‐Nivet, G., Proust, J. N., Roperch, P., Bougeois, L., Meijer, N., … Barbolini, N. (2019). Paleogene evolution and demise of the proto‐Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma. Basin Research, 31, 461–486.
    [Google Scholar]
  55. Keen, M. (1978). The Tertiary—Palaeogene. In R. H. Bate & E, Robinson (Eds.), A Stratigraphical Index of British Ostracoda, British Micropalaeontological Society Special Publication, v. 1 (pp. 385–449). Liverpool, UK: Seel House Press.
    [Google Scholar]
  56. Kendall, C. G. S. C. (1968). Recent algal mats of a Persian Gulf lagoon. SEPM Journal of Sedimentary Research, 38, 1040–1058. https://doi.org/10.1306/74D71AF5-2B21-11D7-8648000102C1865D
    [Google Scholar]
  57. Klocke, M., Voigt, T., Kley, J., Pfeifer, S., Rocktäschel, T., Keil, S., & Gaupp, R. (2017). Cenozoic evolution of the Pamir and Tien Shan Mountains reflected in syntectonic deposits of the Tajik Basin: Geological Society. London, Special Publications, 427, 523–564. https://doi.org/10.1144/SP427.7
    [Google Scholar]
  58. Leith, W. (1982). Rock assemblages in central Asia and the evolution of the southern Asian margin. Tectonics, 1, 303–318. https://doi.org/10.1029/TC001i003p00303
    [Google Scholar]
  59. Leith, W. (1985). A mid‐Mesozoic extension across Central Asia?Nature, 313, 567–570. https://doi.org/10.1038/313567a0
    [Google Scholar]
  60. Li, T., Chen, J., Thompson, J. A., Burbank, D. W., & Xiao, W. (2012). Equivalency of geologic and geodetic rates in contractional orogens: New insights from the Pamir Frontal thrust. Geophysical Research Letters, 39(15), L15305. https://doi.org/10.1029/2012GL051782
    [Google Scholar]
  61. Liu, D., Li, H., Sun, Z., Cao, Y., Wang, L., Pan, J., … Ye, X. (2017). Cenozoic episodic uplift and kinematic evolution between the Pamir and southwestern Tien Shan. Tectonophysics, 712‐713, 438–454. https://doi.org/10.1016/j.tecto.2017.06.009
    [Google Scholar]
  62. Lukens, C. E., Carrapa, B., Singer, B. S., & Gehrels, G. (2012). Miocene exhumation of the Pamir revealed by detrital geothermochronology of Tajik rivers. Tectonics, 31, TC2014. https://doi.org/10.1029/2011TC003040
    [Google Scholar]
  63. Mack, G. H., James, W. C., and Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105, 129–136. https://doi.org/10.1130/0016-7606(1993)105<0129:COP>2.3.CO;2
    [Google Scholar]
  64. McBride, E. F. (1963). A classification of common sandstones. Journal of Sedimentary Research, 33, 664–669. https://doi.org/10.1306/74D70EE8-2B21-11D7-8648000102C1865D
    [Google Scholar]
  65. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012-821X(78)90071-7
    [Google Scholar]
  66. McNutt, M. K., Diament, M., & Kogan, M. G. (1988). Variations of elastic plate thickness at continental thrust belts. Journal of Geophysical Research, 93, 8825–8838. https://doi.org/10.1029/JB093iB08p08825
    [Google Scholar]
  67. Miall, A. D. (1977). A review of the braided‐river depositional environment. Earth‐Science Reviews, 13, 1–62. https://doi.org/10.1016/0012-8252(77)90055-1
    [Google Scholar]
  68. Miall, A. D. (1996). The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology (582 p.). New York, NY: Springer Publishing.
    [Google Scholar]
  69. Muftiev, Z. Z., & Shachnev, A. S. (1967). Explanatory note for the geological map, sheet J‐42‐X. Moscow, Russia: Nedra (in Russian).
    [Google Scholar]
  70. Najman, Y., Jenks, D., Godin, L., Boudagher‐Fadel, M., Millar, I., Garzanti, E., … Bracciali, L. (2017). The Tethyan Himalayan detrital record shows that India‐Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth and Planetary Science Letters, 459, 301–310. https://doi.org/10.1016/j.epsl.2016.11.036
    [Google Scholar]
  71. Naylor, M., & Sinclair, H. D. (2008). Pro‐vs. retro‐foreland basins. Basin Research, 20(3), 285–303. https://doi.org/10.1111/j.1365-2117.2008.00366.x
    [Google Scholar]
  72. Nikolaev, V. G. (2002). Afghan‐Tajik depression: Architecture of sedimentary cover and evolution. Russian Journal of Earth Sciences, 4, 399–421. https://doi.org/10.2205/2002ES000106
    [Google Scholar]
  73. Reineck, H. E., & Singh, I. B. (1980). Tidal flats. In Depositional sedimentary environments (pp. 430–456). Berlin, Germany: Springer.
    [Google Scholar]
  74. Reineck, H. E., & Wunderlich, F. (1968). Classification and origin of flaser and lenticular bedding. Sedimentology, 11, 99–104. https://doi.org/10.1111/j.1365-3091.1968.tb00843.x
    [Google Scholar]
  75. Robinson, A. C. (2015). Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau. Journal of Asian Earth Sciences, 102, 170–179. https://doi.org/10.1016/j.jseaes.2014.09.012
    [Google Scholar]
  76. Robinson, A. C., Ducea, M., & Lapen, T. J. (2012). Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics, 31. https://doi.org/10.1029/2011TC003013
    [Google Scholar]
  77. Robinson, A. C., Yin, A., Manning, C. E., Harrison, T. M., Zhang, S.‐H., & Wang, X.‐F. (2004). Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system. Geological Society of America Bulletin, 116, 953–974.
    [Google Scholar]
  78. Robinson, A. C., Yin, A., Manning, C. E., Harrison, T. M., Zhang, S.‐H., & Wang, X.‐F. (2007). Cenozoic evolution of the eastern Pamir: Implications for strain accommodation mechanisms at the western end of the Himalayan‐Tibetan orogen. Geological Society of America Bulletin, 119, 882–896. https://doi.org/10.1130/B25981.1
    [Google Scholar]
  79. Rust, B. R. (1972). Structure and process in a braided river. Sedimentology, 18(3–4), 221–245. https://doi.org/10.1111/j.1365-3091.1972.tb00013.x
    [Google Scholar]
  80. Rust, B. R. (1978). Depositional models for braided alluvium. In A. D.Miall (Ed.), Fluvial Sedimentology (Canadian Society of Petroleum Geologists Memoir 5, pp. 605–625). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  81. Rutte, D., Lothar, R., Schneider, S., Stübner, K., Stearns, M. A., Gulzar, M. A., & Hacker, B. R. (2017). Building the Pamir‐Tibet Plateau—Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir: 1. Geometry and Kinematics. Tectonics, 36, 342–384.
    [Google Scholar]
  82. Schmalholz, M. (2004). The amalgamation of the Pamirs and their subsequent evolution in the far field of the India‐Asia collision (PhD thesis, 103 p.). Universität Tübingen, Germany.
    [Google Scholar]
  83. Schneider, F. M., Yuan, X., Schurr, B., Mechie, J., Sippl, C., Haberland, C., … Negmatullaev, S. (2013). Seismic imaging of subducting continental lower crust beneath the Pamir. Earth and Planetary Science Letters, 375, 101–112. https://doi.org/10.1016/j.epsl.2013.05.015
    [Google Scholar]
  84. Schwab, M., Ratschbacher, L., Siebel, W., McWilliams, M., Minaev, V., Lutkov, V., … Wooden, J. L. (2004). Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23(4), 31.
    [Google Scholar]
  85. Sclater, J. G., & Christie, P. A. (1980). Continental stretching: An explanation of the post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  86. Sengor, A. C. (1984). The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America Special Paper, 195, 181–241.
    [Google Scholar]
  87. Simakov, S. N. (1952). Cretaceous deposits of the Buhara‐Tadjik area. Leningrad: VNIGRI (in Russian).
    [Google Scholar]
  88. Simonov, V. A., Mikolaichuk, A. V., Safonova, I. Y., Kotlyarov, A. V., & Kovyazin, S. V. (2015). Late Paleozoic‐Cenozoic intra‐plate continental basaltic magmatism of the Tienshan–Junggar region in the SW Central Asian Orogenic Belt. Gondwana Research, 27, 1646–1666. https://doi.org/10.1016/j.gr.2014.03.001
    [Google Scholar]
  89. Sinclair, H. D., Coakley, B. J., Allen, P. A., & Watts, A. B. (1991). Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: An example from the central Alps, Switzerland. Tectonics, 10, 599–620. https://doi.org/10.1029/90TC02507
    [Google Scholar]
  90. Sippl, C., Schurr, B., Yuan, X., Mechie, J., Schneider, F. M., Gadoev, M., … Radjabov, N. (2013). Geometry of the Pamir‐Hindu Kush intermediate‐depth earthquake zone from local seismic data. Journal of Geophysical Research: Solid Earth, 118, 1438–1457. https://doi.org/10.1002/jgrb.50128
    [Google Scholar]
  91. Smit, M. A., Ratschbacher, L., Kooijman, E., & Stearns, M. A. (2014). Early evolution of the Pamir deep crust from Lu‐Hf and U‐Pb geochronology and garnet thermometry. Geology, 42, 1047–1050. https://doi.org/10.1130/G35878.1
    [Google Scholar]
  92. Smith, S. A. (1990). The sedimentology and accretionary styles of an ancient gravel‐bed stream: The Budleigh Salterton Pebble Beds (Lower Triassic), southwest England. Sedimentary Geology, 67, 199–219. https://doi.org/10.1016/0037-0738(90)90035-R
    [Google Scholar]
  93. Sobel, E. R. (1999). Basin analysis of the Jurassic‐Lower Cretaceous southwest Tarim basin, northwest China. Geological Society of America Bulletin, 111, 709–724. https://doi.org/10.1130/0016-7606(1999)111<0709:BAOTJL>2.3.CO;2
    [Google Scholar]
  94. Sobel, E. R., & Arnaud, N. (2000). Cretaceous–Paleogene basaltic rocks of the Tuyon basin, NW China and the Kyrgyz Tian Shan: the trace of a small plume. Lithos, 50, 191–215. https://doi.org/10.1016/S0024-4937(99)00046-8
    [Google Scholar]
  95. Sobel, E. R., Chen, J., Schoenbohm, L. M., Thiede, R., Stockli, D. F., Sudo, M., & Strecker, M. R. (2013). Oceanic‐style subduction controls late Cenozoic deformation of the Northern Pamir orogeny. Earth and Planetary Science Letters, 363, 204–218. https://doi.org/10.1016/j.epsl.2012.12.009
    [Google Scholar]
  96. Stearns, M. A., Hacker, B. R., Ratschbacher, L., Rutte, D., & Kylander‐Clark, A. R. C. (2015). Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics, 34, 784–802. https://doi.org/10.1002/2014TC003774
    [Google Scholar]
  97. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41, 1–13.
    [Google Scholar]
  98. Swift, D. J., Hudelson, P. M., Brenner, R. L., & Thompson, P. (1987). Shelf construction in a foreland basin: Storm beds, shelf sandbodies, and shelf‐slope depositional sequences in the Upper Cretaceous Mesaverde Group, Book Cliffs, Utah. Sedimentology, 34, 423–457. https://doi.org/10.1111/j.1365-3091.1987.tb00578.x
    [Google Scholar]
  99. Tapponnier, P., Mattauer, M., Proust, F., & Cassaigneau, C. (1981). Mesozoic ophiolites, sutures, and large‐scale tectonic movements in Afghanistan. Earth and Planetary Science Letters, 52, 355–371.
    [Google Scholar]
  100. Tevelev, A. V., & Georgievskii, B. V. (2012). Deformation history and hydrocarbon potential of the Southwestern Gissar Range (Southern Uzbekistan). Moscow University Geology Bulletin, 67(6), 340–352. https://doi.org/10.3103/S0145875212060075
    [Google Scholar]
  101. Thomas, J. C., Chauvin, A., Gapias, D., Bazhenov, M. L., Perroud, H., Cobbold, P. R., & Burtman, V. S. (1994). Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression. Central Asia: Journal Geophysical Research: Solid Earth, 99, 15141–15160. https://doi.org/10.1029/94JB00901
    [Google Scholar]
  102. Ulmishek, G. F. (2004) Petroleum geology and resources of the Amu‐Darya basin, Turkmenistan, Uzbekistan, Afghanistan, and Iran. Iran: US Department of the Interior, US Geological Survey.
  103. Van Hinte, J. E. (1978). Geohistory analysis–application of micropaleontology in exploration geology. AAPG Bulletin, 62, 201–222. https://doi.org/10.1306/C1EA4815-16C9-11D7-8645000102C1865D
    [Google Scholar]
  104. Varban, B. L., & Plint, A. G. (2008). Palaeoenvironments, palaeogeography, and physiography of a large, shallow, muddy ramp: Late Cenomanian‐Turonian Kaskapau Formation, Western Canada foreland basin. Sedimentology, 55, 201–233. https://doi.org/10.1111/j.1365-3091.2007.00902.x
    [Google Scholar]
  105. Varentsov, M. I., Aleshina, Z. I., & Kornienko, G. E. (1977). Tectonics and petroleum potential of the Tajik depression (108 p). Moscow, Russia: Nauka.
  106. Vlasov, N. G., Pyzhjanov, I. P., & Loziev, V. P. (1964). Explanatory note for the geological map, sheet J‐42‐XVII. Moscow, Russia: Nedra (in Russian).
    [Google Scholar]
  107. Vlasov, N., Yu, G., Dyakov, A., & Cherev, E. S. (1991). Geological map of the Tajik SSR and adjacent territories, 1:500,000. Saint Petersburg: Vsesojuznoi Geologic Institute of Leningrad.
    [Google Scholar]
  108. Wang, Y., Feng, R., & Hsu, H. (1997), Lithospheric isostasy, Flexure and Strength of Upper Mantle in Tibetan Plateau. In H.Dawei (Ed.), Structure of the Lithosphere and Deep Processes: Proceedings of the 30th International Geological Congress, VSP, Netherlands (Vol. 4, pp. 153–160).
    [Google Scholar]
  109. White, N., & McKenzie, D. (1988). Formation of the “steer's head” geometry of sedimentary basins by differential stretching of the crust and mantle. Geology, 16, 250–253. https://doi.org/10.1130/0091-7613(1988)016<0250:FOTSSH>2.3.CO;2
    [Google Scholar]
  110. Worthington, J. R., Kapp, P., Minaev, V., Chapman, J. B., Mazdab, F. K., Ducea, M. N., … Gadoev, M. (2017). Birth, life, and demise of the Andean‐syn‐collisional Gissar arc: Late Paleozoic tectono‐magmatic‐metamorphic evolution of the southwestern Tian Shan, Tajikistan. Tectonics, 36, 1861–1912.
    [Google Scholar]
  111. Wright, V. P. (1984). Peritidal carbonate facies models: A review. Geological Journal, 19, 309–325. https://doi.org/10.1002/gj.3350190402
    [Google Scholar]
  112. Xiao, W. J., Windley, B. F., Chen, H. L., Zhang, G. C., & Li, J. L. (2002). Carboniferous‐Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau. Geology, 30, 295–298. https://doi.org/10.1130/0091-7613(2002)030<0295:CTSAAI>2.0.CO;2
    [Google Scholar]
  113. Xie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121, 55–64.
    [Google Scholar]
  114. Zonenshain, L. P. (1990). Geology of the USSR: A plate‐tectonic synthesis. American Geophysical Union, Geodynamic Series, 21, 242p.
    [Google Scholar]
  115. Zonenshain, L. P., & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back‐arc basins. Tectonophysics, 123, 181–211. https://doi.org/10.1016/0040-1951(86)90197-6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12381
Loading
/content/journals/10.1111/bre.12381
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error