1887
Volume 32, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Platform carbonates diagenesis in salt basins could be complex due to potential alterations of fluids related and non‐related to diapirism. This paper presents the diagenetic history of the Hettangian to Pliensbachian platform carbonates from the Tazoult salt wall area (central High Atlas, Morocco). Low structural relief and outcrop conditions allowed to define the entire diagenetic evolution occurred in the High Atlas diapiric basins since early stages of the diapiric activity up to their tectonic inversion. Precipitation of dolomite and calcite from both warmed marine‐derived and meteoric fluids characterised diagenetic stages during Pliensbachian, when the carbonate platforms were exposed and karstified. Burial diagenesis occurred from Toarcian to Middle Jurassic, due to changes of salt‐induced dynamic related to increase in siliciclastic input, fast diapir rise and rapid burial of Pliensbachian platforms. During this stage, the diapir acted as a physical barrier for fluid circulation between the core and the flanking sediments. In the carbonates and breccias flanking the structures, dolomite and calcite precipitated from basinal brines, whereas carbonate slivers located in the core of the structure, were affected by the circulation of Mn‐rich fluids. The final diagenetic event is characterised by the income of meteoric fluids into the system during uplift caused by Alpine orogeny. These results highlight the relevant influence of diapirism on the diagenetic modifications in salt‐related basins in terms of diagenetic events and involved fluids.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12382
2019-07-10
2024-04-25
Loading full text...

Full text loading...

References

  1. Allan, J. R., & Wiggins, W. D. (1993). Dolomite reservoirs. In AAPG (Ed.), Geochemical techniques for evaluating origin and distribution. Continuing Education Course Notes Series (Vol. 36, p. 129). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  2. Arboleya, M. L., Teixell, A., Charroud, M., & Julivert, M. (2004). A structural transect through the High and Middle Atlas of Morocco. Journal of African Earth Sciences, 39(3–5), 319–327. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-8644240184&partnerID=40&md5=69f703701785e28c662ff8b7b4918f48. https://doi.org/10.1016/j.jafrearsci.2004.07.036
    [Google Scholar]
  3. Banner, J. L., & Hanson, G. N. (1990). Calculation of simultaneous isotopic and trace element variations during water‐rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54, 3123–3137. https://doi.org/10.1016/0016-7037(90)90128-8
    [Google Scholar]
  4. Beauchamp, W., Allmendinger, R. W., Barazangi, M., Demnati, A., El Alji, M., & Dahmani, M. (1999). Inversion tectonics and the evolution of the High Atlas Mountains, Morocco, based on a geological‐geophysical transect. Tectonics, 18(2), 163–184. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0033026113&partnerID=40&md5=a5ff42ebc40a4f475aa87cbf00ff1ff6
    [Google Scholar]
  5. Beavington‐Penney, S. J., Nadin, P., Wright, V. P., Clarke, E., McQuilken, J., & Bailey, H. W. (2008). Reservoir quality variation on an Eocene carbonate ramp, El Garia Formation, offshore Tunisia: Structural control of burial corrosion and dolomitisation. Sedimentary Geology, 209(1–4), 42–57. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-50349095459&partnerID=40&md5=9d998ca64410fd47f13bb5700e3ba87b. https://doi.org/10.1016/j.sedgeo.2008.06.006
    [Google Scholar]
  6. Boggs, S. (2003). Petrology of sedimentary rocks (1st ed.). New York, NY: Blackburn Press.
    [Google Scholar]
  7. Bosence, D. (2005). A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sedimentary Geology, 175(1–4), 49–72. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-16844380220&partnerID=40&md5=44f23a52fd16a984da35839a0d80c732
    [Google Scholar]
  8. Bouchouata, A. (1994). La ride de Talmest‐Tazoult (Haut Atlas Central Maroc), lithostratigraphie, biostratigraphie et relations tectonique‐sédimentation au cours du Jurassique. Strata, Série 2 (memoires), 25(8), 219. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0028862654&partnerID=40&md5=e0941f60a7db7559627ac603e77b9099
    [Google Scholar]
  9. Bouchouata, A., Canerot, J., Souhel, A., & Almeras, Y. (1995). Jurassic sequence stratigraphy and geodynamic evolution in the Talmest‐Tazoult area, Central High Atlas, Morocco. Comptes Rendus de L'académie des Sciences, 320(8), 749–756. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0028862654&partnerID=40&md5=e0941f60a7db7559627ac603e77b9099
    [Google Scholar]
  10. Carpenter, S. J., & Lonhmann, K. C. (1989). D18O and d13C variations in late Devonian marine cements from the Golden Spike and Nevis reefs, Alberta, Canada. Journal of Sedimentary Petrology, 59, 792–814.
    [Google Scholar]
  11. Chukhrov, F. V., Gorshkov, A. J., Rudnitskaya, E. D., Beresovskaya, V. V., & Sivtsov, A. V. (1980). Manganese minerals in clays: A review. Clays and Clay Minerals, 28(5), 346–354. https://doi.org/10.1346/CCMN.1980.0280504
    [Google Scholar]
  12. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., & Zak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28(C), 199–260. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-49149142127&partnerID=40&md5=95ae30d83706eb9acbb68a091997f338
    [Google Scholar]
  13. Counts, J. W., Dalgarno, C. R., Amos, K. J., & Hasiotis, S. T. (2019). Lateral facies variability along the margin of an outcropping salt‐withdrawal minibasin, South Australia. Journal of Sedimentary Research, 89(1), 28–45. https://doi.org/10.2110/jsr.2019.2
    [Google Scholar]
  14. Davies, G. R., & Smith, L. B., Jr. (2006). Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90(11), 1641–1690.
    [Google Scholar]
  15. Davison, I., Alsop, G. I., Evans, N. G., & Safaricz, M. (2000). Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea. Marine and Petroleum Geology, 17(5), 601–618.
    [Google Scholar]
  16. Della Porta, G., Webb, G. E., & McDonald, I. (2015). REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco). Chemical Geology, 17(5), 65–86. https://doi.org/10.1016/j.chemgeo.2015.02.010
    [Google Scholar]
  17. Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, 36(2), 491–505.
    [Google Scholar]
  18. Enos, J. S., & Kyle, J. R. (2002). Diagenesis of the Carrizo sandstone at Butler salt dome, East Texas Basin, U.S.A.: Evidences for fluid‐sediment interaction near halokinetic structures. Journal of Sedimentary Research, 72(1), 68–81. https://doi.org/10.1306/061101720068
    [Google Scholar]
  19. Ettaki, M., Ibouh, H., Chellaï, E. H., & Milhi, A. (2007). Liassic diapiric structures from the Central High Atlas, Morocco; Ikerzi ride example. Africa Geoscience Review, 14(1–2), 79–93. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-40549100390&partnerID=40&md5=d4f6bbc4956b9b1f7f2f007d07522fcb
    [Google Scholar]
  20. Fischer, M. P., Kenroy, P. R., & Smith, A. P. (2013). Fluid systems around salt diapirs. AAPG Search and Discovery, 50902, 1–29.
    [Google Scholar]
  21. Fraser, N. M., Bottjer, D. J., & Fischer, A. G. (2004). Dissecting “Lihiotis” bivalves: Implications for the Early Jurassic reef eclipse. Palaios, 19, 51–67.
    [Google Scholar]
  22. Frizon de Lamotte, D., Bezar, B. S., Bracène, R., & Mercier, E. (2000). The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19(4), 740–761. https://doi.org/10.1029/2000TC900003
    [Google Scholar]
  23. Frizon de Lamotte, D., Zizi, M., Missenard, Y., Hafid, M., Azzouzi, M., Maury, R. C., … Michard, A. (2008). The atlas system. In A.Michard, O.Saddiqi, A.Chalouan, & D.Fricon de Lamotte (Eds.), Continental evolution: The geology of Morocco (pp. 133–202). Berlin: Springer.
    [Google Scholar]
  24. Ghazban, F., & Al‐Aasm, I. S. (2010). Hydrocarbon‐induced diagenetic dolomite and pyrite formation associated with the hormoz island salt dome, offshore Iran. Journal of Petroleum Geology, 33(2), 183–196. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-77954407367&partnerID=40&md5=a89ac205a3f8f60f9bbd8b0d88cef3ba
    [Google Scholar]
  25. Giles, K. A., Druke, D. C., Mercer, D. W., & Hunnicutt‐Mack, L. (2008). Controls on Upper Cretaceous (Maastrichtian) heterozoan carbonate platforms developed on Salt diapirs, La Popa Basin, NE Mexico (p. 89). SEPM Special Publication.
    [Google Scholar]
  26. Hailwood, E. A., & Mitchell, J. G. (1971). Palaeomagnetic and radiometric dating results from Jurassic intrusions in South Morocco. Geophysical Journal International, 24(4), 351–364. https://doi.org/10.1111/j.1365-246X.1971.tb02183.x
    [Google Scholar]
  27. Ibouh, H., El Bchari, F., Bouabdelli, M., Souhel, A., & Youbi, N. (2001). L'accident Tizal‐Azourki haut atlas central du maroc: Déformations synsŕdimentaires liasiques en extension et conséquences du serrage atlasique. Estudios Geológicos, 57(1–2), 15–30. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-77955194456&partnerID=40&md5=614c2d1a5a33ca3b50650d2c4a5076c3
    [Google Scholar]
  28. Jackson, M. P. A., Vendeville, B. C., & Shultz‐Ela, D. D. (1994). Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22, 93–117. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0028571329&partnerID=40&md5=8644cc3f8b06a7864bdecd964262e345. https://doi.org/10.1146/annurev.ea.22.050194.000521
    [Google Scholar]
  29. Jossen, J. A., & Couvreur, G. (Cartographer). (1990). Carte Géologique du Marroc, feuille Zawyat Ahançal.
    [Google Scholar]
  30. Joussiaume, R. (2016). Les relations entre diapirisme et sédimentation: Exemple du Jurassique moyen de la région d'Imilchil, Haut‐Atlas central, Maroc [The relationships between diapirism and sedimentation: An example from the Middle Jurassic of the Imilchil area, Central High‐Atlas, Morocco] (PhD). Université Bordeaux‐Montaigne Pessac, France.
    [Google Scholar]
  31. Laville, E., & Harmand, C. (1982). Magmatic and tectonic evolution of Mesozoic intracontinental basin High‐ Atlas Mountains, Morocco: A model of synsedimentary anorogenic intrusions linked to strike slip faults. Bulletin de la Société Géologique de France, 24(2), 213–227. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0020387037&partnerID=40&md5=73d1ca314ec9f479a5b80a4af5bee2bd
    [Google Scholar]
  32. Laville, E., Lesage, J.‐L., & Seguret, M. (1977). Geometrie, cinematique (dynamique) de la tectonique atlasique sur le versant sud du Haut Atlas marocain; apercu sur les tectoniques hercyniennes et tardi‐hercyniennes. Bulletin de la Société Géologique de France, Series 7, XIX(3), 527–539. https://doi.org/10.2113/gssgfbull.S7-XIX.3.527
    [Google Scholar]
  33. Laville, E., & Piqué, A. (1992). Jurassic penetrative deformation and Cenozoic uplift in the Central High Atlas (Morocco): A tectonic model. structural and orogenic inversions. Geologische Rundschau, 81(1), 157–170. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0026459438&partnerID=40&md5=e1e0115b2dbc1c13abaa21771bca6731
    [Google Scholar]
  34. Lee, C. W. (1983). Bivalve mounds and reefs of the central High Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 153–168. https://doi.org/10.1016/0031-0182(83)90052-4
    [Google Scholar]
  35. Li, S., Abe, S., Reuning, L., Becker, S., Urai, J. L., & Kukla, P. A. (2012). Numerical modelling of the displacement and deformation of embedded rock bodies during salt tectonics: A case study from the South Oman Salt Basin. Geological Society, London, Special Publications, 363(1), 503–520. https://doi.org/10.1144/sp363.24
    [Google Scholar]
  36. Li, S., Reuning, L., Marquart, G., Wang, Y., & Zhao, P. (2017). Numerical model of halite precipitation in porous sedimentary rocks adjacent to salt diapirs. Journal of Geophysics and Engineering, 14, 1160–1166. https://doi.org/10.1088/1742-2140/aa73f9
    [Google Scholar]
  37. Lonhmann, K. C. (1988). Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In N. P.James & P. W.Choquette (Eds.), Paleokarst (pp. 58–80). New York, NY: Springer.
    [Google Scholar]
  38. Machel, H. G. (2004). Concepts and models of dolomitization: A critical reappraisañl. Geological Society, London, Special Publications, 235(1), 7–63.
    [Google Scholar]
  39. Machel, H. G., & Burton, E. A. (1991). Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis. In C. E.Baker & O. C.Kopp (Eds.), Luminescence microscopy and spectroscopy: Qualitative and quantitative applications (Vol. 25, pp. 1–7). Tulsa, OK: Society for sedimentary geology (SEPM).
    [Google Scholar]
  40. Magri, F., Littke, R., Rodon, S., Bayer, U., & Urai, J. L. (2008). Temperature fields, petroleum maturation and fluid flow in the vicinity of salt domes. In R.Littke, U.Bayer, D.Gajewski, & S.Nelskamp (Eds.), Dynamic of complex intracontinental basin: The Central European Basin System (pp. 323–344). Berlin: Springer.
    [Google Scholar]
  41. Malaval, M. (2016). Enregistrement sédimentaire de l'activité diapirique associée à la ride du Jbel Azourki, Haut Atlas central, Maroc: Impact sur la géométrie des dépôts et la distribution des faciès des systèmes carbonatés et mixtes du Jurassique inférieur [Synsedimentary record of diapiric activity related to the Jbel Azourki ridge, Central High Atlas, Morocco: Impact on depositional geometries and facies distribution of the Lower Jurassic carbonate and mixed systems] (PhD). Université Bordeaux‐Montaigne Pessac, France.
    [Google Scholar]
  42. Mansurbeg, H., Morad, D., Othman, R., Morad, S., Ceriani, A., Al‐Aasm, I. S., … Koyi, H. (2016). Hydrothermal dolomitization of the Bekhme formation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of oil migration and degradation. Sedimentary Geology, 341, 147–162. https://doi.org/10.1016/j.sedgeo.2016.05.015
    [Google Scholar]
  43. Martín‐Martín, J. D., Vergés, J., Saura, E., Moragas, M., Messager, G., Baqués, V., … Hunt, D. W. (2017). Diapiric growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco). Tectonics, 36(1), 2–32. https://doi.org/10.1002/2016TC004300
    [Google Scholar]
  44. Masoumi, S., Reuning, L., Back, S., Sandrin, A., & Kukla, P. A. (2014). Buried pockmarks on the Top Chalk surface of the Danish North Sea and their potential significance for interpreting palaeocirculation patterns. International Journal of Earth Sciences, 103, 563–578.
    [Google Scholar]
  45. Mattauer, M., Tapponier, P., & Proust, F. (1977). Sur les mécanismes de formation des chaines intracontinentales: L'exemple des chaines atlasiques du Maroc. Bulletin de la Société Géologique de France, 77(7), 521–526.
    [Google Scholar]
  46. McManus, K. M., & Hanor, J. S. (1988). Calcite and iron sulfide cementation of Miocene sediments flanking the West Hackberry salt dome, southwest Louisiana, U.S.A. Chemical Geology, 74(1‐2), 99–112. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0024251988&partnerID=40&md5=ce18c03305891e0136d86e6c8f02bcad
    [Google Scholar]
  47. Mehdi, M., Neuweiler, F., & Wilmsen, M. (2003). Les formations du Lias inférieur du Haut Atlas central de Rich (Maroc): précisions lithostratigraphiques et étapes de l’évolution du bassin. Bulletin de la Société Géologique de France, 174(3), 227–242.
    [Google Scholar]
  48. Meyers, W. J. (1974). Carbonate cement stratigraphy of the Lake Valley (Mississippian) Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, 44, 837–861.
    [Google Scholar]
  49. Michard, A., Ibouh, H., & Charrière, A. (2011). Syncline‐topped anticlinal ridges from the High Atlas: A Moroccan conundrum, and inspiring structures from the Syrian Arc, Israel. Terra Nova, 23(5), 314–323. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-80052625102&partnerID=40&md5=a7e4cbb87f8ca914a1ee3882accbeba4. https://doi.org/10.1111/j.1365-3121.2011.01016.x
    [Google Scholar]
  50. Moldovany, E. P., & Lonhmann, K. C. (1984). Isotopic and petrographic record of phreatic diagenesis: Lower Cretaceous Sligo and Cupido Formations. Journal of Sedimentary Petrology, 54, 927–958.
    [Google Scholar]
  51. Moore, C. H. (2001). Carbonate reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework. Amsterdam: Elsevier Science Limited.
    [Google Scholar]
  52. Moore, C. H., & Wade, W. J. (2013). Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework. Amsterdam: Elsevier Science.
    [Google Scholar]
  53. Morad, D., Nader, F. H., Morad, S., Al Darmaki, F., & Hellevang, H. (2018). Impact of stylolitization on fluid flow and diagenesis on foreland basins: Evidence from an Upper Jurasic carbonate gas reservoir, Abu Dhabi, United Arab Emirates. Journal of Sedimentary Research, 88, 1345–1361.
    [Google Scholar]
  54. Moragas, M., Vergés, J., Nalpas, T., Saura, E., Martín‐Martín, J. D., Mesager, G., & Hunt, D. (2017). The Impact of Syn‐ and Post‐Extension Prograding Sedimentation on the Development of Salt‐Related Rift Basins and Their Inversion: Clues from Analogue Modelling. Marine and Petroleum Geology, 88, 985–1003. https://doi.org/10.1016/j.marpetgeo.2017.10.001
    [Google Scholar]
  55. Moragas, M., Vergés, J., Saura, E., Martín‐Martín, J. D., Messager, G., Merino‐Tomé, O., … Hunt, D. (2018). Jurassic rifting to post‐rift subsidence analysis in the Central High Atlas and its relation to salt diapirism. Basin Research, 30(S1), 336–362. https://doi.org/10.1111/bre.12223
    [Google Scholar]
  56. Morrow, D. W. (1982). Descriptive field classification of sedimentary and diagenetic breccia fabrics in carbonate rocks. Bulletin of Canadian Petroleum Geology, 30(3), 227–229. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-0020377756&partnerID=40&md5=f09dc4f6a42cb890b00cf99b9a000486
    [Google Scholar]
  57. Mouttaqi, A., Rjimati, E. C., Maacha, A., Michard, A., Soulaimani, A., & Ibouh, H. (2011). Les principales mines du Maroc. In A.Michard, O.Saddiqi, A.Chalouan, E. C.Rjimati, & A.Mouttaqi (Eds.), New geological and mining guidebooks of Morocco. Rabat: Service geologique du Maroc.
    [Google Scholar]
  58. Petersen, K., & Lerche, I. (1995). Quantification of thermal anomalies in sediments around salt structures. Geothermics, 24(2), 253–268. https://doi.org/10.1016/0375-6505(94)00051-D
    [Google Scholar]
  59. Petersen, K., & Lerche, I. (1996). Temperature dependence of thermal anomalies near evolving salt structures: Importance for reducing exploration risk. Geological Society, London, Special Publications, 100(1), 275–290. https://doi.org/10.1144/gsl.sp.1996.100.01.18
    [Google Scholar]
  60. Pique, A., Canals, A., Grandia, F., & Banks, D. A. (2008). Mesozoic fluorite veins in NE Spain record regional base metal‐rich brine circulation through basin and basement during extensional events. Chemical Geology, 257, 139–152. https://doi.org/10.1016/j.chemgeo.2008.08.028
    [Google Scholar]
  61. Piqué, A., Charroud, M., Laville, E., Aït Brahim, L., & Amrhar, M. (2000). The Thethys southern margin in Morocco: Mesozoic and Cenozoic evolution of the Atlas domain. In S.Crasquin & E.Barrier (Eds.), Peri‐Tethys Memoir 5: New data on peri‐Tethyan sedimentary basins (Vol. 182, pp. 93–106). Paris, France: Mémoires du Muséum National d'Histoire Naturelle.
    [Google Scholar]
  62. Poisson, A., Hadri, M., Milhi, A., Julien, M., & Andrieux, J. (1998). The Central High‐Atlas (Morocco). Litho‐ and chrono‐stratigraphic correlations during Jurassic times between Tinjdad and Tounfite. Origin of Subsidence. In S.Crasquin & E.Barrier (Eds.), Peri‐Tethys Memoir 4: Epicratonic Basins of Peri‐Tethyan Platforms (Vol. 179, pp. 237–256). Paris, France: Mémoires du Muséum National d'Histoire Naturelle.
    [Google Scholar]
  63. Poprawski, Y., Basile, C., Jaillard, E., Gaudin, M., & Lopez, M. (2016). Halokinetic sequences in carbonate systems: An example from the Middle Albian Bakio Breccias Formation (Basque Country, Spain). Sedimentary Geology, 334, 34–52. https://doi.org/10.1016/j.sedgeo.2016.01.013
    [Google Scholar]
  64. Posey, H. H., & Kyle, J. R. (1988). Fluid‐rock interactions in the salt dome environment: An introduction and review. Chemical Geology, 74, 1–24. https://doi.org/10.1016/0009-2541(88)90143-X
    [Google Scholar]
  65. Rddad, L., Mouguina, E. M., Muchez, P., & Darling, R. S. (2018). The genesis of the Ali Ou Daoud Jurassic carbonate Zn‐Pb Mississippi Valley‐type deposit, Moroccan Central High Atlas: Constraints from bulk stable C‐O‐S, in situ radiogenic Pb isotopes, and fluid inclusion studies. Ore Geology Reviews, 99, 365–379. https://doi.org/10.1016/j.oregeorev.2018.06.020
    [Google Scholar]
  66. Reuning, L., Schoenherr, J., Heimann, A., Urai, J. L., Littke, R., Kukla, P. A., & Rawahi, Z. (2009). Constraints on the diagenesis, stratigraphy and internal dynamics of the surface‐piercing salt domes in the Ghaba Salt Basin (Oman): A comparison to the Ara Group in the South Oman Salt Basin. GeoArabia, 14(3), 83–120. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-67650879475&partnerID=40&md5=0815cbebceacf98c042c708841c55231
    [Google Scholar]
  67. Sánchez, V., Vindel, E., Martín‐Crespo, T., Corbella, M., Cardellach, E., & Banks, D. A. (2009). Sources and composition of fluids associated with fluorite deposits of Asturias (N Spain). Geofluids, 2009, 338–355. https://doi.org/10.1111/j.1468-8123.2009.00259.x
    [Google Scholar]
  68. Saura, E., Vergés, J., Martín‐Martín, J. D., Messager, G., Moragas, M., Razin, P., … Hunt, D. W. (2014). Syn‐to post‐rift diapirism and minibasins of the Central High Atlas (Morocco): The changing face of a mountain belt. Journal of the Geological Society, 171(1), 97–105. https://doi.org/10.1144/jgs2013-079
    [Google Scholar]
  69. Schindler, C., Hagemann, S. G., Banks, D. A., Mernagh, T., & Harris, C. (2016). Magmatic hydrothermal fluids at the sedimentary rock‐hosted, intrusion‐related Telfer Gold‐Copper Deposirs, Paterson Orogen, Western Australia: P‐T‐X constrains on the Ore forming fluids. Economic Geology, 111, 099–1126.
    [Google Scholar]
  70. Schoenherr, J., Reuning, L., Kukla, P. A., Littke, R., Urai, J. L., Siemann, M., & Rawahi, Z. (2009). Halite cementation and carbonate diagenesis of intra‐salt reservoirs from the Late Neoproterozoic to Early Cambrian Ara Group (South Oman Salt Basin). Sedimentology, 56(2), 567–589. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-58249125499&partnerID=40&md5=789e639b49791fbbaf0c50b9c52501b6. https://doi.org/10.1111/j.1365-3091.2008.00986.x
    [Google Scholar]
  71. Sharma, R., & Srivastava, P. K. (2016). Hydrothermal fluids of magmatic origin. In S.Kumar & R. N.Singh (Eds.), Modelling of magmatic and allied processes. Heidelberg: Springer.
    [Google Scholar]
  72. Smith, A. P., Fischer, M. P., & Evans, M. A. (2012). Fracture‐controlled palaeohydrology of a secondary salt weld, La Popa Basin, NE Mexico. In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds.), Salt tectonics, sediments and prospectivity (Vol. 363, pp. 107–130). London: Geological Society, Special Publication.
    [Google Scholar]
  73. Spötl, C., & Pitman, J. K. (1998). Saddle (Baroque) Dolomite in Carbonates and Sandstones: A Reappraisal of a Burial‐Diagenetic Concept. In S.Morad (Ed.), Carbonate cementation in sandstones (Vol. Special Publication 26, pp. 437–460). Oxford: The International Association of Sedimentologists.
    [Google Scholar]
  74. Teixell, A., Arboleya, M. L., Julivert, M., & Charroud, M. (2003). Tectonic shortening and topography in the Central High Atlas (Morocco). Tectonics, 22(5), 1–14. https://doi.org/10.1029/2002TC001460
    [Google Scholar]
  75. Teixell, A., Barnolas, A., Rosales, I., & Arboleya, M. L. (2017). Structural and facies architecture of a diapir‐related carbonate minibasin (lower and middle Jurassic, High Atlas, Morocco). Marine and Petroleum Geology, 81, 334–360. https://doi.org/10.1016/j.marpetgeo.2017.01.003
    [Google Scholar]
  76. Tesón, E., & Teixell, A. (2008). Sequence of thrusting and syntectonic sedimentation in the eastern Sub‐Atlas thrust belt (Dadès and Mgoun valleys, Morocco). International Journal of Earth Sciences, 97(1), 103–113. https://doi.org/10.1007/s00531-006-0151-1
    [Google Scholar]
  77. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., … Strauss, H. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1), 59–88. https://doi.org/10.1016/S0009-2541(99)00081-9
    [Google Scholar]
  78. Vendeville, B. C., & Jackson, M. P. A. (1992). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 331–354. Retrieved from http://www.sciencedirect.com/science/article/pii/026481729290047I
    [Google Scholar]
  79. Vergés, J., Moragas, M., Martín‐Martín, J. D., Saura, E., Razin, P., Grélaud, C., … Hunt, D. W. (2017). Salt tectonics in the Atlas mountains of Morocco. In J. I.Soto, J.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins: Tectonics and hydrocarbon potential (pp. 263–280). Amsterdam: Elsevier.
    [Google Scholar]
  80. Warren, J. (2000). Dolomite: Occurrence, evolution and economically important associations. Earth‐Science Reviews, 52(1–3), 1–81. https://doi.org/10.1016/s0012-8252(00)00022-2
    [Google Scholar]
  81. Wilmsen, M., & Neuweiler, F. (2008). Biosedimentology of the early Jurassic post‐extinction carbonate depositional system, central High Atlas rift basin. Morocco. Sedimentology, 55(4), 773–807. Retrieved from http://www.scopus.com/inward/record.url?exml:id=2-s2.0-47649117591&partnerID=40&md5=8dbbb5f28a9de51b603aec1292f862df
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12382
Loading
/content/journals/10.1111/bre.12382
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basin fluids; diagenesis; diapiric basins; platform carbonates; salt tectonics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error