1887
Volume 32, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The hydrodynamics of rivers approaching a receiving basin are influenced by the onset of backwater conditions that give rise to decelerating reach‐average flow velocity and decreasing boundary shear stress. These changes occur across a spatial gradient over which decreasing sediment transport capacity triggers morphodynamic responses that include sediment deposition at the transition from uniform to nonuniform flow. As a consequence, the channel width‐to‐depth ratio and bed sediment grain size decrease downstream. While nonuniform flow and associated morphodynamic adjustments have been investigated in modern fluvial–deltaic systems, the impacts to fluvial–deltaic stratigraphy remain relatively unexplored. This represents an important unresolved gap: there are few contributions that link morphodynamic response to nonuniform flow, impacts on sediment deposition and influence on the rock record. This study uses a numerical model to explore how variable channel hydraulics influence long‐term (1000s years) patterns of sediment deposition and development of stratigraphy. The model results indicate that: (a) nonuniform flow propagates upstream beyond the backwater transition that is traditionally estimated with a basic backwater length scale relationship. (b) Base‐level fluctuations, especially rising, enhance the impact of nonuniform flow. (c) Sediment deposition shows large spatio‐temporal variability, which ultimately contributes to unique stacking patterns of fluvial–deltaic stratigraphy. (d) Nonuniform flow imparts spatial variation in flow depth, channel bed slope and sediment grain size over the delta, and these signatures are potentially preserved and recognizable in the rock record.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12385
2019-07-26
2020-07-12
Loading full text...

Full text loading...

References

  1. Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R. W., & Taha, Z. P. (2016). Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin. Earth‐Science Reviews, 153, 111–138. https://doi.org/10.1016/j.earscirev.2015.10.014
    [Google Scholar]
  2. Bijkerk, J. F., Eggenhuisen, J. T., Kane, I. A., Meijer, N., Waters, C. N., Wignall, P. B., & McCaffrey, W. D. (2016). Fluvio‐marine sediment partitioning as a function of basin water depth. Journal of Sedimentary Research, 86(3), 217–235. https://doi.org/10.2110/jsr.2016.9
    [Google Scholar]
  3. Bowman, A. P., & Johnson, H. D. (2014). Storm‐dominated shelf‐edge delta successions in a high accommodation setting: The palaeo‐Orinoco Delta (Mayaro Formation), Columbus Basin, South‐East Trinidad. Sedimentology, 61(3), 792–835. https://doi.org/10.1111/sed.12080
    [Google Scholar]
  4. Bradley, R. W., & Venditti, J. G. (2017). Reevaluating dune scaling relations. Earth‐Science Reviews, 165, 356–376. https://doi.org/10.1016/j.earscirev.2016.11.004
    [Google Scholar]
  5. Carlson, B., Piliouras, A., Muto, T., & Kim, W. (2018). Control of basin water depth on channel morphology and autogenic timescales in deltaic systems. Journal of Sedimentary Research, 88(9), 1026–1039. https://doi.org/10.2110/jsr.2018.52
    [Google Scholar]
  6. Carvajal, C., & Steel, R. (2009). Shelf‐edge architecture and bypass of sand to deep water: Influence of shelf‐edge processes, sea level, and sediment supply. Journal of Sedimentary Research, 79(9), 652–672. https://doi.org/10.2110/jsr.2009.074
    [Google Scholar]
  7. Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B., & Wallinga, J. (2018). Anatomy of Mississippi Delta growth and its implications for coastal restoration. Science Advances, 4(4), eaar4740. https://doi.org/10.1126/sciadv.aar4740
    [Google Scholar]
  8. Chatanantavet, P., Lamb, M. P., & Nittrouer, J. A. (2012). Backwater controls of avulsion location on deltas. Geophysical Research Letters, 39(1). https://doi.org/10.1029/2011GL050197
    [Google Scholar]
  9. Chow, V. T. (1959). Open‐channel hydraulics (680 p.). New York, NY: McGraw‐Hill.
    [Google Scholar]
  10. Colombera, L., Shiers, M. N., & Mountney, N. P. (2016). Assessment of backwater controls on the architecture of distributary‐channel fills in a tide‐influenced coastal‐plain succession: Campanian Neslen Formation, USA. Journal of Sedimentary Research, 86(5), 476–497. https://doi.org/10.2110/jsr.2016.33
    [Google Scholar]
  11. Cui, Y., Paola, C., & Parker, G. (1996). Numerical simulation of aggradation and downstream fining. Journal of Hydraulic Research, 34(2), 185–204. https://doi.org/10.1080/00221689609498496
    [Google Scholar]
  12. Cutler, K. B., Edwards, R. L., Taylor, F. W., Cheng, H., Adkins, J., Gallup, C. D., … Bloom, A. L. (2003). Rapid sea‐level fall and deep‐ocean temperature change since the last interglacial period. Earth and Planetary Science Letters, 206(3–4), 253–271. https://doi.org/10.1016/S0012-821X(02)01107-X
    [Google Scholar]
  13. Fernandes, A. M., Törnqvist, T. E., Straub, K. M., & Mohrig, D. (2016). Connecting the backwater hydraulics of coastal rivers to fluvio‐deltaic sedimentology and stratigraphy. Geology, 44(12), 979–982. https://doi.org/10.1130/G37965.1
    [Google Scholar]
  14. Ganti, V., Chadwick, A. J., Hassenruck‐Gudipati, H. J., Fuller, B. M., & Lamb, M. P. (2016a). Experimental river delta size set by multiple floods and backwater hydrodynamics. Science Advances, 2(5), e1501768. https://doi.org/10.1126/sciadv.1501768
    [Google Scholar]
  15. Ganti, V., Chadwick, A. J., Hassenruck‐Gudipati, H. J., & Lamb, M. P. (2016b). Avulsion cycles and their stratigraphic signature on an experimental backwater‐controlled delta. Journal of Geophysical Research: Earth Surface, 121(9), 1651–1675. https://doi.org/10.1002/2016JF003915
    [Google Scholar]
  16. Ganti, V., Chu, Z., Lamb, M. P., Nittrouer, J. A., & Parker, G. (2014). Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophysical Research Letters, 41(22), 7882–7890. https://doi.org/10.1002/2014GL061918
    [Google Scholar]
  17. Goodbred, S. L. Hanson, & Kuehl, S. A. (2000). The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges‐Brahmaputra delta. Sedimentary Geology, 133(3–4), 227–248.
    [Google Scholar]
  18. Hajek, E. A., & Heller, P. L. (2012). Flow‐depth scaling in alluvial architecture and nonmarine sequence stratigraphy: Example from the Castlegate Sandstone, Central Utah, USA. Journal of Sedimentary Research, 82(2), 121–130. https://doi.org/10.2110/jsr.2012.8
    [Google Scholar]
  19. Hajek, E. A., & Straub, K. M. (2017). Autogenic sedimentation in clastic stratigraphy. Annual Review of Earth and Planetary Sciences, 45(1), 681–709. https://doi.org/10.1146/annurev-earth-063016-015935
    [Google Scholar]
  20. Hotchkiss, R. H., & Parker, G. (1991). Shock fitting of aggradational profiles due to backwater. Journal of Hydraulic Engineering, 117(9), 1129–1144. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:9(1129)
    [Google Scholar]
  21. Hutton, E. W., & Syvitski, J. P. (2008). Sedflux 2.0: An advanced process‐response model that generates three‐dimensional stratigraphy. Computers & Geosciences, 34(10), 1319–1337.
    [Google Scholar]
  22. Jerolmack, D. J., & Mohrig, D. (2005). Frozen dynamics of migrating bedforms. Geology, 33(1), 57–60. https://doi.org/10.1130/G20897.1
    [Google Scholar]
  23. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19). https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  24. Jervey, M. T. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea‐level changes–An integrated approach (Vol. 42, pp. 1–407). Tulsa, OK: Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  25. Jiang, S., Henriksen, S., Wang, H., Lu, Y., Ren, J., Cai, D., … Weimer, P. (2013). Sequence‐stratigraphic architectures and sand‐body distribution in Cenozoic rifted lacustrine basins, east China. AAPG Bulletin, 97(9), 1447–1475. https://doi.org/10.1306/03041312026
    [Google Scholar]
  26. Kim, W., Paola, C., Swenson, J. B., & Voller, V. R. (2006). Shoreline response to autogenic processes of sediment storage and release in the fluvial system. Journal of Geophysical Research: Earth Surface, 111(F4).
    [Google Scholar]
  27. Lamb, M. P., Nittrouer, J. A., Mohrig, D., & Shaw, J. (2012). Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio‐deltaic morphodynamics. Journal of Geophysical Research: Earth Surface, 117(F1).
    [Google Scholar]
  28. Lambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43), 15296–15303. https://doi.org/10.1073/pnas.1411762111
    [Google Scholar]
  29. Lane, E. W. (1957). A study of the shape of channels formed by natural streams flowing in erodible material: Missouri river division sediment series report 9. Omaha, Nebraska, USA: Army Corps of Engineers, 1–106.
  30. Leclair, S. F. (2006). New pieces to the puzzle of reconstructing sediment paleofluxes from river dune deposits. Geology, 34(5), 401–404. https://doi.org/10.1130/G22107.1
    [Google Scholar]
  31. Leclair, S. F., & Bridge, J. S. (2001). Quantitative interpretation of sedimentary structures formed by river dunes. Journal of Sedimentary Research, 71(5), 713–716. https://doi.org/10.1306/2DC40962-0E47-11D7-8643000102C1865D
    [Google Scholar]
  32. Leva López, J., Kim, W., & Steel, R. J. (2014). Autoacceleration of clinoform progradation in foreland basins: Theory and experiments. Basin Research, 26(4), 489–504. https://doi.org/10.1111/bre.12048
    [Google Scholar]
  33. Li, Q., Yu, L., & Straub, K. M. (2016). Storage thresholds for relative sea‐level signals in the stratigraphic record. Geology, 44(3), 179–182. https://doi.org/10.1130/G37484.1
    [Google Scholar]
  34. Lin, C. S., Eriksson, K., Li, S. T., Wan, Y. X., Ren, J. Y., & Zhan, Y. M. (2001). Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, northeast China. AAPG bulletin, 85(11), 2017–2043.
    [Google Scholar]
  35. Lynds, R. M., Mohrig, D., Hajek, E. A., & Heller, P. L. (2014). Paleoslope reconstruction in sandy suspended‐load‐dominant rivers. Journal of Sedimentary Research, 84(10), 825–836. https://doi.org/10.2110/jsr.2014.60
    [Google Scholar]
  36. Ma, H., Jeffrey, A. N., Kensuke, N., Xudong, F., Yuanfeng, Z., Andrew, J. M., … Gary, P. (2017). The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River China. Science Advances, 3(5), e1603114.
    [Google Scholar]
  37. Martin, J., Fernandes, A. M., Pickering, J., Howes, N., Mann, S., & McNeil, K. (2018). The stratigraphically preserved signature of persistent backwater dynamics in a large paleodelta system: The Mungaroo Formation, North West Shelf, Australia. Journal of Sedimentary Research, 88(7), 850–872. https://doi.org/10.2110/jsr.2018.38
    [Google Scholar]
  38. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298.
    [Google Scholar]
  39. Moran, K. E., Nittrouer, J. A., Perillo, M. M., Lorenzo‐Trueba, J., & Anderson, J. B. (2017). Morphodynamic modeling of fluvial channel fill and avulsion timescales during the early Holocene transgression, as constrained by the incised valley stratigraphy of the Trinity River, Texas. Journal of Geophysical Research, Earth Surface, 122(1), 215–234.
    [Google Scholar]
  40. Muto, T., Ryuji, F., Arti, T., Tomoyuki, S., Wonsuck, K., Hajime, N., … Gary, P. (2016). Planform evolution of deltas with graded alluvial topsets: Insights from three-dimensional tank experiments, geometric considerations and field applications. Sedimentology, 63(7), 2158–2189.
    [Google Scholar]
  41. Muto, T., & Swenson, J. B. (2005). Large‐scale fluvial grade as a nonequilibrium state in linked depositional systems: Theory and experiment. Journal of Geophysical Research: Earth Surface, 110(F3).
    [Google Scholar]
  42. Naito, K., Ma, H., Nittrouer, J. A., Zhang, Y., Wu, B., Wang, Y., … Parker, G. (2019). Extended Engelund‐Hansen type sediment transport relation for mixtures based on the sand‐silt‐bed Lower Yellow River, China. Journal of Hydraulic Research, 1–16.
    [Google Scholar]
  43. Nittrouer, J. A. (2013). Backwater hydrodynamics and sediment transport in the lowermost Mississippi River Delta: Implications for the development of fluvial‐deltaic landform in a large lowland river. In Proceedings of the International Association of Hydrological Sciences‐IAHS‐IAPSO‐IASPEI Assembly (Vol. 358, pp. 48–61). Gothenburg, Sweden: IAHS Publication. ISSN 0144‐7815.
    [Google Scholar]
  44. Nittrouer, J. A., Mohrig, D., & Allison, M. A. (2011a). Punctuated sand transport in the lowermost Mississippi River. Journal of Geophysical Research, 116, 1914–1934. https://doi.org/10.1029/2011JF002026
    [Google Scholar]
  45. Nittrouer, J. A., Mohrig, D., Allison, M. A., & Peyret, A. B. (2011b). The Lowermost Mississippi River: A mixed bedrock‐alluvial channel. Sedimentology, 58(7), 1914–1934. https://doi.org/10.1111/j.1365-3091.2011.01245.x
    [Google Scholar]
  46. Nittrouer, J. A., Shaw, J., Lamb, M. P., & Mohrig, D. (2012). Spatial and temporal trends for water‐flow velocity and bed‐material sediment transport in the lower Mississippi River. Geological Society of America Bulletin, 124(3–4), 400–414. https://doi.org/10.1130/B30497.1
    [Google Scholar]
  47. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47(s1), 121–178. https://doi.org/10.1046/j.1365-3091.2000.00006.x
    [Google Scholar]
  48. Paola, C., & Borgman, L. (1991). Reconstructing random topography from preserved stratification. Sedimentology, 38(4), 553–565. https://doi.org/10.1111/j.1365-3091.1991.tb01008.x
    [Google Scholar]
  49. Paola, C., & Mohrig, D. (1996). Palaeohydraulics revisited: Palaeoslope estimation in coarse‐grained braided rivers. Basin Research, 8(3), 243–254. https://doi.org/10.1046/j.1365-2117.1996.00253.x
    [Google Scholar]
  50. Paola, C., & Voller, V. R. (2005). A generalized Exner equation for sedimentmass balance. Journal of Geophysical Research, 110, F04014. https://doi.org/10.1029/2004JF000274
    [Google Scholar]
  51. Parker, G. (2004). 1D sediment transport morphodynamics with applications to rivers and turbidity currents. University of Illinois at Urbana‐Champaign. Retrieved from http://hydrolab.illinois.edu/people/parkerg//morphodynamics_e-book.htm
    [Google Scholar]
  52. Parker, G., Muto, T., Akamatsu, Y., Dietrich, W. E., & Lauer, J. (2008a). Unravelling the conundrum of river response to rising sea‐level from laboratory to field. Part I: Laboratory experiments. Sedimentology, 55(6), 1643–1655.
    [Google Scholar]
  53. Parker, G., Muto, T., Akamatsu, Y., Dietrich, W. E., & Wesley Lauer, J. (2008b). Unravelling the conundrum of river response to rising sea‐level from laboratory to field. Part II. The Fly–Strickland River system, Papua New Guinea. Sedimentology, 55(6), 1657–1686.
    [Google Scholar]
  54. Perlmutter, M. A., Radovich, B. J., Matthews, M. D., & Kendall, C. G. S. C. (1998). The impact of high‐frequency sedimentation cycles on stratigraphic interpretation. In F. M.Gradstein, K. O.Sandvik, & N. J.Milton (Eds.), Sequence stratigraphy–Concepts and applications (Vol. 8, pp. 141–170). Norwegian Petroleum Society Special Publication.
    [Google Scholar]
  55. Petter, A. L. (2010). Stratigraphic implications of the spatial and temporal variability in sediment transport in rivers, deltas, and shelf margins (unpublished doctoral dissertation). University of Texas at Austin, 205 p.
    [Google Scholar]
  56. Rodriguez, A. B., Hamilton, M. D., & Anderson, J. B. (2000). Facies and evolution of the modern Brazos Delta, Texas: Wave versus flood influence. Journal of Sedimentary Research, 70(2), 283–295. https://doi.org/10.1306/2DC40911-0E47-11D7-8643000102C1865D
    [Google Scholar]
  57. Ross, W. C., Watts, D. E., & May, J. A. (1995). Insights from stratigraphic modeling: Mud‐limited versus sand‐limited depositional systems. American Association of Petroleum Geologists Bulletin, 79(2), 231–258.
    [Google Scholar]
  58. Scholz, C. A., Moore, T. C.Jr, Hutchinson, D. R., Golmshtok, A. J., Klitgord, K. D., & Kurotchkin, A. G. (1998). Comparative sequence stratigraphy of low‐latitude versus high‐latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts. Palaeogeography, Palaeoclimatology, Palaeoecology, 140(1–4), 401–420. https://doi.org/10.1016/S0031-0182(98)00022-4
    [Google Scholar]
  59. Swenson, J. B., Paola, C., Pratson, L., Voller, V. R., & Murray, A. B. (2005). Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound‐clinoform development. Journal of Geophysical Research: Earth Surface, 110(F2).
    [Google Scholar]
  60. Trower, E. J., Ganti, V., Fischer, W. W., & Lamb, M. P. (2018). Erosional surfaces in the Upper Cretaceous Castlegate Sandstone (Utah, USA): Sequence boundaries or autogenic scour from backwater hydrodynamics?Geology, 46(8), 707–710. https://doi.org/10.1130/G40273.1
    [Google Scholar]
  61. Viparelli, E., Nittrouer, J. A., & Parker, G. (2015). Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial‐bedrock transition and a downstream bedrock‐alluvial transition: Implications for land building using engineered diversions. Journal of Geophysical Research: Earth Surface, 120(3), 534–563. https://doi.org/10.1002/2014JF003257
    [Google Scholar]
  62. Voller, V. R., & Paola, C. (2010). Can anomalous diffusion describe depositional fluvial profiles?Journal of Geophysical Research: Earth Surface, 115(F2).
    [Google Scholar]
  63. Wang, Y., Straub, K. M., & Hajek, E. A. (2011). Scale‐dependent compensational stacking: An estimate of autogenic time scales in channelized sedimentary deposits. Geology, 39(9), 811–814. https://doi.org/10.1130/G32068.1
    [Google Scholar]
  64. Wolinsky, M. A., Swenson, J. B., Litchfield, N., & McNinch, J. E. (2010). Coastal progradation and sediment partitioning in the Holocene Waipaoa sedimentary system, New Zealand. Marine Geology, 270(1–4), 94–107. https://doi.org/10.1016/j.margeo.2009.10.021
    [Google Scholar]
  65. Wright, S., & Parker, G. (2005). Modeling downstream fining in sand‐bed rivers. I: Formulation. Journal of Hydraulic Research, 43(6), 613–620.
    [Google Scholar]
  66. Wu, C., Nittrouer, J., & Swanson, T. (2018). Dune morphodynamics and forward models of set‐scale architecture within the backwater zone of the Mississippi River, USA. Washington, DC: AGU Fall Meeting.
    [Google Scholar]
  67. Wu, H., Ji, Y., Wu, C., Duclaux, G., Wu, H., Gao, C., … Chang, L. (2019). Stratigraphic response to spatiotemporaly varying tectonic forcing in rifted continental basin: Insight from coupled tectonic‐stratigraphic numerical model. Basin Research, 31, 311–336.
    [Google Scholar]
  68. Zhang, J., Ronald, S., & William, A. (2016). Greenhouse shoreline migration: Wilcox deltas. AAPG Bulletin, 100(12), 1803–1831.
    [Google Scholar]
  69. Zecchin, M., & Catuneanu, O. (2013). High‐resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Marine and Petroleum Geology, 39(1), 1–25. https://doi.org/10.1016/j.marpetgeo.2012.08.015
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12385
Loading
/content/journals/10.1111/bre.12385
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): backwater morphodynamics , fluvial–deltaic stratigraphy and nonuniform flow
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error